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Abstract 
This work aims to understand and model the inter-modal 
temporal relations between the audio and visual modalities of 
speech and validate whether the captured relations can 
improve the performance of audio-visual bimodal modeling 
for such applications as audio-visual speaker identification.  
We propose to extend our audio-visual correlative model 
(AVCM) with explicit durational modeling of the partial 
temporal synchrony between the two speech modalities, i.e. 
where the audio may lead, lag or remain synchronized with the 
video.  We refer to the new extended model as Durational-
AVCM.  Experiments on the CMU database and a home-
grown database demonstrate that Durational-AVCM can 
improve the accuracies of audio-visual speaker identification 
at all levels of acoustic signal-to-noise ratios (SNR) from 0dB 
to 30dB with varying acoustic conditions compared to original 
AVCM model.  The results indicate the importance of 
incorporating the partial temporal synchrony between audio 
and visual modalities for audio-visual bimodal modeling. 

1. Introduction 
Human speech is produced by the movement of articulators.  
As some of these articulators are visible, there are inherent 
correlations between audio and visual speeches.  There is also 
partial temporal synchrony between them.  We may consider 
the process of human speech production, where the voice 
source originates from airflow from the lungs through 
laryngeal vibrations, producing quasi-periodic air pulses which 
are modulated by the vocal tract in different ways according to 
the positions of the articulators (e.g. lips, tongue, teeth and 
jaw).  It is therefore conceivable that there should be 
dependence, or direct synchrony, between the visual signal 
which represents the movements of the articulators and the 
acoustic signal which represents the modulated airflow.  
Furthermore, it is possible for the articulators to move in 
anticipation of a phonetic event up to tens or hundreds of 
milliseconds prior to the actual production of the phone [1].  
This means that the visual evidence will temporally lead the 
acoustic evidence.  Conversely, due to co-articulatory effects 
and articulator inertia, the visual stream may temporally lag 
the acoustic evidence [2].  And sometimes, the two evidences 
might be temporally synchronized. 

The audio-visual bimodal nature of speech has attracted 
significant interests in research community in recent years.  It 

is believed there is much to be gained by leveraging the 
complementary and redundant relationships between audio 
and visual modalities to enhance human-computer speech 
communication, including audio-visual speech recognition, 
audio-visual speaker identification, etc [3-5]. 

Previous literatures generally divide the audio-visual 
integration strategies into three categories: feature-level 
fusion, decision-level fusion and model-level fusion [5-7].  In 
feature-level fusion, multiple features are concatenated into a 
large feature vector and a single model is trained [6] by 
assuming that the audio and visual features are in strict 
synchrony.  In decision-level fusion, audio and visual features 
are processed separately to build two independent models [7], 
which assumes complete independence between the audio and 
visual features, and thus ignores the audio visual correlations.  
In model-level fusion, several models have been proposed, 
such as multi-stream hidden Markov model (HMM) [8], 
factorial HMM [8], coupled HMM [4], mixed dynamic 
Bayesian Networks (DBN) [9], etc.  Multi-stream HMM and 
factorial HMM assume independence between audio and 
visual features.  Coupled HMM and mixed DBN force audio 
visual streams to be in strict synchrony at model boundaries 
by introducing “anchor-points”.  We believe that model-level 
fusion is desirable as it offers flexibility in modeling partial 
temporal synchrony, for such applications as speaker 
identification, speech recognition, and speech synthesis etc. 

Our previous work proposed an audio-visual correlative 
model (AVCM) [10] which is realized using the dynamic 
Bayesian networks (DBN), to describe both the inter-
correlations and the loose temporal synchrony between audio 
and video streams.  However, AVCM assumes that the 
temporal asynchrony between the audio and visual streams 
should be limited to at most one state.  Moreover, the AVCM 
lacks the ability to model the audio-visual temporal 
relationship directly and explicitly.  Hence the model has 
much room for improvement in modeling the inter-modal 
temporal relations between the audio and visual modalities. 

The objective of the current paper is to propose the 
Durational-AVCM to capture the partial temporal synchrony.  
We reference durational modeling methods that have 
previously been used for HMMs.  The approaches may be 
grouped into three categories.  (i) Hidden semi-Markov 
models choose the occupancy of each state directly from a 
specified duration distribution.  Examples include the explicit 
duration HMM [11] which learns a discrete duration 
distribution; as well as continuously variable duration HMM 



[12] which learns a parametric duration distribution.  (ii) 
Variable transition HMMs incorporate the transition 
probabilities of each state as a function of the state’s current 
occupancy and allows for any duration distribution.  
Examples include inhomogenous HMM [13], nonstationary 
HMM [14], etc.  (iii) Expanded state HMMs are standard 
HMMs with more states and/or state topologies, often coupled 
with state distribution tying [15], [16]. 

The outline of this paper is as follows: Section 2 describes 
the original AVCM.  Section 3 presents the extension to 
Durational-AVCM.  Experimental results and comparative 
analysis are given in section 4, which shows how Durational-
AVCM outperforms original AVCM by modeling the partical 
temporal synchrony.  Finally, section 5 concludes the paper. 

