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ABSTRACT

Speech data typically contains task irrelevant information lying
within features. Specifically, phonetic information, speaker char-
acteristic information, emotional information and noise are always
mixed together and tend to impair one another for certain task. We
propose a new type of auto-encoder for feature learning called con-
trastive auto-encoder. Unlike other variants of auto-encoders, con-
trastive auto-encoder is able to leverage class labels in construct-
ing its representation layer. We achieve this by modeling two auto-
encoders together and making their differences contribute to the total
loss function. The transformation built with contrastive auto-encoder
can be seen as a task-specific and invariant feature learner. Our ex-
periments on TIMIT clearly show the superiority of the feature ex-
tracted from contrastive auto-encoder over original acoustic feature,
feature extracted from deep auto-encoder, and feature extracted from
a model that contrastive auto-encoder originates from.

Index Terms— auto-encoder, contrastive auto-encoder,
phoneme recognition, deep neural network (DNN), restricted
Boltzmann machine (RBM)

1. INTRODUCTION

Speech is one of the most natural way of communication for human
being and various kinds of techniques and applications have been
developed. However, feature selection for speech signal has been
an unsettled problem for decades. For many speech applications,
typical features such as Mel-frequency cepstral coefficient (MFCC)
and perceptual linear prediction (PLP) were used. One of the most
obvious problems for these classical features is that they might con-
tain lots of information that are irrelevant to specific tasks and might
impair the performance of particular application.

Auto-encoder (AE) is a neural network which has three layers
and its third layer (output) is trained to be as like first layer (input)
as possible and thus has the same number of neurons. The output of
second layer acts as a compact representation or “code” for the input
data. The function of AE is much like principal component analysis
(PCA) but AE works in a non-linear fashion. The idea of AE was
extended to several other variants such as deep AE [1], sparse AE,
denoising AE [2] and contractive AE [3]. All of these ideas have
been formalized and successfully applied to various applications [4]
and taken an important part of deep learning.

Recently, Chen and Salman [5][6][7] proposed an deep neural
architecture (DNA) for modeling speakers in speaker recognition.
The idea is to exploit the equivalents and distinctions of training da-
ta to build a transformation of features that is most invariant to what
we are interested in. Specifically, in the task of speaker verification,
original acoustic features may contain some information that is ir-
relevant to speaker characteristics such as phonetic information and
background noise. If we are able to build certain transformation that
makes the representation obtained contain information only related
to speaker characteristics, a speaker recognition system built from
such representation can be counted on to give better performance.
So they build their DNA with two deep AEs but simultaneously op-
timizes both the performance of two AEs and the interaction between
them. By optimizing the loss function given by Chen, the DNA is
able to build certain transformation that we concern most from da-
ta (eg., speaker-specific characteristic) and has been proved to give
better results on the task of speaker recognition than using Gaussian
mixture model (GMM) or convolutional deep belief network.

We suspect that speech recognition may be facing a similar sit-
uation and a transformation that can help get rid of speaker charac-
teristics or background noise may potentially be beneficial. Hence,
we propose a new type of AE called contrastive auto-encoder (C-
sAE), which is an improvement of Chen’s DNA and also consists of
two AEs. The CsAE modifies the loss function of Chen’s DNA in
order to make the representation learned more suitable for classifica-
tion. Also, our model can be seen as an AE that automatically learns
invariant transformations.

We use the CsAE on TIMIT for the task of phoneme recogni-
tion. The original acoustic feature was transformed through a trained
CsAE and recognition performance was compared with original a-
coustic feature, feature extracted through a deep AE with same archi-
tecture and feature extracted with Chen’s DNA. The results clearly
show the superiority of our model.

