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Abstract
We present a novel approach that enables a target speaker
(e.g. monolingual Chinese speaker) to speak a new language
(e.g. English) based on arbitrary textual input. Our system in-
cludes a trained English speaker-independent automatic speech
recognition (SI-ASR) engine using TIMIT. Given the target
speaker’s speech in a non-target language, we generate Phonetic
PosteriorGrams (PPGs) with the SI-ASR and then train a Deep
Bidirectional Long Short-Term Memory based Recurrent Neu-
ral Networks (DBLSTM) to model the relationships between
the PPGs and the acoustic signal. Synthesis involves input of
arbitrary text to a general TTS engine (trained on any non-
target speaker), the output of which is indexed by SI-ASR as
PPGs. These are used by the DBLSTM to synthesize the target
language in the target speaker’s voice. A main advantage of this
approach has very low training data requirement of the target
speaker which can be in any language, as compared with a
reference approach of training a special TTS engine using many
recordings from the target speaker only in the target language.
For a given target speaker, our proposed approach trained on
100 Mandarin (i.e. non-target language) utterances achieves
comparable performance (in MOS and ABX test) of English
synthetic speech as an HTS system trained on 1,000 English
utterances.
Index Terms: phonetic posteriorgrams, personalized, cross-
lingual, TTS, DBLSTM

1. Introduction
The advancements of speech technology in recent years bring
growing demands for personalized speech service and appli-
cations. Cross-lingual TTS aims at synthesizing speech in
a specific language not spoken by the target speaker. The
technology can benefit various fields such as computer-aided
language learning for personalized perceptual feedback and
assistive technologies for the speech impaired.

Previous approaches can be divided roughly into two cate-
gories, i.e. GMM-HMM-based approaches and unit selection-
based approaches. GMM-HMM-based approaches [1–4]
require GMM-HMM training for corpora in two different
languages (i.e. a non-target language and a target language).
In [1], speech recordings from a reference bilingual (English
and Mandarin) speaker were used to build language-specific
decision trees separately. The Kullback-Leibler divergence
(KLD) [5] was used to measure the distance between any pair of
leaf nodes. Every leaf node (tied GMM states) in the Mandarin
tree can be mapped to its nearest counterpart in the English
tree in a minimum KLD sense. This process is called state
mapping and the obtained mapping information may be applied
to any monolingual English speaker for synthesizing his/her
Mandarin speech. A similar approach was presented in [2],

which established a state mapping between two Average Voice
models in different languages. However, neither a corpus from
a bilingual speaker nor speech data for training Average Voices
is easily available. The spectral space warping [3] and the
KLD-DNN [4] approaches used only speech recordings from
a monolingual reference speaker in the target language and a
monolingual target speaker in a non-target language. These
proposed approaches can be regarded as modified versions
of state mapping mechanism. The spectral space warping
approach [3] equalized the numbers of the leaf nodes in two
trained language-specific decision trees and found an optimal
one-to-one leaf node mapping in a minimum total sum of KLDs
sense. The KLD-DNN approach [4] employed a Deep Neural
Network (DNN)-based speaker-independent automatic speech
recognition (SI-ASR) to index TTS senones (leaf node) in
both languages as their average posterior distributions. Then
a senone mapping was established with a criterion of minimum
KLD between the average posterior distributions.

Unit selection-based approaches [6–8] aim at rendering
reference speech trajectories in a target language using the best
matched speech segments from a target speaker’s recordings
in another language. In [6], a phoneme mapping algorithm
was devised based on a proposed function for computing
similarity scores between phonemes. However, phoneme-level
unit selection is not robust when the two languages belong to
different linguistic families. In [7, 8], frame-level units were
applied and worked for very phonetically different languages,
e.g. English and Mandarin. A reference speaker’s recordings
in the target language were modified with a piecewise-linear
transform-based [7] or a bilinear transform-based [8] spectral
frequency warping techniques for approximating the target
speaker’s voice. Then these modified speech data were used
as a guide to select the most appropriate frames from the target
speaker’s recordings for generating the target speaker’s speech
in a new language.

This paper proposes a novel approach to personalized cross-
lingual TTS based on our previous work [9, 10]. This approach
uses a DNN-based SI-ASR (similar to [4]) for generating
Phonetic PosteriorGrams (PPGs) of the target speaker’s speech
in a non-target language and a Deep Bidirectional Long Short-
Term Memory based Recurrent Neural Network (DBLSTM)
for modeling the relationship between the PPGs and the cor-
responding speech signal. Cross-lingual TTS can be achieved
by combining this framework with a general TTS engine in the
target language. The TTS engine takes arbitrary text input and
synthesizes speech in the target language. Then the synthesized
speech is fed into the same SI-ASR to obtain the corresponding
PPGs which are used to drive the trained DBLSTM model.
Consequently, the target speaker’s speech in the target language
is generated. The advantages of this approach are: 1) it has
a very low training data requirement of the target speaker’s
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speech recordings in any language (e.g. 100 sentences [9]),
thus enhancing practicability; 2) it can very easily be applied
to synthesizing a fixed target speaker’s speech in any language
simply by inserting an arbitrary TTS engine in that language,
thus offering flexibility.

