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Abstract

This paper investigates the use of Multi-Distribution Deep Neu-
ral Networks (MD-DNNs) for integrating acoustic and state-
transition models in free phone recognition of L2 English
speech. In Computer-Aided Pronunciation Training (CAPT)
system, free phone recognition for L2 English speech is the key
model of Mispronunciation Detection and Diagnosis (MDD)
in the cases of allowing freely speaking. A simple Automatic
Speech Recognition (ASR) system can be approached with an
Acoustic Model (AM) and a State-Transition Model (STM).
Generally, these two models are trained independently, hence
contextual information maybe lost. Inspired by the Acoustic-
Phonological Model, which achieves greatly improvements by
integrating the AM and Phonological Model (PM) in MDD for
the cases that L2 learners practice their English by following the
prompts, we propose a joint Acoustic-State-Transition Model
(ASTM) which uses a MD-DNN to integrate the AM and STM.
Preliminary experiments with basic parameter configurations
show that the ASTM obtains a phone accuracy of about 68%
on the TIMIT data. It is better than the system of using separate
AM and STM, whose accuracy is only about 52%. Further fine-
tuning the ASTM achieves an accuracy of about 72% on the
TIMIT data. Similar performance is obtained if we train and
test the ASTM on our L2 English speech corpus (CU-CHLOE).

Index Terms: speech recognition, L2 English speech, deep
neural networks, acoustic models, state transition model

1. Introduction
Computer-aided pronunciation training (CAPT) technologies
enable self-directed language learning with round-the-clock ac-
cessibility and individualized feedback. They can supplement
the teachers’ instructions and help meet the demand of a grow-
ing population of learners in face of a shortage of qualified
teachers. CAPT focuses on mispronunciation detection and di-
agnosis (MDD) - the former decides whether the learner’s ar-
ticulation is correct or incorrect, while the latter identifies the
specific error(s) to generate corrective feedback and facilitate
learning.

Our previous work [1–7] devoted much effort in the case
of MDD that L2 learners utter English speech following the
prompts. We first proposed the approach based on forced-
alignment using Extended Recognition Networks (ERNs) [1–
6], which cover not only the canonical transcriptions but some
likely error patterns as well. The ERNs are used to constrain
the search space in Viterbi decoding, thus achieve better per-
formance for L2 English speech than free phone recognition.
ERNs which serves as a type of phonological model (PM) of L2

speech are trained from the canonical and annotated transcrip-
tions. In [7], an Acoustic-Phonological Model (APM) is pro-
posed to incorporate the AMs and PMs. Experiments showed
that the APM achieved an accuracy of about 83% and a cor-
rectness of about 89%. It significantly outperformed the ERN
approach whose correctness is about 76%.

Few previous work in CAPT paid attention to the cases
that L2 learners speak English without any prompts. In such
cases, we have to rely on free phone recognition for L2 English
speech. MDD for these cases can be conducted by recognizing
the phones and words uttered by L2 learners and comparing the
recognized phones with the canonical transcriptions of recog-
nized words.

A typical automatic speech recognition (ASR) system uses
hidden Markov models (HMMs) to model the sequential struc-
ture of speech signals [8]. Traditionally, Gaussian mixture mod-
els (GMMs) are used as parts acoustic models (AMs) to esti-
mate the conditional distribution of speech signal spectrum for
each HMM state. Apart from AMs, we need to estimate the
state transition probabilities within each phone and the tran-
sition probabilities over phones, i.e., phone language models
(LMs). These two kinds of transition probabilities can be uni-
fied by a single state-transition model (STM). If we aim to rec-
ognize words, we should also build a word LM.

Recently, due to the development of highly effective ma-
chine learning techniques in ASR like Deep Neural Networks
(DNNs) [9, 10], DNNs are used to replace GMMs as part of
AMs and achieved significant improvements [11–14]. Many
derivative types of DNNs, such as deep Convolutional Neu-
ral Networks (CNNs) [15–18] and deep Recurrent Neural Net-
works (RNNs) [18–20], also achieved impressive improve-
ments. In [18], an ensemble deep learning is used to integrate
different kinds of DNNs. Their phone recognition error rates
over the TIMIT corpus are below 20% [11, 16–18].