2. CONTRASTIVE AUTO-ENCODER

2.1. Model Description

A CsAE consists of two deep AEs. However, unlike AE and other
variants of AEs, the training of CsAE must be accomplished in a pure
supervised fashion. Each pair of inputs for a CsAE consists of two
samples that belong to a same class and may or may not be the same
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sample. Each sub-autoencoder (sub-AE) has K layers for encoding
andK layers for decoding and thus making 2K+1 layers altogether.
The outputs of the Kth layer of both sub-AEs are contrasted, which
means the difference of them contributes to the loss function. We
would like such difference to be as small as possible, yet maintain
the ability of both sub-AEs to reconstruct the original input signal.

Fig. 1. An illustration of contrastive auto-encoder, where middle
layer means the Kth layer given each sub-AE has 2K + 1 layers.
r(X) and co(x) are defined in section 2.2.

2.2. Loss Function

The loss function of a CsAE is a weighted sum:

E(X1, X2;W ) = α[E1(X1;W ) + E2(X2;W )]
+(1− α)Econtra(X1, X2;W )

(1)

X1 andX2 in (1) represent two input feature vectors for the two sub-
AEs of CsAE respectively but with one condition - they are different
in general, but same in certain sense we concern. Concretely, for the
task of phoneme recognition, X1 and X2 are different occurrences
of a same phoneme. In section 3 we will elaborate how we arrange
our training cases to make this requisition satisfied.

The first part of loss function E is the sum of squared l2-norm
of reconstruction error of each sub-autoencoder. That is,

Ei(Xi;W ) = ‖r(Xi)−Xi‖22, i = 1, 2 (2)

Here r(X) represents the reconstruction of the original feature with
an auto-encoder. The optimization of this part guarantees the “code”
to be a reasonable representation of original feature. The second part
of loss functionE is the contrastive part and optimization of this part
leads to similar representation

Econtra(X1, X2;W ) = ‖co(X1)− co(X2)‖22 (3)

where co(X) means comparative output of input signal X . It is the
same with the output of the Kth layer.

Intuitively, penalization of term (3) endows the traditional AE
with an additional capability of making the transformed represen-
tation similar to each other within classes and thus hopefully mak-
ing the classification later much easier. This term also differs from
Chen’s model and we will discuss this point in section 2.4.

2.3. Training Algorithm

We found in our experiments that directly optimizing the loss func-
tion (1) is difficult even with L-BFGS [8]. So in practice, similar to
typical deep AE training strategy [1], the CsAEs are trained with a
two-phase learning algorithm. Before elaborating this algorithm, we
first make clear our notations used for the algorithm.

For each original input feature X of a sub-AE, let hkj(X) de-
note the output of jth neuron in the kth layer for k = 0, 1, 2, ..., 2K.
hk(X) = (hkj(X))

|hk(X)|
j=1 is a column vector formed with all the

neurons in layer k. |hk(X)| is the number of neurons in layer k.
With this notation, h0(X) = X , and h2K(X) = r(X) is the re-
construction of feature X through an AE and co(X) = hK(X) =

(hKj(X))
|hK(X)|
j=1 . Let Wk denote the weight connections between

layer k− 1 and layer k, and bk denote the bias vector in layer k. So,

hk(X) = σ[uk(X)], k = 1, 2, . . . , 2K − 1 (4)

in which

uk(X) = W ′khk−1(X) + bk (5)

σ(z) = (
1

1 + ezj
)
|z|
j=1 (6)

We use notation ′ to represent the transpose operation throughout
this paper.

2.3.1. Pre-training

Pre-training of a CsAE is essentially the training of two deep auto-
encoders, and each consists of two steps: generative pre-training of a
deep belief network (DBN) and discriminative fine-tuning as a deep
neural network (DNN). The pre-training phase of the CsAE aims to
minimizing the first part of loss function E.

A DBN is a probabilistic model which consists of many hidden
layers. DBN can be trained with stacked restricted Boltzmann ma-
chines (RBM). One important property for DBN is that adding one
more hidden layer guarantees to improve the variational bound of
distribution of data it is modeling.

An RBM can be efficiently trained with contrastive divergence
algorithm [9]. After training an RBM the inferred data of hidden
layer can be used as newly observable data and another RBM can
be trained with these data. This procedure can be repeated until the
DBN was built.