The rest of the paper is organized as follows: Section
2 introduces PPGs. Section 3 describes our proposed cross-
lingual TTS system using PPGs. Section 4 presents the
experiments and the evaluation results. Section 5 concludes this
paper.

2. Phonetic PosteriorGrams
A PPG is a time-versus-class matrix representing the posterior
probabilities of each phonetic class for a specific time frame of
one utterance [11, 12]. A phonetic class may refer to a word,
a phone or a senone. In this paper, senones are treated as
the phonetic class to represent the whole speaker-independent
phonetic space. Fig. 1 shows an example of PPG representation
for the spoken phrase “particular case”. The horizontal axis
represents time in seconds and the vertical one contains indices
of phonetic classes.

Figure 1: PPG representation of the spoken phrase “particular
case”. In this example, the number of senones is 131. Darker
shade implies a higher posterior probability.

PPGs from an SI-ASR are used to represent articulation of
speech sounds in a speaker-normalized space and correspond
to speech content speaker-independently. As indicated in [1–
4, 6, 7], small speech segments like tied-states and frames can
be shared in different languages. Hence PPGs, as frame-level
units, may be deemed language-independent. In view of the
speaker-independent and language-independent properties of
PPGs, we can use them as a representation of speech that bridge
across speakers and language boundaries.

3. Cross-lingual TTS Using PPGs
Given a target speaker’s speech in a non-target language
(e.g. Mandarin), our objective is to build a TTS system which
can synthesize this target speaker’s speech for arbitrary textual
input in the target language (e.g. English). In this system, a
DBLSTM framework is used to represent the acoustic-phonetic
space of target speaker which can map PPGs to acoustic
features.

3.1. Overview

As illustrated in Fig. 2, the proposed approach is divided into
three stages: training stage 1, training stage 2 and the synthesis
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Figure 2: Schematic diagram of cross-lingual TTS using PPGs.
SI stands for speaker-independent.

stage. In training stage 1, an SI-ASR model is introduced to
obtain a PPG representation of any input speech. Training
stage 2 models the relationships between the PPGs and acoustic
features of the target speaker’s speech recordings (in a non-
target language) for speech parameter generation. The 3rd stage
of synthesis drives the trained DBLSTM model with PPGs of
the waveform (obtained from an arbitrary TTS engine). These
three stages will be elaborated in the following subsections.

3.2. Training Stages 1 and 2

In training stage 1, an SI-ASR system is trained for PPGs. The
input xn,t is the acoustic MFCC feature vector at the tth frame
of the nth utterance. The output p(sn,t |xn,t) is the posterior
probability of the phonetic class vector sn,t given xn,t. For
simplicity, p(sn,t |xn,t) is also denoted as pn,t. To train the
SI-ASR model, a multi-speaker ASR corpus is used.

Training stage 2 trains a DBLSTM model to get the
mapping relationships between the PPGs, denoted as pn,t, and
the acoustic features, i.e. Mel-cepstral coefficients (MCEPs),
donated as Yn,t. The cost function can be represented as:

min

N∑
n=1

||YR
n −YT

n ||2 (1)

where YT
n = (YT

n,1, · · · ,YT
n,t, · · · ,YT

n,Tn
) is the target

MCEP feature vector of the nth utterance, whereas YR
n =

(YR
n,1, · · · ,YR

n,t, · · · ,YR
n,Tn

) is the generated MCEP feature
vector, i.e. the actual value of the output layer.

The model is trained to minimize the cost function through
back-propagation through time (BPTT) technique [13]. Note
that the DBLSTM model is trained using only the target
speaker’s MCEPs features and the PPGs without using any
other linguistic information.

3.3. Synthesis Stage

In this stage, a TTS engine (trained on any non-target speaker’s
speech in the target language) is used to generate the pitch
features (F0), aperiodic components (AP) and waveforms.

323



Table 1: Details of corpora in our experiments.

Corpus TIMIT CUBIL CMU ARCTIC

Speaker Count: 462 WH BDL SLT

Data English
3,696 Utterances

Mandarin
100 Utterances

English
1,000 Utterances

English
1,000 Utterances

English
1,000 Utterances

Model SI-ASR DBLSTM TTS-WH Engine TTS-BDL Engine TTS-SLT Engine

The trained SI-ASR takes the MFCC features of a generated
waveform as input and outputs corresponding PPGs. Then, the
PPGs are fed into the trained DBLSTM model for generating
MCEPs with the target speaker’s voice characteristics. AP
is directly copied from the TTS and logF0 is converted by
equalizing the mean and the standard deviation of the logF0
generated by the TTS engine and that extracted from the target
speaker’s speech recordings. Finally, the target speaker’s speech
in the target language is synthesized using the STRAIGHT
vocoder [14].