At the same time, DNN-based methods have also shown
success on learning word LMs. Early research showed that
feed-forward neural networks [21–23] and RNNs [24] can yield
better perplexity and word error rate compared with traditional
n-gram LMs. With more hidden layers, DNN-based LMs were
reported to achieve further improvement, which are competi-
tive with the state-of-the-art LM techniques [25]. As STMs are
much simpler than the word LMs, we believe DNNs can be ap-
plied to STMs.

Although both AMs and STMs can use DNNs, they are gen-
erally trained independently. That is, AMs are trained without
considering the preceding or succeeding state sequence. This
is based on the assumption that the current acoustic features xt

only depends on the current state st. In addition, STMs are
trained over the whole corpus and do not consider the concrete



acoustic realization. With such independence assumption, con-
textual information is lost.

The situation is similar to the training of AMs and PMs in
CAPT, which are generally assumed to be independent of each
other. This assumption cause the loss of contextual information.
Integrating these two kinds of models into an APM gains a sig-
nificant improvement [7]. Inspired by the APM, we propose
a joint Acoustic-State-Transition Model (ASTM) which uses a
multi-distribution DNN to integrate AMs and STMs. To calcu-
late the posterior probabilities of states, we not only consider the
corresponding acoustic feature, but also their preceding states.
To incorporate acoustic features, as well as preceding state se-
quence (encoded as binary vectors), a multi-distribution DNN is
used in this work. Multi-distribution DNNs have been applied
to speech synthesis [26, 27], lexical stress detection [28] and
mispronunciation detection and diagnosis [7]. Similar to tradi-
tional DNNs, they are also constructed by stacking up multiple
Restricted Boltzmann Machines (RBMs) from bottom up. This
involves running a layer-by-layer unsupervised pre-training al-
gorithm [9,10], followed by fine-tuning the pre-trained network
using back-propagation [29]. Excluding the bottom RBM, all
the other ones are traditional Bernoulli RBM (B-RBM), whose
hidden and visible units are binary. The bottom RBM is a type
of mixed Gaussian-Bernoulli RBM (GB-RBM), whose hidden
units are binary while visible units maybe Gaussian or binary.

For the sake of clarity and comparison, we first implement
conventional free phone recognition, which is used as our base-
line system. A monophone AM and a trigram STM are built,
both of which use DNNs. Our major work in this paper is to
propose an ASTM. The rest of the paper is organized as fol-
lows: Section 2 describes the free phone recognition for L2 En-
glish speech; Section 3 introduces the ASTM; Section 4 and 5
present the experimental results and conclusions, respectively.

2. Free Phone Recognition for L2 English
Speech (Baseline)

To realize free phone recognition for L2 English, a monophone
Acoustic Model (AM) and a trigram State Transition Model
(STM) are built, both of which use DNNs.

2.1. Acoustic Model (AM)

The speech is sampled at 16 kHz. To compensate for the high-
frequency part of speech signal, a pre-emphasis filter is applied
to the speech, whose transfer function is 1−0.97z−1. Then Fast
Fourier Transform is performed in a 25-ms Hamming window
with a 10-ms frame shift. Finally, a set of 13 MFCC features
are computed per 25-ms frame. Cepstral Mean Normalization
is done for each utterance and the features are further scaled to
have zero mean and unit variance over the whole corpus.

The diagram of our acoustic model is shown in Fig. 1a. In
our experiments, we use 17 frames (1 current, 8 before and 8 af-
ter) of MFCCs as the input features, thus there are 221 Gaussian
units in the bottom of the DNN. Above the bottom layer, there
are 4 hidden layers and each of them has 256 units. For the top
layer, there are 90 units generating the posterior probabilities
for all the 90 phone-states.

To obtain the 90 phone-states, we first divide each anno-
tated phone equally into three parts to train the AM. Based on
the 48-phone set following [8] and 3 states per phone, there are
in total of 144 phone-states in the output layer of the DNN. With
this trained AM, we performed forced-alignment of the entire
corpus based on the annotated phone transcription and merged

the states with low occurrence into their neighboring states of
the same phones. With the new phonetic boundaries, we re-
trained the AM. These two steps were repeated until we had a
90-phone-state set.

