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Latent Semantic Analysis for Multimodal
User Input With Speech and Gestures

Pui-Yu Hui and Helen Meng

Abstract—This paper describes our work in semantic interpre-
tation of a “multimodal language” with speech and gestures using
latent semantic analysis (LSA). Our aim is to infer the domain-spe-
cific informational goal of multimodal inputs. The informational
goal is characterized by lexical terms used in the spoken modality,
partial semantics of gestures in the pen modality, as well as term
co-occurrence patterns across modalities, leading to “multimodal
terms.” We designed and collected a multimodal corpus of navi-
gational inquiries. We also obtained perfect (i.e. manual) and im-
perfect (i.e. automatic via recognition) transcriptions for these. We
automatically align parsed spoken locative references (SLRs) with
their corresponding pen gesture(s) using the Viterbi alignment, ac-
cording to their numeric and location type features. Then, we char-
acterize each cross-modal integration pattern as a 3-tuple multi-
modal term with SLR, pen gesture type and their temporal rela-
tionship. We propose to use latent semantic analysis (LSA) to de-
rive the latent semantics from manual (i.e. perfect) and automatic
(i.e. imperfect) transcriptions of the collected multimodal inputs.
In order to achieve this, both multimodal and lexical terms are used
to compose an inquiry-term matrix, which is then factorized using
singular value decomposition (SVD) to derive the latent semantics
automatically. Informational goal inference based on the latent se-
mantics shows that the informational goal inference accuracy of
a disjoint test set is 99% and 84% when a perfect and imperfect
projection model is used respectively, which performs significantly
better than (at least 9.9% absolute) the baseline performance using
vector-space model (VSM).

Index Terms—Multimodal user interfaces, speech recognition,
gesture recognition, latent semantic analysis.

I. INTRODUCTION

ULTIMODAL user interfaces aim to mimic the

human’s multi-sensory perceptual capabilities to be
able to process combined input modalities, including speech,
gestures, touch, gaze, etc. In particular, much attention is
devoted to spoken language combined with gestures. Spoken
language offers a rich modality for expression and so does
the gesture modality (e.g. in pointing, drawing, writing, high-
lighting, soft keyboard typing, etc.). Speech is a fast medium
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for verbalized communication and provides a hands-free in-
terface, but may be affected by ambient noise. Gestures offer
convenience in conveying spatial or graphical information,
preserve privacy and are unaffected by noise. Consider the
multimodal input: “What street is this? < PEN STROKE >.”
the message components in individual modalities are seman-
tically inexact. However, the multimodal expression captures
precise semantics clearly and concisely in its entirety. Human
interpretation of multimodal expressions can readily combine
the analyses from both modalities to decode the intended mes-
sage. Furthermore, combined cross-modal analysis can achieve
robust interpretation in face of signaling errors or signal degra-
dations due to adverse environmental conditions (e.g. overly
bright/dark illumination, ambient noise, jerky motions, etc.)
Studies have also shown that multimodal communication can
minimize human cognitive load in communication. Addition-
ally, the growing penetration of mobile information appliances
(especially smartphones) and advancements in wireless con-
nectivity are driving the proliferation of ubiquitous, media-rich
information services. This creates a dire need for multimodal
speech and gestural interfaces. All these advantages provide
strong impetus for research in computational frameworks for
semantic interpretation of multimodal expressions.

Automatic semantic interpretation of multimodal input is
an active research area. Previous approaches largely involve
partial interpretations of each modality and their integration to
decode the user’s message. However, such approaches are ham-
pered by several challenging issues: First, there is considerable
variability in how the user distributes the message across modal-
ities. Contributing factors include the nature of the message
and task at hand, the interface, environmental conditions and
the user’s (idiosyncratic) preferences. Second, input events that
have cross-modal semantic correlations may not have temporal
synchrony. Contributing factors are similar to those mentioned
above. Third, message components in individual modalities
may be irregular, imprecise or incomplete. Speech may contain
disfluencies such as false starts, repairs, truncations and filled or
unfilled pauses. There may also be hyper-articulated or slurred
productions, prolonged/reduced segments and ungrammatical
structures. Gestures may be imprecise, jittery, repetitive or
spurious (i.e. unrelated to the message). Successive gestures
may even be contiguous. Fourth, speech and pen recognition
technologies cannot guarantee perfect performance. They are
particularly error-prone in face of adverse environments and
signal irregularities. Fifth, processing signals from multiple
modalities inevitably increases the number of dimensions in
computing. These factors present high demands for empirical
data that is needed to model cross-modal characteristics.
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In order to address the above research issues, we propose
to adopt the perspective of bimodal speech and gestural input
as a “multimodal language,” and investigate the use of latent
semantic analysis (LSA) that can jointly identify cross-modal
integration patterns in the form of “key multimodal terms”
and decode their message semantics for inferring the user’s
informational goal. The cross-modal integration patterns unite
correlated spoken reference(s) and gesture(s) in a multimodal
expression. The problem is especially complicated for ex-
pressions with multiple references. This is because a spoken
reference may map to zero, one or more gestures, and vice
versa. The five issues mentioned above further confound the
problem. This work presents a data-driven framework for
extracting cross-modal integration patterns that incorporate
their combinatoric and temporal relations. We have devised
an approach that applies the Viterbi algorithm to align spoken
references and gestures pointing to various map locations. The
alignment enforces semantic constraints based on numeric
expressions parsed from speech, spatial vicinity obtained from
the map, as well as temporal ordering of the spoken and ges-
tural events. This method presents relatively low requirements
on the amount of semantic labeling. The alignment is used to
generate multimodal terms that capture the user’s cross-modal
integration patterns. Semantic decoding should utilize these
patterns in the computation of a holistic interpretation of the
entire multimodal expression. We propose to adopt LSA to
capture and represent the contextual semantics of key multi-
modal terms for interpretation of multimodal inputs, relating
to inference of the user’s informational goal. LSA presents a
principled, representational model for contextual semantics
of verbal entities in a corpus. It has been successfully applied
to many problems in language processing and text mining.
Analysis involves projection onto a low-dimensional latent
space that describes contextual semantics. We will leverage
this parsimonious description of salient cross-modal patterns
in providing constraints for decoding multimodal expres-
sions. The constraints should also facilitate robust decoding
through cross-modal reinforcement, disambiguation and error
compensation.

This paper is organized as follows: Section 2 is a brief liter-
ature review of multimodal speech and gestural interfaces and
LSA. Section 3 describes the information domain in which we
conduct our multimodal investigation. Sections 4 and 5 present
the multimodal corpus that we have designed, collected and an-
notated to support our investigation, as well as an analysis of
typical cross-modal groupings that capture salient structural se-
mantic relations pertaining to concepts and informational goals
in the information domain. Section 6 sketches the latent se-
mantic model for multimodal semantic interpretation, targeting
the inference of the user’s informational goal. Section 7 presents
the implementation of the vector-space model for informational
goal inference, to serve as the reference baseline in performance
evaluation. Sections 8 and 9 respectively discuss the use of per-
fect and imperfect transcriptions (for speech and pen inputs) in
semantic inference with latent projections. Section 10 presents
an analysis of the latent semantic space used in informational
goal inference. Finally, Section 11 presents the conclusions and
future directions.