4. Experiments
4.1. Corpora

Three corpora including TIMIT [15], CUBIL and CMU ARC-
TIC [16] are involved in the training and synthesis stage of
our proposed approach, as shown in table 1. 462 speakers’
speech of TIMIT is used to train the SI-ASR model. CUBIL is
a bilingual (Mandarin and English) corpus recorded at 16kHZ
with mono channel, which is collected for these experiments
in our research group at the Chinese University of Hong Kong.
Speaker WH is treated as the target speaker in the following
experiments. Mandarin and English are treated as the non-target
language and the target language respectively. A DBLSTM
model is trained using WH’s 100 Mandarin utterances. The
CMU ARCTIC BDL and the CMU ARCTIC SLT corpora are
used for training two general speaker-dependent TTS engines –
TTS-BDL and TTS-SLT, respectively.

4.2. Experimental Setup

The signals are sampled at 16kHZ with mono channel, win-
dowed with 25 ms and shifted every 5 ms. Acoustic features,
including spectral envelope, F0 (1 dimension) and AP (513
dimensions) are extracted by STRAIGHT analysis [14]. The
39th order MCEPs plus log energy are extracted to represent
spectral envelop.The HMM-based Speech Synthesis System
(HTS) [17] is used to implement general TTS training, in which
acoustic features together with their delta and delta-delta are
modeled by multi-stream HMMs, and each phone HMM has
a five-state topology with single Gaussian, diagonal covariance
distributions.

We implement our proposed and reference approaches us-
ing different corpora, thus bringing the following five systems:

• TW: TTS-WH system, as a benchmark, is trained on
1,000 English utterances from WH.

• TBWM: TTS-BDL-WH-Mandarin is a cross-lingual
system, which combines TTS-BDL and a DBLSTM
model trained on 100 Mandarin utterances from WH.

• TBWE: TTS-BDL-WH-English is a intra-lingual sys-
tem, as a reference with upper bound performance for
comparison with TBWM, which combines TTS-BDL
and a DBLSTM model trained on 100 English utterances
from WH.

• TSWM: TTS-SLT-WH-Mandarin is a cross-lingual sys-
tem, which combines TTS-SLT and a DBLSTM model
trained on 100 Mandarin utterances from WH.

• TSWE: TTS-SLT-WH-English is a intra-lingual system,
as a reference with upper bound performance for com-
parison with TSWM, which combines TTS-SLT and a
DBLSTM model trained on 100 English utterances from
WH.

For the four cross-lingual TTS approaches (TBWM, TB-
WE, TSWM and TSWE), the SI-ASR system is implemented
using the Kaldi speech recognition toolkit [18] with TIMIT
corpus [15]. The system has a DNN architecture with 4 hidden
layers each of which contains 1024 units. The dimension
of MFCC features we use is 13. Senones are treated as the
phonetic class of PPGs. The total number of senones is 131
after clustering in training stage 1. The training time is about
11 hours under the hardware configuration of dual Intel Xeon
E5-2640, 8 cores, 2.6GHZ.

After obtaining PPGs from SI-ASR model and MCEPs
from STRAIGHT analysis, a DBLSTM framework is adopted
to map the relationships between them. The machine learning
library CURRENNT [19] is used for the implementation. The
number of units in each layer is [131 64 64 64 64 39]
respectively, where each hidden layer contains one forward
LSTM layer and one backward LSTM layer. BPTT is used
to train this model with a learning rate of 1.0 × 10−6 and a
momentum of 0.9. It takes about 4 hours for 100 sentences
training set in the support of a NVIDIA Tesla K40 GPU.

4.3. Evaluations

We conduct both objective and subjective evaluations on all
the five systems. Natural human recording (denoted as RW)
represents the upper bound in performance. The benchmark
(TW) is a general TTS system that is trained directly on 1,000
English utterances from the target speaker while the other four
systems (TBWM, TBWE, TSWM, TSWE) follow our proposed
framework and each of them is trained using only 100 Mandarin
utterances from the target speaker, i.e. only one-tenth the size of
the training data in the benchmark. We expect that our proposed
framework may achieve similar performance to the benchmark.