2.2. State-Transition Model (STM)

To generate the probabilities of phone-state transition, we build
a trigram STM, whose diagram is shown in Fig. 1b. In this
work, there are 14 binary input units indicating the previous 2
phone-states, as each phone-state is encoded with 7 bits. Above
the bottom layer, there are 4 hidden layer and each of them has
128 units. For the top softmax output layer, there are 90 units
generating the phone-state transition probabilities.

(phone-state posterior probabilities)

(acoustic features)

(xt)

p(st | xt)

(st-2 , st-1)

p(st | st-2 , st-1)

(phone-state transition probabilities)

(preceding phone-states)

(a) AM (b) STM

Figure 1: Diagrams of the monophone Acoustic Model (AM)
and trigram State Transition Model (STM).

2.3. Viterbi decoding using AM and STM

In Viterbi decoding, the phone-state sequence with the high-
est posterior probability is determined as the recognized phone-
state sequence, as given in Eq. (1):

ŝ = argmax
s

p(s | x) (1)

where x is the sequence of acoustic feature vectors, s denotes a
possible phone-state sequence.

The posterior probability of s given x is:

p(s | x) = p(s1|x)p(s2|s1, x) · · · p(st|s1, · · · , st−1, x) · · ·
≈ p(s1|x1)p(s2|s1, x2) · · · p(st|st−2, st−1, xt) · · ·

(2)

where xt is the acoustic feature vector of the tth frame, st de-
notes the phone-state at the tth frame. Note that we use a tri-
gram STM and xt has a context windows of (8+1+8) frames

Applying Bayes Theorem, we have:

p(st|st−2, st−1, xt) =
p(st)p(st−2, st−1, xt|st)

p(st−2, st−1, xt)

≈ p(st)p(st−2, st−1|st)p(xt|st)
p(st−2, st−1)p(xt)

= p(st|st−2, st−1)
p(st|xt)

p(st)
(3)



From Eq. (2) and Eq. (3), we have:

p(s | x) ≈ p(s1|x1)p(s2|s1)
p(s2|x2)

p(s2)
· · ·

p(st|st−2, st−1)
p(st|xt)

p(st)
· · · (4)

where p(st|xt) is the phone-state posterior probability from the
AM, p(st|st−2, st−1) is the phone-state transition probability
from the STM and p(st) is the phone-state prior probability es-
timated from training data.

3. Acoustic-State-Transition Model
(ASTM)

Figure 1 shows that the structures of AM and STM are similar,
and their main difference is the input features. In this subsec-
tion, we try to integrate the monophone AM and the trigram
STM.

3.1. Implementation of ASTM using MD-DNN

The structure of our ASTM is shown in Figure 2, which is a
multi-distribution DNN [7,26–28]. There are 221 Gaussian and
14 binary visible units in the bottom of the DNN. The other
layers are similar to the AM in Fig. 1. The ASTM can be repre-
sented by p(st|st−2, st−1, xt).

(phone-state posterior probabilities)

(preceding phone-states)(acoustic features)

(xt) (st-2, st-1)

P(st | st-2, st-1, xt)

Figure 2: Diagrams of the Acoustic-State-Transition Model
(ASTM).

3.2. Viterbi decoding using ASTM

The conventional approach in last subsection cannot com-
pute p(st|st−2, st−1, xt), and hence uses its approximation in
Eq. (3). It assumes that xt only depends on st and is indepen-
dent of its preceding states (st−2, st−1). This is not true actually
and thus contextual information is lost.

The ASTM calculates the posterior probability of
p(st|st−2, st−1, xt). In this approach using ASTM, we do not
need to train the AM and STM separately, nor estimate the prior
probability p(st), which may also cause problems, especially
when there is insufficient data for training.

With ASTM, we can directly use Eq. (2) to approximate
p(s|x), instead of using Eq. (4). From Eq. (2), we observe that
the ASTM can be easily extended to use a longer contextual
window, e.g., considering 5 preceding states, if sufficient data
is available for training.

4. Experiments
4.1. Corpora

Our experiments are based on the TIMIT and CU-CHLOE (Chi-
nese University Chinese Learners of English) corpora. The
CU-CHLOE corpus contains 110 Mandarin speakers (60 males
and 50 females) and 100 Cantonese speakers (50 males and
50 females). There are five parts in CU-CHLOE: confusable
words, minimal pairs, phonemic sentences, the Aesops Fable
“The North Wind and the Sun” and prompts from TIMIT. Ex-
cluding the TIMIT prompts, all the other parts are labeled by
trained linguists, which account for about 30% of the whole
CHLOE data.