II. PREVIOUS WORK

A. Multimodal Speech and Gestural (SG) Interfaces

Multimodal SG interfaces have been an active research area.
A pioneering effort is the Quickset system [1], [2] that runs on
a handheld PC for military and medical informatics. There are
also previous work such as MIT’s multimodal Galaxy-based
geographical system [3]; AT&T’s MATCH kiosk multimodal
city guide [4]; SmartKom Mobile for ubiquitous information
access [5]; Microsoft’s MiPAD for personal information assis-
tance [6]; the RealHunter system for real-estate information [7];
a three-dimensional decorating domain [8]; as well as the com-
bined use of handwriting and speech for high performance dicta-
tion [9], [10]. The W3C Multimodal Interaction Working Group
has also developed the EMMA (Extensible Multimodal Anno-
tation Markup Language) that specifies annotations for multi-
modal user input, in order to extend the Web infrastructure with
speech and pen/mouse/keystroke event-driven capabilities.

Fusion techniques for multimodal SG interfaces primarily op-

erate at the semantic level. The main approaches include:

(i) Frame-based heuristic integration—An attribute-value
data structure is used to represent partial semantics from
each input modality and each type of contextual infor-
mation. The data structures are then merged according
to top-level control heuristics and pattern matching
techniques. For example, [11] devised the “melting pot”
representation with a three-step procedure handling si-
multaneous input, sequential input and context-based
fusion. [3] developed a multimodal context resolution
module for resolving anaphoric and deictic references
[12] based on syntax and semantics in spoken language.

(i) Typed feature structures with unification-based parsing
[13]-The N-best speech/gesture recognition hypotheses
are represented as typed feature structures (FS). Tempo-
rally compatible multimodal combinations are combined
by multi-dimensional chart parsing using a declarative
unification-based grammar.

(iii) Combined confidence scoring—Generalized posterior
probabilities are computed for recognition hypotheses in
one modality as constrained by contextual information
from the other [9]; or a weighted combination of likeli-
hood scores from each recognizer is used for multimodal
recognition [10].

(iv) Hybrid symbolic-statistical approach [14]-This approach
filters for semantically plausible associations between
modalities and posterior probabilities from different
recognizers are integrated through a hierarchy to form a
combined recognition decision. Another implementation
in SmartKom [15] applies a unification approach on
the recognition hypotheses graphs for each modality,
followed by adaptive confidence rescoring.

(v) Multimodal weighted finite-state transducers (WFSTs)
[16], [17], [18]-WEFSTs offer tight coupling across
modalities such that a gestural input can dynamically
alter the language model for speech recognition.

(vi) Probabilistic graph-matching [7], [19]-Attribute rela-
tional graphs are used to represent multimodal input and
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context information. Each graph node encodes semantic
/ temporal information and each edge encodes semantic
/ temporal relations. The probabilistic graph matching
algorithm is an optimization algorithm that attempts to
find the best match among graphs to satisfy all relevant
constraints.

Statistical classification-based approach [20], [21]-recog-
nition outputs based on speech and head motions that
relate to “agree” versus “disagree” are fed into a Support
Vector Machine (SVM) to perform binary classification
[20]. Fusion between gesture and speech utilizes a ges-
ture-based salience-driven language model in speech
recognition in [21]. The work develops further into clas-
sification of user intentions. Multiple SVMs are built for
all pairs of classes to combine binary for multi-class user
intention categorization. Instance-based classification
based on the similarity between a testing instance and
closest training instances (k-nearest neighbors) is also
used with Hamming distances between nominal semantic
features and phoneme features.

Semantic decoding of multimodal input is an exciting area
with many open problems. A critical factor in cross-modal fu-
sion that needs further research is a descriptive framework for
cross-modal integration patterns that incorporate their combi-
natoric and temporal relations. This work extends previous re-
search in handling multimodal, speech and pen-based user input
expressions, which are navigational inquiries, composed of sin-
gular, plural or aggregated locative references. To derive the
mutual correspondences between an arbitrary number of spoken
and gestural locative references in an input expression, we need
to decode various one-to-many or many-to-one semantic map-
pings between them. We will describe a novel cross-modal in-
tegration approach that applies the Viterbi algorithm to align
spoken references and gestures pointing to various map loca-
tions. We then apply LSA as a representational model to capture
the contextual semantics in a reduced dimensional space for ro-
bust interpretation of multimodal inputs, relating to inference of
the user’s informational goal.

(vii)

B. Latent Semantic Analysis (LSA4)

LSA is a mathematical technique that can automatically ex-
tract the relations between contextual usage of words and re-
lated documents. A comprehensive account of its principles and
applications may be found in [22], [23]. LSA originated from
the field of information retrieval [24], [25], [26], [27], where a
major concern is to match the words in a query with words in
a document collection in order to retrieve relevant documents.
However, the problem is confounded by features such as pol-
ysemy and synonymy in words (or lexical terms). Some ap-
proaches towards information retrieval hence retarget the un-
derlying topical meaning in queries and documents and seek to
match at the abstract concept level. The LSA technique assumes
the presence of underlying latent semantics, which are derived
from correlation patterns between words and documents. Com-
putation for LSA begins by forming a word document matrix
with each row representing a unique word and each column rep-
resenting a unique document. For a given document collection,
this matrix is conceivably large and sparse. LSA then applies

singular value decomposition (SVD) to decompose the large
matrix into the product of three matrices. This decomposition
enables the projection of the original word-document space into
a latent space of significantly reduced dimensions. The respec-
tive vector representations of words and documents can also be
projected into this latent space as new vectors of reduced di-
mensionality. This latent space offers a parsimonious descrip-
tion of the salient semantic associations among words and doc-
uments, which can be automatically derived from corpus statis-
tics. The advantages offered by LSA in generating a represen-
tational model for human verbal concepts has been applied to a
host of problems [23]. Examples include word clustering [28],
topic clustering, language modeling in speech recognition [29],
[30], [31], information filtering [32], [33], information routing
[34], [35], spoken interface control [36] and other applications.
In this project, we propose to investigate the use of latent se-
mantic modeling for multimodal concepts, in order to enable
semantic decoding of multimodal expressions.

III. INFORMATION DOMAIN

This work focuses on the city navigation domain for Beijing.!
We conducted a quick survey involving 10 people regarding typ-
ical inquiries from users who are trying to navigate around a city
with Chinese speech and mobile device with a map displayed on
screen. These inquiries generally target 9 informational goals,
including: BUS INFORMATION, CHOICE OF VEHICLE,
MAP_COMMANDS, OPENING HOURS, RAILWAY IN-
FORMATION, ROUTE FINDING, TIME CONSTRAINT,
TRANSPORTATION COSTS and TRAVEL TIME. We de-
signed 31 specific tasks (leading to 66 inquiries) based on these
informational goals where the tasks will induce the subject to
compose speech-based multimodal inquiries during data col-
lection. The inquiries are allowed to cover up to six locations.
Table I shows an example of a task, which requests a subject to
compose a multimodal inquiry to specify his current location
and ask about the travel time to four other universities of his
choice.