Suppose we train a DBN with K + 1 layers, and the K weight
matrices are denoted with W1, ...,WK . All the weight matrices in
an AE can be initialized in the following way: for the bottom K +1
layers, W1, ...,WK can be used; for the upper K layers, we have
WK+i =W ′K−i+1 for i = 1, ...,K.

After initializing the AE with 2K + 1 layers, this DNN can be
discriminatively trained with back-propagation algorithm to mini-
mize the sum of square of l2-norm of the difference between recon-
struction vector and input vector.
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2.3.2. Contrastive Fine-tuning

After the training of two sub-AEs, we use back-propagation algo-
rithm with stochastic gradient descent (SGD) to minimize the loss
function (1) all together. Suppose all the training cases are randomly
grouped into batches with size T , and each case in a batch is a pair
like (X1(t), X2(t)) indexed with t. Notice that X1(t) and X2(t)
must have the same label (the label itself, however, is not used in the
training of the CsAE). We derive the updating algorithm by analyz-
ing the effect of one particular case.

Minimizing loss function E can be obtained by minimizing Ei

and Econtra separately. First, take the derivative of Ei with respect
to the output of last layer

∂Ei(t)

∂u
(i)
2K(t)

= −2(Xi(t)− r(Xi(t))) (7)

For all the other layers, that is, k = 2K − 1, ..., 2, 1

∂Ei(t)

∂u
(i)
k (t)

=

(
∂Ei(t)

∂h
(i)
kj (t)

h
(i)
kj (t)

(
1− h(i)

kj (t)
))|hi

k(t)|

j=1

(8)

∂Ei(t)

∂h
(i)
k (t)

= [W i
k+1]

′ ∂Ei(t)

∂ui
k+1(t)

(9)

For the middle layer where k = K, the derivative can be derived
with

∂Econtra(t)

∂u
(i)
k (t)

= 2 · (−1)i−1 (coj(X1(t))(1− coj(X2(t))))
|hi

K(t)|
j=1 (10)

For k = K − 1, ..., 2, 1

∂Econtra(t)

∂u
(i)
k (t)

=

(
∂Econtra(t)

∂h
(i)
kj (t)

h
(i)
kj (t)

(
1− h(i)

kj (t)
))|hi

k(t)|

j=1

(11)

∂Econtra(t)

∂h
(i)
k (t)

= [W i
k+1]

′ ∂Econtra(t)

∂ui
k+1(t)

(12)

So, from stochastic gradient descent algorithm, for k = K +
1, ..., 2K, the updating rule of each weight is

W
(i)
k ← W

(i)
k −

εα

T

T∑
t=1

∂Ei(t)

∂u
(i)
k (t)

[h
(i)
k−1(t)]

′ (13)

b
(i)
k ← b

(i)
k −

εα

T

T∑
t=1

∂Ei(t)

∂u
(i)
k (t)

(14)

And for layer k = 1, 2, ...,K

W
(i)
k ←W

(i)
k −

ε

T

T∑
t=1

(
α
∂Ei(t)

∂u
(i)
k (t)

+ (1− α)∂Econtra(t)

∂u
(i)
k (t)

)
[h

(i)
k−1(t)]

′

(15)

b
(i)
k ← b

(i)
k −

ε

T

T∑
t=1

(
α
∂Ei(t)

∂u
(i)
k (t)

+ (1− α)∂Econtra(t)

∂u
(i)
k (t)

)
(16)

ε represents learning rate in (13)(14)(15)(16).