4.3.1. Objective Measure

Mel-cepstral distortion (MCD) is conducted to measure how
close the synthesized speech is to RW. MCD is the Euclidean
distance between the MCEPs of the synthesized speech and
those of RW, denoted as

MCD[dB] =
10

ln10

√
2
∑N

d=1
(cd − cgd)

2 (2)

where N is the dimension of MCEPs (excluding the energy
feature). cgd and cd are the dth coefficient of the generated
MCEPs and the RW respectively.
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Thirty sentences are randomly selected for testing. Dynam-
ic time warping is used to align the MCEPs of RW and those
of the five systems. As shown in table 2, the average MCD
values for our proposed systems (TBWM and TSWM) are
larger than that for the benchmark system (TW). It is reasonable
because TW is directly trained using English utterances from
the target speaker while TBWM and TSWM are cross-lingual
TTS systems and they are trained using even fewer utterances
from the target speaker. Comparison TBWM and TBWE shows
they have the similar performance, which indicates that cross-
lingual tasks can be well handled by our proposed approach.

Table 2: Average MCD of the five systems. TW is the
benchmark. TBWM and TSWM are our proposed systems.
TBWE and TSWE are the reference systems.

System TW TBWM TBWE TSWM TSWE

MCD 5.09 6.59 6.35 6.54 6.37

4.3.2. Subjective Tests

The Mean Opinion Score (MOS) test and ABX preference test
are conducted for subjective evaluation of the naturalness and
similarity of the synthesized speech with the target speaker’s
speech. Ten sentences from each of the five systems are
randomly selected for testing. We invite 20 listeners to
participate in the subjective tests1.

In the MOS test, the listeners are asked to rate the
naturalness of the synthesized speech on a 5-point scale (5:
excellent, 4: good, 3: fair, 2: poor, 1: bad). Results
are shown in Fig. 3, which indicates our proposed approach
(TBWM and TSWM) achieves satisfactory performance which
is comparable to the benchmark of TW.

4.48

3.36 3.37 3.36 3.36 3.40

1

2

3

4

5

RW TW TBWM TBWE TSWM TSWE

Figure 3: MOS test results with the 95% confidence intervals.
Natural human recording is shown as RW. TW is the benchmark
trained on much more data from the target speaker. TBWM and
TSWM are our proposed systems based on TTS-BDL and TTS-
SLT engines respectively. TBWE and TSWE are the reference
systems.

For the ABX preference test, the listeners are asked
to choose which of A and B (generated by two different
systems) sounds more like the target speaker’s recording X. No
preference is also recorded. Each pair of A and B are presented
in randomized order to avoid preferential bias. As shown in
Fig. 4, these four systems (TW, TBWM, TSWM and TBWE)
are nearly equally preferred.

1The synthesized speech samples can be found at http://www.
se.cuhk.edu.hk/˜lfsun/IS2016
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Figure 4: ABX preference test results. N/P stands for no
preference. TW is the benchmark. TBWM and TSWM are our
proposed systems. TBWE is the reference system.

Results from both the MOS test and the ABX test show that
our proposed cross-lingual TTS systems (TBWM and TSWM)
can achieve comparable performance to the benchmark (TW)
in both speech quality and speaker similarity. The similar
performance of TBWM and TSWM systems using different
TTS engines suggests that our proposed cross-lingual technique
can well be applicable to arbitrary general TTS engine in the
target language. Comparison TBWM and TBWE also shows
our proposed approach can well handle cross-lingual tasks.
We can see there is a big difference in the N/P percentage
between these four pairs. High N/P percentage (e.g. TBWM-
TBME) means all the listeners consider there is no perference
for the paired samples. Low N/P percentage (e.g. TW-TSWM)
means some listeners consider A (e.g. TW) is better than B
(e.g. TSWM) while some listeners consider B is better than A,
but there is no preference in the statistical view. Compare to
objective results, subjective results are more reliable because
unavoidable alignment errors exist in objective measures.

5. Conclusions
This paper presents a novel approach to personalized, cross-
lingual TTS. PPGs obtained from an SI-ASR are regarded as
a bridge across speakers and language boundaries. Therefore, a
DBLSTM model is trained using PPGs of the target speaker’s
data in a non-target language and the corresponding acoustic
features, and this trained model can be driven to generate the
target speaker’s speech in the target language by feeding the
PPGs of synthesized speech output from any general TTS in
the target language for arbitrary input text. This approach has
a very low training data requirement of the target speaker’s
speech recordings. In addition, it can very easily be applied
to synthesizing a fixed target speaker’s speech in any language
by just inserting an arbitrary TTS in that language.

Experiments take a GMM-HMM-based TTS trained on
a bilingual speaker’s speech in the target language as a
benchmark. Evaluation results show that the proposed system
trained on this bilingual speaker’s speech in the non-target
language (e.g. 100 Mandarin utterances) is comparable to the
benchmark (trained on 1,000 English utterances) in both speech
quality and speaker similarity.
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