IV. DESIGN AND COLLECTION OF A MULTIMODAL CORPUS

We invited 23 Mandarin-speaking subjects to participate in
data collection. They are presented with an instruction sheet
listing the set of tasks. The subject is asked to formulate a mul-
timodal inquiry for each task. The subject may refer to these
locations, i.e. spoken locative references (SLRs), by Mandarin
speech or pen gestures. SLRs may be deictic (e.g. B “here”,
1E M Pt K 2 “these four universities ), elliptic (e.g. Fl3E 1@
EEEEZ R ? “how long does it take to walk to this hotel? ")
or anaphoric (e.g. AT EMEI M ETEZ X ? “how long does
it take to go from my current location to the Palace Museum?”).
Pen gestures may be a point, a circle or a stroke. Both speech
and pen gestures are recorded directly by a Windows CE mobile
device. In some of the tasks, the Windows CE mobile device
provides contextual information of the current location with a
red cross on the map. Subjects are allowed to revise and recom-
pose their inquiries during the recording to clearly express the
intended task semantics.

IBeijing is selected due to the ready availability of comprehensive maps on-
line at the time of this investigation.
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TABLE 1
EXAMPLE OF A MULTIMODAL INPUT WITH SPEECH (S) AND PEN
GESTURES (P). THE PEN GESTURES INCLUDE A POINT (IN RED) AND
A LONG STROKE (IN GREEN), WHICH ARE ILLUSTRATED IN FIG. 1.
TRANSLATIONS ARE PROVIDED IN ITALICS

INFORMATIONAL GOAL: TRAVEL TIME

TASK:
HRIRSIRTENAE, BRI R REREL
Rl

Specify your current location. Find the time it takes to travel to

four universities of your choice.

MULTIMODAL INPUT:

S WAL IB(EMTT 1€ IS %k P

p: .
(a point) (a long stroke connecting 5 locations)

“I ’m at this glac From here I want to visit these._four

B G PUE K5 EEA?

The recording session is carried out individually in an open
office (i.e. with background noise). Speech input is recorded by
the built-in microphone of a Windows CE mobile device (e.g.
Pocket PCs, Windows phones, etc. and we use a Pocket PC in
this work). Pen gestures are input with a stylus. The subject
needs to press the start and stop buttons on the user interface to
launch and stop the automatic logging procedure respectively.
Specifically, the stop button appears on screen after the start
button has been pressed. The procedure records the speech, pen
gestures and their mutual timing information. The subject can
then press the next button to display the map of the next task.
Each subject is asked to formulate 66 multimodal inquiries re-
lated to all the 31 tasks.

We have collected 1,518 inquiries from 23 subjects. Among
these, 1,442 are multimodal and 76 are monomodal (speech-
only) inquiries. All speech and pen gestures have been manu-
ally transcribed by a research staff member. Utterance lengths
range from 2 to 54 Chinese characters, covering a vocabulary
of size 521 with domain-specific named entities and SLRs. The
shortest and longest inquiries collected are, respectively, map
commands (e.g. fi&/)®, or “zoom in”’) and multimodal inquiries
with the full name of several universities. A user input may con-
sist of zero (i.e. speech-only inquiry) to six pen gestures, which
may be a point, a circle or a stroke. We have also manually anno-
tated the cross-modal alignment between an SLR and a pen ges-
ture for the multimodal inquiries. The annotation will serve as
the gold standard in experimentation. The alignments are based
on human judgment, with the objective of obtaining a holistic
and coherent semantic interpretation for the bimodal inquiry.
Specifically, during a recording session, manual transcription
is done simultaneously. The subject is then requested immedi-
ately after recording to label the alignments based on the manual
transcripts. The transcriptions ignore disfluencies in the speech
modality (e.g. repairs) and spurious gestures in the pen modality
(e.g. jittery hands). The collected corpus contains 3,421 SLRs
and 3,590 instances of pen gestures in total. We randomly di-
vide the 1,442 multimodal inquiries into disjoint training and
test sets in a 7:3 ratio. The training and test sets have 999 and
443 inquiries respectively.

TABLE 11
EXAMPLES OF COLLECTED MULTIMODAL INQUIRIES SHOWING THAT
A SINGLE SLR CAN MAP TO MULTIPLE PEN GESTURES (TOP) AND
VICE VERSA (BOTTOM). TRANSLATIONS ARE PROVIDED IN ITALICS

A SINGLE SLR MAPPING TO MULTIPLE PEN GESTURES:
S RAE B NEF B 15 VIR AE L A7

P . ecee

(a point) (four points)
“I'm at this place. I wish to visit these four universities in order.
How long will it take?”

A SINGLE PEN GESTURE MAPPING TO MULTIPLE SLRs:
AR O S B N R R ] ?

p: O  (acircle covering three shopping centers)
“May 1 know the opemng hours of the Xindong'an Plaza, the

We have also transcribed the speech signals using the mul-
tilingual Google Speech Input APL.2 This speech recognition
engine primarily performs Mandarin recognition and generates
output in Simplified Chinese (which is the setting we selected).
However, we notice that the engine may also generate English
words in its recognition output. The recognizer can generate
n-best recognition results (n < 20) for an input spoken utter-
ance. Speech recognition performance evaluated based on the
top-scoring recognition hypotheses gave overall character ac-
curacy of around 78%.3 We have also developed a pen gesture
recognizer based on a simple algorithm that proceeds through
a sequential procedure of recognizing a point, a circle and a
stroke [37]. This simple pen gesture recognition algorithm can
generate m-best output hypotheses. Overall pen gesture recog-
nition accuracy is 86.6% for top-ranking hypotheses.

V. CORPUS ANALYSIS

A single SLR may map to multiple pen gestures and vice
versa (see Table II). Some of the SLRs or pen gestures
may not find a mapping to the other modality (e.g. ellipsis*
and anaphora3). The following describes our findings in corpus
analysis. Results from the analysis are used to devise the
automatic cross-modal alignment strategies.

2Google Speech Input API http://code.google.com/chrome/extensions/exper-
imental.speechInput.html
3

= Schar

char

Neror —Lenar — De.par

N,

C =

where C' denotes the character recognition accuracy, N,y is the total number
of characters in the manual transcriptions; I.pqr, Scrar and D.s, - are the
numbers of insertion, substitution and deletion errors from the speech recogni-
tion transcriptions respectively.

4An example of ellipsis is: “— BRREEHR” (meaning “the fastest route”),
when a single pen stroke connects multiple locations. The subject wishes to find
the fastest route connecting the indicated locations. Ellipsis occurs here because
the spoken utterance omits mentioning the locations.

5 Anaphora refers to “the use of a pronoun or similar word instead of repeating
aword used earlier” [38] where the interpretation of an anaphora can be from the
same input, contextual information or dialog history. The anaphora is underlined
in: “f¢ FLTE 4th B ER{E it 5 ee BZ R ” (“How long will it take to travel from
my_current location to these two locations?”), and the other SLR corresponds
to the two pointing gestures.
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A. Spoken Inputs

Analysis of spoken inputs shows that subjects may refer to
a location directly or indirectly. (1) Direct references involve
the use of full name of a location (e.g. W = E Y B, or “the
Palace Museum”), its abbreviated name/alias (e.g. B =, L2
3, or “the Forbidden City”) or a contextual phrase (e.g. Ff £
#h, or “current location,” which is indicated by a red cross on
the map). There are 1,529 occurrences of direct references in-
volving 76 unique tokens. (2) Indirect references involve the use
of deixis or anaphora, e.g. 2 # (meaning “Aere”) and i& =&
3% (meaning “these three shopping plazas™). Hence, indirect
references may contain numeric (e.g. =, or “three,” and £,
or “some”) and/or location type features (e.g. 22 &, or “park,”
and K28, or “university”). Both features may be left unspec-
ified (e.g. #1755, or “place”) or ambiguous (e.g. ¥4, or “sta-
tion/stop”). There are 1,892 occurrences of indirect references
involving 101 unique tokens in our corpus.