2.4. Comparison to Chen’s DNA

The essential difference between the CsAE and Chen’s model
[5][6][7] is that, in Chen’s model, only part of neurons in the mid-
dle layers of the two sub-AEs contribute to the loss function. By
his approach, the activity of both the neurons that contributes to the
loss function and other neurons have explicit meanings. For exam-
ple, half of neurons learn speaker-specific characteristics and the rest
half contains phonetic and noise information. However, such model
has the tendency to learn a trivial solution that makes all input data
mapped to a uniform output, which can make the second part of the
loss function minimized. To deal with this problem, Chen introduced
his loss function as:

E(X1, X2;W ) = α[E1(X1;W ) + E2(X2;W )]
+(1− α)ED(X1, X2;W )

(17)

in which E1, E2 is the same as in (2), and ED is defined as:

ED(X1, X2;W ) = Y ‖co′(X1)− co′(X2)‖22
+(1− Y )e−‖co

′(X1)−co′(X2)‖22 (18)

in which co′(X) denotes the output of the part of neurons (half, for
example) we would like to be similar between two sub-AEs. Y = 1
if X1 and X2 belongs to a same class and Y = 0 otherwise. Thus,
the negative exponential penalization makes samples that belong to
different class far from each other, but not so aggressive as to make
different samples that are already far from each other even farther,
hence avoids the trivial solution mentioned above.

While such solution have been proved to be effective in model-
ing speakers in speaker recognition, Chen’s DNA still offers room
for improvement. With the loss function given by Chen, the model
may try to learn another kind of trivial solution: all the data from the
same class are mapped to a same output (minimizing the first term
of 18) and meanwhile totally different from the output that mapped
from other classes (minimizing the second term of 18). This seems
to be what we would like to achieve, however, this can almost always
be achieved, because the reconstruction of original data can always
be aided with other neurons in the middle layer. Thus the output
of neurons that we concern may lose the discriminative power for
certain task, since the representation obtained can have nothing to
do with original signal. In other words, this is a kind of overfit-
ting. Instead of using this term to describe the discrepancy between
how well the model fits training data and testing data, we are actu-
ally describing the discrepancy between those part of neurons (and
weights that connect to these neurons) that are endowed with special
meaning and those who do not, and such kind of overfitting can oc-
cur regardless of whether the model overfits the training data. Thus,
the way the model is optimized implicitly signifies a degradation of
performance if the feature extracted is used for classification.

Our model deals with both problems simultaneously. First, a
trivial solution like all the inputs be mapped to a uniform output is
impossible because such solution can never reconstruct the inputs
well. So the negative exponential penalization for negative samples
is not necessary in the CsAE. Second, for the same reason, a trivial
solution that samples from each class are squeezed to a single point
respectively is not possible because they cannot reconstruct the orig-
inal data very well.
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3. EXPERIMENTS

3.1. Experimental Setup

All experiments are conducted on TIMIT corpus. All SA records are
removed from the data set. The data was divided into training, devel-
opment and core test as in [10]. We used 40 coefficients Mel-scale
log filter-bank (with energy) and velocity and acceleration (123 di-
mensions) as acoustic feature and 11 consecutive frames of acoustic
feature are concatenated as input for baseline mono-phone hidden
Markov model (HMM)- DNN phoneme recognition system, CsAE
and Chen’s DNA. The feature extracted by a single deep AE, CsAE
and Chen’s DNA are also used in a HMM-DNN phoneme recogni-
tion system for comparison. We used the feature from the middle
layer right before the nonlinear activation was applied. All data used
in neural networks (DNN, deep AE, CsAE and Chen’s DNA) are
normalized to zero mean and unit variance. The HMM was obtained
by training a HMM-GMM model with maximum likelihood criteri-
on.

During the decoding stage, we used a bigram phoneme language
model trained from the training set and a same decoding parameters.
For evaluation, 61 phones are mapped to 39 phonemes in the same
way as in [11].

3.2. Configuration of neural networks

All DNNs in our experiments were pre-trained with stacked RBMs.
We trained RBMs in the same way as in [12]. For all the DNNs in
HMM-DNN phoneme recognition system, a same architecture of 6
hidden layers by 2000 units was applied. The DNNs were trained
with cross-entropy criterion and SGD+momentum. All the other
hyper-parameters were the same with [12].