The details of the TIMIT and CU-CHLOE corpora are
shown in Table 1. For the TIMIT corpus, the training and test
sets come from the original training and core test sets; while the
development set is the full test set excluding the data presented
in the core test set. For CU-CHLOE, we randomly split the cor-
pus by speakers into a training set, a development set and a test
set, whose rates are 70%, 10% and 20%, respectively.

Table 1: Details of corpora used in our experiments.

TIMIT CU-CHLOE

Train Dev. Test Train Dev. Test

Speakers 462 144 24 147 22 42

Unlabeled — — — 67h — —

Labeled 3h 1h 0.16h 26h 4h 7.5h

To transcribe the L2 English speech of CU-CHLOE, we
first built acoustic models using HTK [30] based on the TIMIT
corpus to align the canonical transcriptions with the L2 English
speech. Then our linguists annotated the speech with actual
pronunciations. To save labor, our linguists mainly focused in
labeling (modifying) the phone sequences, thus the accuracy of
the phone boundaries is not high. Hence, these annotated phone
sequences should be re-aligned using the AM described in Sec-
tion 2. We implement the forced-alignment and train the AM
iteratively until the AM’s performance improvement levels off,
which is assessed via running phonetic recognition on the test
set of the CU-CHLOE corpus.

4.2. DNN training

The DNNs training for AM and STM in this work is simi-
lar to [6, 7, 28]. In the pre-training stage, we try to maximize
the log-likelihood of RBMs. The one-step Contrastive Diver-
gence (CD) [9] is used to approximate the stochastic gradient.
20 epochs are performed with a batch size of 256 frames. In
the fine-tuning stage, the standard back-propagation (BP) algo-
rithm [29] is performed. A dropout [17, 31–33] rate of 10% is
used in this work. To speed up the BP training process, a tech-
nique of asynchronous stochastic gradient descent (ASGD) [34]
is used to parallelize computing.

However, we are facing a problem in training the ASTM
with the traditional training methods. When combining the



acoustic model and language model together, the data sparse
issue is also introduced into ASTM learning. Missing a large
portion of the trigram state sequences in the training set makes
it even more difficult to estimate the probabilities that are not
on the optimal path in the decoding network. To overcome this
problem, a randomized BP (RBP) training method is introduced
to achieve better generalization on the unseen trigram state se-
quences. The true preceding state sequence (st−2, st−1) is ran-
domly replaced with a random one (noise) at a fixed probability
(typically 80%). When the replacement happens, we also ap-
ply a reduced weight (typically 0.5) on the output target labels
during the BP training to indicate a low confidence on the false
(impostor) trigrams. This training procedure is to ensure that the
ASTM output mainly depends on the input acoustic features, in
case the input preceding states are incorrect.

4.3. Experimental results with basic configurations

As this is our first attempt to realize free phone recognition for
L2 English speech, we first build a simple system with basic
configurations using the TIMIT corpus, which is much smaller
than our CU-CHLOE corpus. In the fine-tuning stage, the stan-
dard BP is performed based on Minimum Mean Square Error
(MMSE). The dropout technique is disabled here. The train-
ing process is conducted on the TIMIT training set with many
epochs until its performance improvement levels off, which is
evaluated on the development set.

The performance of phone recognition for this basic sys-
tems are shown in Table 2, which are assessed on the TIMIT
core test set. The correctness and accuracy are calculated by the
following equations [30]:

Corr. =
N − S −D

N
; Acc. =

N − S −D − I

N

where N is the total number of labels; while S, D and I de-
note for the counts of substitution, deletion and insertion errors,
respectively.

It shows that the baseline system with separate AM and
STM only achieves an accuracy of about 51.7%. Our proposed
ASTM with 256 nodes in each hidden layer obtains an accu-
racy of 64.1%. Note that the ASTM has a worse correctness
than the baseline system, whose values are 67.8% and 71.5%,
respectively. This is mainly due to more deletion generated by
the ASTM. With the help of randomized BP (see next subsec-
tion), the ASTM obtained better performance on both correct-
ness and accuracy, whose values are 74.8% and 70.2% respec-
tively. It means that integrating AM and STM achieves better
performance, i.e., Eq. (2) gives a better approximation of p(s|x)
than Eq. (4).