We parse the spoken inputs for SLRs based on the above ob-
servations using a greedy algorithm, which can accommodate
arbitrary numeric expressions. The parsed numeric and loca-
tion type expressions are used to fill in the numeric and location
type feature attributes of the SLR. Afterwards, we interpret the
SLR according to its reference type: a single location is gener-
ated from a direct reference, while a list of locations is gener-
ated from an indirect reference—which includes all icons (with
matching location type) present on the map.

For each input spoken utterance, we parse the SLRs from
the oracle (i.e. manual) transcription and the speech recogni-
tion transcripts separately, in order to assess the effect of speech
recognition errors on SLR extraction. Based on the training set,
we observe that speech recognition errors led to errors in one-
third of the SLRs. The majority of these are SLR deletion er-
rors (94%) and the remaining are substitution errors. Among
the SLR deletion errors, over half of them are caused by heavy
co-articulation of i& 52, which is an SLR meaning “kere.” These
two Chinese characters respectively have the pronunciations
/zhe/ and /er/, but when they occur together, they tend to be
heavily co-articulated to become /zher/. The duration of this
production is short (typically around 0.15 second) and weak.
The recognizer misrecognizes it as noise for half of their occur-
rences. Stronger productions of /zher/ have also been observed
to be misrecognized as the English word “chart.” Similarly,
some productions of & 18 /zhe li/ (also meaning “here”) are
misrecognized as the English word “cherry.” In these cases, the
misrecognition leads to SLR deletion. SLR substitution errors
are mainly caused by the misrecognition of Chinese measure
words (e.g., i = PlT K2 is recognized as i& = {8 X2, meaning
“these three universities ). There are also two SLR insertion er-
rors, caused by the misrecognition of 55 & (pronounced as /ging
wen/, meaning “I would like to know”) as 52 X (pronounced as
/chong wen/, which is a name of a district in Beijing).

B. Pen Gesture Inputs

The training set of our corpus contains 2,502 pen gesture
instances, which include 1,863 pointing, 460 circling and 179
stroke gestures. Analysis of the corpus also sheds light on the
usages of the different pen gestures as illustrated in Table III.
The pointing gesture (i.e. POINT) is mostly used to indicate a

TABLE III
ILLUSTRATIONS OF THE USAGE OF DIFFERENT TYPES OF PEN GESTURES

Semantics

Indicates a single
location, NUM=1,e.g.a |®
university

A small circle indicates a|E | baee
single location, NUM=1, @ -n m
e.g. a park
-
[CET S St
B it

—_——

Gesture
POINT

Illustration(s)

EAl 2AF g
debl R

CIRCLE

A large circle indicates
multiple locations,
NUM=plural, e.g. two
universities
A single stroke indicates
a single location,
NUM=1, e.g. a street
A single stroke indicates | ‘"q
the start and end points —
of a path, NUM=1 at each
end point
A long stroke with one or
more turning points
indicates a route,

R 22{RAL PN
NUM=1, e.g. a long ity © P
stroke passing through B
four universities

STROKE

D AT
IR K
_ B4
= JenEr ok
b B
Qe

single location. This occurs 99.8% (1859/1863) of the time in
our training corpus. The circling gesture (i.e. CIRCLE) includes
two possible cases: a small circle indicating a single location
(70%, 322/460) and a large circle indicating multiple locations
(30%, 138/460). Strokes (i.e. STROKE) include three possible
cases: a stroke referring to a single location (45.3%, 81/179), the
start and end points of a path (32.4%, 58/179) and a long stroke
constituting a route (22.3%, 40/179).

Pen inputs are interpreted based on the gesture type and its co-
ordinates, which are compared with the positional coordinates
of the icons on the map. Interpretation of each gesture type gen-
erates a ranked hypothesis list of locations. Shorter distances
are given higher ranks. For the pointing gesture, the locations
are ranked according to distances away from the point. For the
circling gesture, the locations are ranked according to distances
away from the estimated center of the circle. A hypothesis list
is generated for each endpoint/turning point of a stroke.

C. Temporal Relationships

Temporal relationships between a pair of corresponding
SLR and pen gesture(s) include simultaneous occurrences
(i.e. with temporal overlap, denoted as “SIM”) and sequen-
tial occurrences (i.e. without temporal overlap, denoted as
“SEQ”). Further analysis shows that most of the subjects have
adopted predominantly (with over 70% consistency) either
simultaneous (87%, 20/23) or sequential (8.7%, 2/23) temporal
patterns between speech and pen gestures [39], [40].

D. Cross-modal Alignment

We automatically align SLR(s) with pen gesture(s) based on
two constraints: (1) temporal ordering and (2) semantic com-
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Fig. 1. An illustration of the multimodal input shown in Table I. The dot is
shown in red while the stroke is highlighted in green.

patibility, by means of a Viterbi alignment algorithm [41]. We
enforce temporal ordering since SLR and pen gesture(s) are
not guaranteed to overlap in time. Therefore, we align the se-
quence of I? hypothesis lists in temporal order of the SLRs
S = 51 S>...Sg with the sequence of (2 hypothesis lists in
temporal order of the pen gestures P = Py P> ... P. In order
to enforce semantic compatibility between SLR(s) and pen ges-
ture(s), our approach checks the location type and numeric fea-
tures of an SLR. If the »th SLR is a direct reference, the hypoth-
esis list S, should contain only one element and the integration
procedure seeks to match the specified location with hypotheses
for the gth pen gesture in the alignment. A cost is incurred if no
match is found. If the SLR is an indirect reference expression,
the hypothesis list .5, should contain one or more elements and
the location type or numeric features may be specified. The inte-
gration procedure checks for the compatible location type fea-
ture among the hypotheses for the aligned pen gesture in P.
A cost of one is incurred if there is mismatch in location type
feature between S, and P,. Compatibility in numeric feature is
ensured by checking whether an SLR is associated with a com-
patible number of pen gesture(s). For cases with a one-to-many
mapping between an SLR and its corresponding pen gesture(s),
the pen gestures are indicated as a group (i.e. MULTI-POINT,
MULTI-CIRCLE and MULTI-STROKE) during cross-modal
alignment. We use a transition cost which is set to the deficit
in the numeric value during the transition from a pair of SLR
and pen gesture(s) to another. This is used to indicate that there
are too few or too many pen gestures aligned with one SLR or
vice versa. The detailed explanation of this process of Viterbi
alignment is provided in [37]. An illustrative example is shown
in Fig. 2.

P P B RS S " EHEEE P REH ER
fe i JbsEt E e BLoH
P PEESS b || RTEAE
Compatibility & SriRAE..
Temporal Order .
(all locations on map)
Pen: ®

{ th BB { th S S B L B AE

=B =HEMEE BxREEE

Speech: ¥ IF/E EEF0 (€ EEFLC
EIBEENEIEE 278
I’'m now at this center. How long will 2
it take from this center to this park?