All sub-AEs of Chen’s DNA and the CsAE were also pre-trained
with RBMs. For convenience of comparison, we used hidden lay-
er sizes of [1500,1500,1500,3000,1500,1500,1500] for sub-AEs in
Chen’s model and [1500,1500,1500,1500,1500,1500,1500] for sub-
AEs in CsAE. We used half of the neurons in the middle layer of
Chen’s model to optimize the loss function, which made the dimen-
sion of feature obtained from Chen’s DNA and the CsAE both 1500.

When organizing the training data, since Chen’s model have to
use negative samples (samples that have different labels for two sub-
AEs), we first randomized all the training samples within label, and
then randomized half of training data irrespective their labels , which
made almost half of training samples negative for Chen’s model. For
CsAE, we only had to randomize training samples within label.

3.3. Results

We trained a Chen’s DNA, a deep AE and a CsAE with the Mel-
scale log filter-bank (fbank) feature as input. We first trained two
deep AEs with configuration described in section 3.2 (denoted as
AEA andAEB) and duplicated them as pre-training of Chen’s DNA
(denoted asAEC ) and CsAE (denoted asAED) respectively. Notice
that training a deep auto-encoder has been recognized as a difficult
problem and normally the models suffer from underfitting instead
of overfitting [13]. For this reason, training deep AE has become a
benchmarking problem [14][15][13]. To make such huge AEs give
satisfactory performance, it took us a month to train each of them
on a GPU. To make a fair comparison, the reconstruction error of
AEA equaled 91% of reconstruction error ofAEB when we stopped
training them. After that, AEC and AED were trained by following
objective (17) and (1), and AEB was kept on training (denoted as
AEE) separately alongside with AEC and AED . Each of these

three AEs was trained for 3000 epochs following their own objective
with learning rate of 0.001 and α = 0.75 in both (1) and (17).

Ideally, each sample should be contrasted with all the other sam-
ples in the same class in the transformed feature, and this can be
approximated by randomizing all the training data within each class
on-the-fly. Although we did not use this method, and a single ran-
domization of whole training set clearly cannot satisfy such require-
ment, we perform a little test to make sure if this would be a problem.
We tried to change the training set to another re-randomized training
set in our process of training a contrastive auto-encoder. After such
change, we observed no perceptible oscillation of both training er-
ror and validation error, which in a certain degree validates that the
amount of data in TIMIT is sufficient for CsAE.

All results are reported in Table 1. From our experiments, fea-
tures obtained from Chen’s DNA was not able to outperform original
fbank feature. We checked the outputs of neurons of the half of mid-
dle layer (after nonlinear activation) and found that most neurons
are firmly on or off, and these outputs tend to be almost the same
within each class, which demonstrate the validity of our reasoning
in section 2.4. However, there’s still a chance that Chen’s model has
the ability to disentangle the explanatory factors of original data. So
we also tested the feature which comes from all the neurons in the
middle layer, but the result is still not good enough.

Table 1. Phone error rate of different features
feature dev core test
fbank 21.97% 23.26%

Chen’s DNA 22.80% 24.77%
Chen’s DNA with all neurons 23.50% 24.25%

deep AE 22.39% 22.91%
CsAE 21.26% 22.80%

fbank+CsAE 21.00% 22.20%

The difference between fbank feature and feature extracted by
an deep AE is not significant. But with the additional term that
contrast middle layer outputs in loss function (1), the phone error
rate (PER) of feature extracted from CsAE improved by more than
1% on development set compared with feature from deep AE. We
also concatenate fbank feature with feature extracted by CsAE (f-
bank+CsAE) and obtained further improvements on both develop-
ment set and core test set.

4. CONCLUSION

In this paper, we propose a new variant of auto-encoder called con-
trastive auto-encoder. We present the definition and learning algo-
rithm of contrastive auto-encoder. It improves the model by Chen
and Salman. We carefully analyze Chen’s model and the difference
between their model and ours is given. Our experiments on TIMIT
verify our analysis. In the future, we would like to apply contrastive
auto-encoder to other classification problems.
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