Table 2: Performance of phone recognition with basic configu-
rations.

Correctness Accuracy
AM (256) & STM (128) 71.45% 51.68%
ASTM (256) 67.80% 64.16%

Note: The above DNNs are only trained on the TIMIT corpus;
The starting and ending silences are not counted in this paper’s
experiments.

4.4. Contribution of randomized BP

Table 3 presents the contribution of randomized BP, without
which the ASTM only obtains an accuracy of 64%. Employ-
ing randomized BP results an improvement of about 4%. Note
that the correctness of the ASTM with randomized BP is better
than that of using separate AM and STM.

Table 3: Performance of ASTM with and without Randomized
BP.

Correctness Accuracy
without Randomized BP 67.80% 64.16%
with Randomized BP 73.25% 68.11%

Note: Both the above DNNs of ASTM have 4 hidden layers
and each hidden layer has 256 nodes.

4.5. Contribution of more hidden units

Table 4 shows the performance of phone recognition with more
hidden nodes. Increasing the units of each hidden layer from
256 to 512 gains an improvement of about 2% in accuracy.

Table 4: Performance of phone recognition with more hidden
nodes.

Correctness Accuracy
ASTM (256) 73.25% 68.11%
ASTM (512) 74.84% 70.15%

4.6. Results of ASTM with further configurations

Due to the effectiveness of ASTM, we will focus on further
fine-tuning its parameters and leave the separate AM and STM
models behind. The dropout technique as described in subsec-
tion 4.2 is employed. The minimum cross entropy error is used
to replace the MMSE as the objective of DNN training. The
randomized BP is also used to replace the standard BP.

Table 5 shows that the ASTM trained on the TIMIT corpus
achieves an accuracy of about 72.4%. Although it is generally
more challenging to recognize the non-native speech, a similar
performance is obtained on the CU-CHLOE corpus. The main
reason is that there are more data in the CU-CHLOE corpus,
which contains about 26 hours of labeled data and 67 hours of
unlabeled data for training; while the TIMIT corpus has only 3
hours of labeled data for training (see Table 1).

Note that our performance on the TIMIT corpus is still
lower than the performances published in [11,16–18]. The main
reasons are that we only try some basic configurations of DNN
parameters (e.g., there are only 4 hidden layers and each hid-
den layer has only 256 or 512 nodes) and only use monophone
acoustic models.

Table 5: Performance of phone recognition using ASTM on dif-
ferent corpora.

Corpus Correctness Accuracy
TIMIT 75.38% 72.37%

CU-CHLOE 74.51% 72.00%



5. Conclusions and Future Work
This paper investigates the use of Multi-Distribution Deep Neu-
ral Networks (MD-DNNs) for integrating acoustic and state-
transition models in free phone recognition of L2 English
speech. We first implement a baseline system using separate
Acoustic Model (AM) and State-Transition Model (STM). As
these two models are trained independently, hence context in-
formation maybe lost. In order to integrate these two models,
we propose a joint Acoustic-State-Transition Model (ASTM),
whose features cover the MFCC features as well as the preced-
ing phone-state sequence (encoded as a binary vector). Due
to the different kinds of distribution of these features, a multi-
distribution DNN is used in this work. Experimental results
with basic parameter configurations show that the ASTM ob-
tains a phone accuracy of about 68% on the TIMIT data. It is
better than the system of using separate AM and STM, whose
accuracy is only about 52%. Further configuring the ASTM
achieves an accuracy of about 72% on the TIMIT data. Similar
performance is obtained if we train and test the ASTM on the
CU-CHLOE corpus.

The success of integrating the AM and STM motivates
us to further integrate the STM with our proposed Acoustic-
Phonological Model (APM) [7] in the future. The APM, which
was developed for the cases of MDD that the prompts for L2
learners are known in advance, achieved a phone accuracy of
about 83%. This performance was much better than that of
using separate AM and STM, whose accuracy was only about
58%. We conjecture that the joint Acoustic-Phonological-State-
Transition Model (APSTM) will be effective in performance
improvement.
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