(parsed for SLRs) L
N\
Output:  TE4E o " §
il L B TR AR T =
%;?ﬁiﬂ:qﬂm 3 Bk sE £ A E BB
I am now at the China Architectural "
Culture Center. How long will it take g@%ﬁ.

from the China Architectural Culture
Center to the Purple Bamboo Park?

Fig. 2. An example illustrates Viterbi alignment between a spoken Mandarin
utterance and pen gestures that consist of a point and a stroke. We first parse the
spoken input for referential and locative expressions. Then a hypothesized list
of locations for each SLR (S,.) is generated. At the same time, we compute the
distance between the coordinates of the pen gestures (I’ ) and icons on the map
to generate a ranked list of locations. Thereafter, Viterbi alignment that incor-
porates constraints of semantic compatibility and temporal ordering integrates
the input from both modalities. Translations are provided in italics.

TABLE IV
STATISTICS OF UNIQUE LEXICAL AND MULTIMODAL
TERMS (COUNTED BY TYPE)

# of Multimodal terms 567
# of Lexical terms 314
Total number of terms 881

E. Cross-modal Integration Patterns

The Viterbi alignment algorithm gives us a grouping of an
SLR, its aligned pen gesture and their temporal relationship
(either simultaneous sim or sequential seq, as mentioned in
Section V.3). We present the grouping as a multimodal term,
which is a 3-tuple that consists of corresponding SLR(s) and
pen gesture(s), together with their temporal relationship. Multi-
modal terms generated from the example in Fig. 2 include: <i&
{& # L\ POINT|SIM> “< this center|POINT|SIM >,” <i& f&
F/LVSTROKE|SIM> “< this center|STROKE|SIM > ” and
<JE {2 B |STROKE|SIM> “< this park|STROKE|SIM >.”

A lexical term refers to a tokenized Chinese word from the
spoken input which is not an SLR. Lexical terms tokenized
from the example in Fig. 2 include: & (“I”), IETE (“currently
at”), & (“fiom”), B (“t0”), B (“require”) and % X (“how
long”). Statistics of the lexical and multimodal terms (counted
by type) are shown in Table IV. Among the 2,429 multimodal
terms found in the training set (with both SLR and pen ges-
ture), 74% (1797/2429) are simultaneous and 26% (632/2429)
are sequential.
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For multimodal terms (e.g. ellipsis and anaphora) for which a
mapping to the other modality cannot be found, the cross-modal
temporal relationship indicated by “Q.” For example, consider
the multimodal input with elliptic locative references (i.e. the
SLR is omitted in speech):

S: B AR BE R Opening hours.
P: eoe

Here, the user is asking for the opening hours of
three places. The corresponding multimodal term is:
< |MULTI-POINT|} >.

We have applied the cross-modality alignment procedure
mentioned in Section V.4 to multimodal inquiries of both
training and test sets. These are transcribed manually and auto-
matically (with speech and pen recognition). The inquiry-based
cross-modality integration accuracy is defined in terms of the
fraction of the number of inquiries in the dataset with perfect
match between the oracle- and system-generated alignments.

Comparison between the system-generated correspondences
with the manually-annotated correspondences shows that the
cross-modality alignment procedure can generate correct align-
ments between SLRs and pen gestures for 97.2% (971/999) of
training inquiries and 97.5% (432/443) of the inquiries in test
set with speech and pen inputs against perfect, manual transcrip-
tions. This corresponds respectively to 98.3% (2387/2429) and
98.6% (971/985) of multimodal terms with correct alignments.

Analogous numbers for speech and pen inputs against im-
perfect, automatic transcriptions are 68.3% (682/999) correctly
aligned inquiries in the training set and 61.9% (274/443) in the
test set. This corresponds respectively to 74.4% (1807/2429)
and 67.3% (663/985) multimodal terms with correct alignments
(see Table V). Serious deletion errors of SLRs in the automatic
transcriptions have adverse effect on cross-modal alignment.

VI. LATENT SEMANTIC MODEL

We apply LSA on multimodal inputs for multimodal semantic
interpretation. LSA can capture regularities in lexical and mul-
timodal terms, in relation to their usage contexts. A key usage
context is the informational goal of the user’s input expression.

Based on the training set, we summarize the associations be-
tween M terms (including both lexical and multimodal terms)
and N inquiries in a term-inquiry matrix G of dimensions M X
N. Each column represents an inquiry and each row represents
a term. The element gy, ,, is the weight of the term m in the
nth inquiry. We obtain g,, ,, based on the term frequency nor-
malized for inquiry length and term entropy [42] for both multi-
modal and lexical terms, as shown in Equation (1). The concept
behind g¢,,, » is similar to TF-IDF [43]:

gi,1 91.n g1,N
G = Im,1 Im.n 9m,N (1)
gm.1 o GMoan 9M. N
Bm,n
Where g'm,'n = (1 - E'm))\—7
n
1 N
Rm n Kmn
Em = — N E log ’ (2)
log N &~ 7, Tm

TABLE V
PERFORMANCE OF THE CROSS-MODALITY ALIGNMENT MEASURED IN TERMS
OF THE PERCENTAGE OF CORRECTLY ALIGNED INQUIRIES AND MULTIMODAL
TERMS IN THE TRAINING AND TEST SETS

Training Set | Test Set
Number of inquiries 999 443
Number of multimodal terms | 2429 985
Number of manually | 97.2% 97.5%
transcribed  inquiries  with | (971/999) (432/443)
correct correspondence
between SLRs and pen
gestures
Number of automatically | 68.3% 61.9%
transcribed  inquiries  (i.e. | (682/999) (274/443)
recognized speech and pen
inputs) with correct
correspondence between
SLRs and pen gestures
Number of terms in manual | 98.3% 98.6%
transcriptions  with  correct | (2387/2429) | (971/985)
correspondence between
SLRs and pen gestures
Number of terms in automatic | 74.4% 67.3%
transcriptions (i.e. recognized | (1807/2429) | (663/985)
speech and pen inputs) with
correct correspondence
between SLRs and pen
gestures

K.m,n denotes the number of times the term /. occurs in the nth
inquiry, A, is the total number of terms in the nth inquiry, &,
denotes the normalized entropy of term m in the training set;
and 7, is the total number of times that term m occurs in the
training set.

We apply SVD to the term-inquiry matrix G and decompose
it into a product of three matrices of order R, as shown in Equa-
tion (3). Associations between terms and latent semantics are
summarized in matrix U, and the associations between inquiries
and latent semantics are represented in matrix V. Each column
of U contains the estimated weight of each term m that corre-
sponds to the latent semantic category 7, while each column of
VT contains the estimated weight of each inquiry n that corre-
sponds to the latent semantic category r. Equation (3) projects
the space of terms and inquiries onto an R-dimensional space
which is defined by the orthonormal basis given by the column
vectors v, and v, from matrices U and V respectively. We
can then derive the projection from the term-inquiry matrix G
to the latent semantic-inquiry matrix W from Equation (3) and
perform the projection using Equation (4).

G=USvVT
T
U1, ur,r ||s11 0 O U11 VLR
= 0 0 :
Unr1 up.r|| 0 0 spr|lvvi UN,R
=UW
3)
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=UT'g=U"Uw =w 4)
where U is the left unitary matrix of dimensions M x R, S is the
diagonal matrix of singular values sorted in descending order of
dimensions I x R, V7 is the right unitary matrix of dimensions
R x N, R = min{M, N} is the order of decomposition, W
is latent semantic-inquiry matrix of dimensions £ x N; and
superscript T is the transpose of the matrix.

Recall that we need to project the latent semantic-inquiry ma-
trix W to the space of informational goals. Hence, we need to
find the association between informational goals and latent se-
mantics, which can be done using Equation (5).

FW=H ©)
where F' is goal-latent semantic matrix of dimensions A x I?,
and H is the goal-inquiry matrix of dimensions A x N.

The goal-inquiry matrix I can be obtained from the training
set by summarizing the associations between the A informa-
tional goals and /V inquiries. Each column represents an inquiry
and each row represents the weights corresponding to an infor-
mational goal. This is presented in Equation (6):

hi1 hi N

H=[h (6)

h,AJ\r

where A is the total number of informational goals within the
application; and h., is the vector of weights for each of A infor-
mational goals corresponding to the nth inquiry.

Based on the manually labeled training set, A, is a binary
vector whose element corresponding to the labeled informa-
tional goal is 1 and the remaining elements are 0.

We can then obtain the goal-latent semantic matrix /' using
Equation (7), which is derived from Equation (5).

FW=H
= FWW" = HW?'
= FWWTWwwh)=t = gwTww?)-!
= F=Hawr ' ww?)! (7
where WP (WW7)~! is the pseudo inverse of the latent se-
mantic-inquiry matrix W.
Therefore, for a given incoming inquiry ¢, we can apply both
projections to derive the informational goal:
FUTg=Fw=h ®)
where g is the vector of weights for all terms in the test inquiry;
and w is the vector of weights for each latent semantic corre-
sponding to the test inquiry.
An informational goal ], will be assigned the auto-
matically derived informational goal for inquiry = where

a,, = argmax{h, . Overall accuracy is defined in terms of
a

the fraction of inquiries in the test set with correctly inferred
informational goals.

In order to evaluate the effect of imperfect speech and pen
recognition transcriptions on informational goal inference, we

100% - 98.8Y 99.2% 99.2%
° 98.1% e > ’
98% 98.5% |99-2% 99:2%

96%

95%
//.'93.6%
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Performance of Informational
Goal Inference (Accuracy)

90%

88% /

86% /

84% / |

jsg.z% ] *

T T T T —¥— T T
12 32 58 90 129 177 235 309 406 589 881
Order of SVD Approximation

82%

Fig. 3. A plot of the accuracy of singular values retained against the dimen-
sionality of the SVD approximation.

will develop projections (i.e. FUT) based on both perfect (i.e.
manual) and imperfect (i.e. speech recognition) transcriptions
of the training inquiries. We will also test with both perfect and
imperfect transcriptions of the testing inquiries G. These four
combinations can be summarized as:

Transcription Type Transcription Notation of the
used on Deriving Type in the Test Goal-Inquiry
Projections Set Matrix

Perfect (i.e. F;U;") Perfect (ie.G,) H

Perfect (i.e. F,U,") Imperfect (i.e. G)) H,»

Imperfect (i.e. F 2U2T) Perfect (i.e. G;) H,,

Imperfect (i.e. F 2U2T) Imperfect (i.e. G;) Ho,

A. Implementation of Semantic Inference

Recall that the non-negative matrix G (see Equation (1)
has dimensionality 881 x 999. We use Equation (3) (i.e.
G = USVT) to project the term-inquiry space onto an R-di-
mensional latent semantic space. Based on the latent semantic
space, we may reduce and reconstruct the term-inquiry space
using:

G~ G=USVT. 9)
where S is the reduced diagonal matrix of singular values with
optimized order of SVD approximation (i.e. I2”).

In order to collapse the terms that are “semantically sim-
ilar,” we choose It < IR. The smaller the value of I, the
more pronounced is the reduction of semantic redundancy in
the latent semantic space. We need to find an “optimal” choice
of 12’ that minimizes the distortion between the re-constructed
space G and the original space GG during the implementation of
Equation (3) in the training procedure. We plan to optimize 12’
through empirical analysis of the latent space.

We choose the possible values of 2’ with reference to the
percentage of the cumulative sum of retained singular values
over the maximum at ' = R = 881, searching at intervals
of 10%. We then perform informational goal inference on the
multimodal inputs in the training set at different values of 12’
(see Fig. 3). The performance of informational goal inference
increases with I2.” The rate of increase slowed down as I?” be-
comes higher, reaching saturation at approximately 12’ = 309.
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TABLE VI
ACCURACY OF INFORMATIONAL GOAL INFERENCE USING VSM FOR
DIFFERENT COMBINATIONS OF PERFECT/IMPERFECT INFORMATIONAL
GOAL VECTORS AND TEST INQUIRIES

Informational |Test inquiries |Training Set |Test Set
goal vectors

Perfect Perfect 84.5% 82.5%
Perfect Imperfect 19.2% 17.8%
Imperfect Perfect 74.6% 73.8%
Imperfect Imperfect 57.9% 46.0%

We then perform informational goal inference in the training
set at finer resolution, among values of 12’ between 235 and
309. The inference performance reaches saturation at R’ = 263,
which implies a reduction of semantic redundancy of 70% with
respect to the original space of I? = &81.

VII. PERFORMANCE BASELINE USING
THE VECTOR-SPACE MODEL

To demonstrate the efficacy of the LSA approach, we choose
a reference baseline using the vector-space model (VSM) [44]
for semantic inference.® We sum the weights of every multi-
modal or lexical term (obtained using Equation (2) across the
training inquiries of each informational goal and normalize the
sum with the total number of inquiries for that informational
goal. We then create a vector j, of the normalized weights,
where a denotes the informational goal. For an incoming test
inquiry, we create a vector g using the same method. The sim-
ilarity between the vectors g and j, is calculated as the inner
product, denoted by Z, in Equation (10) [44], [45], normalizing
for the length of the vectors.

Zﬂ Ja* g

= 10
= Telllol (10)

where 7, denotes the similarity between vectors 7, and g; j, is
the weight for all terms in the ath informational goal; and g is
the weight for all terms in the test inquiry.

The input expression n is assigned to the informational goal
a}, which has the maximum similarity score, as shown in Equa-
tion (11).

ar = arg m;mx{Za} (11)

Experiments show that VSM can correctly infer informa-
tional goals for 84.5% and 82.5% of the inquiries in training and
test sets from perfect transcriptions respectively. We then apply
the VSM to different combinations of perfect and imperfect
transcriptions. Detailed results are shown in Table VI.

VIII. SEMANTIC INFERENCE WITH LATENT PROJECTION
DERIVED FROM PERFECT TRANSCRIPTIONS

Recall that we have developed the projections (i.e. FUT)
based on manual transcriptions, which is referred as the

%We have experimented with the VSM model as well as single- and multi-
class support vector machines (SVM) and are reporting on the higher reference
baseline.

Precislon/Recall Value
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Fig. 4. Performance of informational goal inference using the perfect projec-
tion model and imperfect test set transcription. Results are based on the latent
space with R’ = 263 dimensions.
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TRANSPORTATION_COST
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“perfect projection model” below. We use the perfect projection
model U] to project perfect test inquiries Gy (i.e. manually
transcribed test inquiries) to the space of informational goals,
ie. Fy UlT (G1 = Hji. Overall accuracy in informational goal
inference for the training and test sets are 99.2% and 98.6% re-
spectively. The test set lacks inquiries that fall under the infor-
mational goal of CHOICE OF VEHICLE.

We then apply the projection derived from perfect speech and
pen transcriptions to imperfectly transcribed test inquiries for
informational goal inference, i.e. F1U. 1T (G2 = Hy5. Overall ac-
curacy in informational goal inference for the training and test
sets drops to 32.2% and 28.4% respectively. Precision and re-
call” of each informational goal are shown in Fig. 4. Informa-
tional goal of inquiries that fall under the informational goal
of TIME_CONSTRAINT are all inferred incorrectly. The poor
performance is due to the great mismatch in the term lists be-
tween perfect and imperfect transcriptions. There are only 881
terms (including multimodal and lexical terms) in the term list
of perfect (i.e. manual) transcriptions, as compared with 1,901
terms in the term list of imperfect (i.e. automatic) transcriptions
(i.e. test inquiries). Many terms in the test set are not covered by
the perfect projection model. For example, K # (pronounced
as /da jie/, meaning “main street”) is misrecognized as X ftt 5
(/da shi jie/ meaning “big world”), X1 (/da jie/ meaning “elder
sister”), K2R (/da jia/ meaning “we”), K4k (/da gai/ meaning
“about”), KB (/da xie/ meaning “capital letter”), KB (/da xue/
meaning “university”), KE(/da zhan/ meaning “war”), etc. and
the misrecognition outputs are not covered by the perfect pro-
jection model.

TPrecision is the percentage of inquiries in the test set correctly inferred as
informational goal @, out of all the inquiries which are inferred as informational
goal @. Recall is the percentage of inquiries in the test set correctly inferred as
informational goal @, out of all the inquiries which truly belongs to informational
goal «.
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Fig.5. Performance of informational goal inference using the imperfect projec-
tion model and imperfect test set transcriptions. Results are based on the latent
space with ' = 650 dimensions.

IX. SEMANTIC INFERENCE WITH LATENT PROJECTION
DERIVED FROM IMPERFECT TRANSCRIPTIONS

The previous section presented results where perfect tran-
scriptions of the training set are used to derive the latent pro-
jection using LSA. This section presents the use of imperfect
transcriptions of the training set to derive the latent projection
model, hereafter referred as the “imperfect projection model.”
There are a total of 797 multimodal and 1,104 lexical terms
in the recognition output of the training set. The number of
multimodal and lexical terms increased from 567 and 314 re-
spectively for manual transcriptions to 797 and 1,104 respec-
tively for automatic transcriptions (i.e. recognition outputs). The
increase is mainly due to misrecognition of Chinese measure
words while the increase in lexical terms is due to character
recognition errors and confusion with English words. For ex-
ample, B (/you lan/ meaning “tour”) is confused with u-#&
(/u-pan/ meaning “USB drive”), “you,” “yahoo,” “ultra,” “soul,”
etc. The total number of terms sum to M = 1901. Hence the
non-negative matrix G (see Equation (1)) has increased dimen-
sionality at 1901 x 999. As described in Section VI.1, we apply
SVD and follow similar procedures to reduce dimensionality to
I’ = 650. This corresponds to a dimension reduction of 66%
compared with the original space of R = 1901.

We apply the imperfect projection model to perfect test set
transcriptions, i.e. F5 UQT (G1 = Hos;. Overall accuracy in infor-
mational goal inference for the training and test sets are 85.8%
and 83.7% respectively. Detailed results are shown in Fig. 5.
Next, we apply the imperfect projection model on the imper-
fectly transcribed test set, i.e. F5 Ug (G2 = Hys. Overall accu-
racy in informational goal inference for the training and test sets
are 73.0% and 64.3% respectively. Detailed results are shown
in Fig. 6.

99 ¢,

X. ANALYSIS OF THE LATENT SEMANTIC SPACE FOR
INFORMATIONAL GOAL INFERENCE

Comparison between latent projection models developed
using perfect and imperfect transcriptions shows similar levels
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Fig. 6. Performance of informational goal inference using the imperfect projec-
tion model and imperfect test set transcriptions. Results are based on the latent
space with R” = 650 dimensions.
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TABLE VII
PERFORMANCE OF INFORMATIONAL GOAL INFERENCE USING
DIFFERENT COMBINATIONS OF PERFECT/IMPERFECT
PROJECTION MODELS AND TEST INQUIRIES

Projections | Test inquiries | Training Set | Test Set
Perfect Perfect 99.2% 98.6%
Perfect Imperfect 32.2% 28.4%
Imperfect | Perfect 85.8% 83.7%
Imperfect Imperfect 73% 64.3%

of dimension reduction (i.e. 70% and 66% respectively). The
summary of performance accuracies in informational goal in-
ferences (see Table VII) shows that when the perfect projection
model is used, there is a significant drop in performance as we
migrate from perfect to imperfect test set transcriptions, i.e.
from 99.2% to 32.2% and 98.6% to 28.4% in training and test
sets respectively. This is because only 16.7% of the terms in
the imperfect test inquiries are covered in the perfect projection
model, which leads to a serious out-of-vocabulary problem in
informational goal inference. Corresponding values based on
the imperfect projection model show a performance drop from
85.8% to 73% for the training set, and from 83.7% to 64.3%
for the test set. Analysis shows that around half (52.5%) of
the terms in the perfect test inquiries are covered in the imper-
fect projection model. The imperfect projection model shows
greater robustness in informational goal inference. Comparison
between the statistics in Tables VI and VII also shows that LSA
always performs significantly better than VSM in informational
goal inference (the difference ranges from 9.9% to 18.3%).
This suggests that reduction into the latent space can capture
better the relevant semantics and contextual information for
informational goal inference. We will elaborate on this in the
following.

A. Sub-categorization of Informational Goals

Matrix F' gives the weight of each informational goal with
each latent semantic category. Hence, we can select the latent
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TABLE VIII
EXAMPLES OF INQUIRIES THAT BELONG TO THE LATENT SEMANTIC
CATEGORIES 13 AND 19 FROM THE TRAINING SET FOR THE INFORMATIONAL
GoAL BUS INFORMATION. TRANSLATIONS ARE ITALICIZED

r=13 corresponds to BUS_INFORMATION along a street
L38 <IE 5 KHT|STROKE|SEQ> ] AT AR AR 2 st

“What are the bus routes that pass through <this
street|STROKE|SEQ>"

r=19 corresponds to BUS_INFORMATION within an area
LI R A £ <SR E | cReLE[SIM> 1T7E B A

“Tell me what are the bus routes that pass through <this
area|CIRCLE|SIM>"

semantic categories with high weights to be representatives
of a goal. Furthermore, matrix W gives the weights relating
latent semantic categories and the inquiries. Hence, we can
select inquiries with high weights to be representatives of a
latent semantic category. We examine the matrices /' and W
obtained from the perfect transcriptions (i.e. Fy and U G1)
and find that the semantic inference approach is able to
sub-categorize the informational goals into logical sub-types
and capture their key terms. For example, the informational
goal BUS INFORMATION contains two latent semantic
categories: (i) bus information along a street (»r = 13) and
(i) bus information within an area (r = 19). Table VIII
shows some examples. We note a couple of key usage patterns
in this sub-category, e.g. < 1& & X # |STROKE|SEQ> (or
“< this street|STROKFE|SEQ >") is a common way of
referring to a street, with the uttered phrase “this street” oc-
curring sequentially with a stroke. Another example is <i& &
&3 B |CIRCLE|SIM> (or “< this area| CIRCLE|SIM >")
where circling gesture occurs simultaneously with the uttered
key phrase of “this area.”

Another  example is the  informational  goal
OPENING_HOURS, which contains six latent se-
mantic categories: (i) opening hours of one location (r = 11);
(i1) opening hours of a single or multiple locations using
ellipsis (r = 46); (iii) opening hours of multiple locations using
multiple singular SLRs (r = 7 and 29); (iv) opening hours
of multiple locations using one aggregated SLR (» = 9); and
(v) opening hours of multiple locations using one plural SLR
(r = 12). Table IX shows some examples. We also note some
examples of key usage patterns in this Table. In particular,
inquiries about OPENING HOURS involve ellipsis, denoted
by < B|POINTI|® >.

Such sub-categorization based on latent semantics is poten-
tially advantageous because finer semantics categorization can
enhance understanding and will facilitate automatic generation
of system responses.

B. Capturing Key Terms for Informational Goals

We examine the term weights based on the perfect and imper-
fect transcriptions in the latent semantic space to identify key
terms that are indicative of each informational goal. Figs. 7 to 9
are the plots of term weights from informational goal-term ma-
trix F' against terms (both lexical and multimodal terms), for
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TABLE IX
EXAMPLES OF INQUIRIES THAT BELONG TO THE SIX LATENT SEMANTIC
CATEGORIES FROM THE TRAINING SET FOR INFORMATIONAL GOAL
OPENING_HOURS. TRANSLATIONS ARE ITALICIZED

r=11 corresponds to OPENING_HOURS of one location
I AR JniE <iZ A |poINT|siv> ¥ Bl JEURs ]
“I want to know the opening hours of <here|POINT|SIM>"

r=46 corresponds to OPENING_HOURS of single or multiple
locations using ellipsis

<@[POINT|@> [ Fi s ]
“<@|POINT|D> opening hours”

r=7 and 29 correspond to OPENING_HOURS of multiple
locations using multiple singular SLRs

AR HE <BEETHF|PoINT|SIM> <iE {F B 15 [POINT|SIM>
<3B RS O POTNTISIVE FH 2 18 P i
“I would like to know the opening hours of <this

plaza|POINT|SIM>,  <this plaza|POINT|SIM> and <this
shopping center|POINT|SIM>"

r=9 corresponds to OPENING_HOURS of multiple locations
using aggregated SLR

B8k 55F & <8 ={EH 7 MULTI-POINT|SIM> (1] 453
i fil

“Please tell me the opening hours of <these three
places|MULTI-POINT|SIM>"

r=12 corresponds to OPENING_HOURS of multiple
locations using one plural SLR

FEM <18 & Hh /7 MULTI-CIRCLE|SEQ> 1) B IR & ¢
R B ABEL

“The opening hours of <these locations|MULTI-CIRCLE|SEQ>
are from when to when”

F to
. fit from
<3E#H|POINT|SIM> ®
o <A R POINTISIM> < here[POINT[SIM> EpSE
o <this university|POINT|SIM> () how should | go
<;@gi|Pointjsim> () O 4
o - <here|POINT|SIM> the test
] |

SR\ Lz ERaas
EE

20 minutes
ZHN

Fig. 7. A plot of term weights from matrix F; against 881 terms from per-
fect transcriptions of inquiries with the informational goal ROUTE_FINDING.
Some of the multimodal and lexical terms on the x-axis are magnified. The first
magnified term is multimodal < Dangdai Plaze|POINT|SIM > while
the remaining are lexical terms.

the informational goals ROUTE FINDING and TIME CON-
STRAINT respectively.

Comparison between Figs. 8 and 9 shows that we can cap-
ture similar key terms from perfect and imperfect transcriptions
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Fig. 8. A plot of term weights from matrix F; against 881 terms from perfect
transcriptions of inquiries with the informational goal TIME_CONSTRAINT.
The x-axis is the same as Fig. 7, covering all terms from the perfect transcrip-
tions of the training set.
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Fig. 9. A plot of term weights from matrix > against 1,901 terms from
imperfect transcriptions of inquiries with the informational goal TIME_CON-
STRAINT. Some of the multimodal and lexical terms on the x-axis are
magnified. Note that the x-axis here is different from Fig. 10. This is because
this plot is based on imperfect transcription of the training set.

for the same informational goal TIME _CONSTRAINT. For ex-
ample, “B3E,” “F” (meaning “arrive”), “Z A,” “A” (meaning
“within”), “ =+ 488, “= " and “2 & (meaning “twenty
minutes™). In the last example, we also observe the ambiguity
in Chinese word segmentation here.

XI. CONCLUSIONS AND FUTURE WORK

This paper describes our work in semantic interpretation of
a “multimodal language” with speech and gestures using latent
semantic analysis (LSA). We apply speech and pen recognition
to transcribe multimodal user inputs in a navigation domain.
We parse for spoken locative references (SLRs) in the speech
modality and attempt to partially interpret the events in the pen
modality. We then apply Viterbi alignment that applies semantic
and temporal constraints to generate associations between the
SLRs and the pen input. In the LSA approach, we use a non-neg-
ative term-inquiry matrix to capture the associations between
terms (both lexical and multimodal terms) and inquiries. Fac-
torization of the term-inquiry matrix using singular value de-
composition (SVD) deduces the associations between terms and

inquiries through a latent semantic space with reduced dimen-
sionality. We project the latent semantic space into the space
of informational goals through a matrix derived from training
set. An input multimodal inquiry can be projected into the la-
tent semantic space and then into the informational goal space.
This gives rise to a vector with which we can use the highest
weighting element to select the inferred informational goal. We
experimented with projections derived from both perfect (i.e.
via manual labeling) and imperfect (i.e. via automatic recog-
nition) transcriptions of the training set. These are referred as
the perfect and imperfect projection models respectively. These
models are applied to the perfect and imperfect transcriptions of
the test set. The LSA approach attains comparable degrees of di-
mension reduction for both perfect and imperfect transcriptions.
In terms of informational goal inference, the perfect projec-
tion model achieves 98.6% accuracy on a perfectly transcribed
test set. This degrades to 28.4% when imperfect transcriptions
are used. The imperfect projection model achieves 83.7% and
64.3% accuracies respectively based on perfect and imperfect
test set transcriptions and hence exhibits greater robustness in
informational goal inference. Comparison with the baseline per-
formance using the VSM approach shows that the LSA always
performs significantly better (at least 9.9% absolute) in informa-
tional goal inference. This suggests that reduction into the latent
space can capture better the relevant semantics and contextual
information for informational goal inference.
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