2. DBN based audio-visual correlative model 
(AVCM) 

Figure 1 illustrates our original audio-visual correlative model 
(AVCM) [10].  The figure shows a whole sentence model that 
consists of several words.  The square nodes represent discrete 
variables, while the round nodes represent continuous 
variables.  The hollow nodes represent hidden variables and 
the shaded nodes are observed.  The upper part of the model 
describes the audio stream and the lower part describes the 
video stream.  The labeled nodes include: 

 Word Pos (WP): the current word index in the sentence; 
 Word (W): the current word which is determined by the 

sentence and “Word Pos (WP)” node; 
 State Pos (SP): the state index in the current word model; 
 State (C): the current state which is determined by “Word 

(W)” and “State Pos (SP)” nodes; 
 Observation (O): the audio / visual feature observations; 
 EOS: represents the end of the sentence; 
 Word Advance (WA): denotes the synchrony between 

audio and visual streams at word level.  It may take the 
values 0, 1 or -1 to respectively denote that the two 
modalities are synchronized, that the audio leads the video, 
or that the audio lags the video; 

 Last State (LS): indicates whether the current sate is the 
last state of the word; 

 State Trans (T): can take the values true or false to 
indicate when the current state ends and switches to the 
next state; 

 Word Trans (WT): may also take the values true or false 
to denote whether there is a word transition. 
The “State Trans (T)” node depends on the “State” nodes 

from both streams, and also the “Word Advance” node.  If the 
current stream is in leading, the “State Trans” node will 
always take the value false to prevent advancing more sates. 

The “Word Trans (WT)” node depends on not only the 
“State Trans”, “Last State”, and “Word Advance” nodes of 
current stream, but also the “Last State” node of the other 
stream.  Its value must be false in order to force the current 
stream to wait (despite cases where it may be read to advance 
to the next word) for the other stream to catch up (as long as 
the stream is not in its last sate). 
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Figure 1: Audio-Visual correlative model (AVCM). 

3. Durational-AVCM 
As mentioned above, there are two defects of the original 
AVCM.  First, the model topologies and node dependencies 
of “State Trans (T)” and “Word Trans (WT)” nodes limit the 
temporal asynchrony between two streams to within only one 
state.  Second, the transition of words, i.e. “Word Trans”, 
ignores the explicit temporal relationship between the two 
streams.  We aim to incorporate explicit durational modeling 
with greater flexibility by proposing the Durational-AVCM, 
described in this section as follows. 

3.1. Characteristics of the Durational-AVCM 

To model the partial temporal synchrony between the audio 
and video streams (i.e. where the audio leads, lags, or is 
synchronized with video), we introduce the “Word Advance 
Duration (WD)” node to explicitly record and control the 
temporal relationship between the two streams, as depicted in 
figure 2. 

For the advanced stream (Audio or Video), if the WD > 
MaxAdvanceA or MaxAdvanceV (Word_A, Word_V), it 
should wait until the other stream catches up; otherwise, it 
could go on at its own step.  Here, MaxAdvanceA (Word_A, 
Word_V) denotes the maximum advanced time counter when 
the audio stream is in advance while the current word of audio 
stream and video stream is Word_A and Word_V respectively.  
MaxAdvanceV (Word_A, Word_V) denotes the maximum 
value when video stream is in advance while the current word 
of audio stream and video stream is Word_A and Word_V 
respectively.  The values of MaxAdvanceA and MaxAdvanceV 
are learnt from the training data. 

In this way, the temporal relationship (i.e. the lead or lag 
time) between the audio and video stream at word level may 
be controlled within a reasonable range. 

3.2. Word Advance Duration (WD) 

The “Word Advance Duration (WD)” node depends on the 
“Word” nodes from audio and video streams, the “Word 
Advance” node in current time slice, as well as the “WD” 
node in the previous time slice. 

The conditional probability distribution (CPD) of the 
“Word Advance Duration (WD)” node is defined as: 
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The “Word Advance Duration” variable actually serves as a 
time counter.  Equation 1 illustrates the following: 
- when the audio and video streams are in synchrony, WD 

keeps the value -1 (i.e. condition #1 in the equation); 
- at the onset of asynchrony, WD is initialized to the 

maximum advanced time (i.e. condition #2 for audio in 
advance, or condition #3 for video in advance in the 
equation); 

- WD decreases by 1 for each time slice (condition #4); 
- WD stays unchanged when it reaches 0 (condition #5). 
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Figure 2: The Durational-AVCM explicitly modeling the partial temporal synchrony between audio and visual streams by 
introducing the “Word Advance Duration (WD)” node. 

3.3. State Transition (T) 

After introducing the “Word Advance Duration (WD)” node, 
the transition of the “State” in current word will depend on 
whether the asynchrony between the two streams has reached 
the maximum limitation.  In the model, as depicted in figure 2, 
the “State Trans (T)” node depends on the “Word Advance 
Duration (WD)” node. 

The CPD of the “State Trans (T)” node is defined as: 
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Where: 
- variable s represents the current stream; 
- ¬s represents the other stream (e.g. if s=A then ¬s=V, and 

vise versa); 
- As

ii,j is the probability for current stream s to stay at state i 
when the other stream is at state j.  If the “WD” time 
counter exceeds the maximum advanced time (i.e. 
WDt=d=0), the advanced stream should wait until the other 
stream catches up (condition #1 and #2 in the equation 2).  
Otherwise, the state of the stream just transits at its own 
pace according to the transition probability As

ii,j (the other 
conditions in the equation 2). 

As may be seen from equation (2), the one state limitation of 
AVCM for “State Trans (T)” node is relaxed in the 
Durational-AVCM. 

3.4. Word Transition (WT) 

As mentioned in Section 2, the “Word Trans (WT)” node of 
the AVCM depends on several factors.  The Durational-
AVCM relaxes the constraints and the transition of “Word” in 
one stream depends only on the “State Trans (ST)” of the 
same stream.  However, it should be noted that the “Sate 
Trans (ST)” takes into account the word asynchrony between 
two streams, through the use of the “Word Advance Duration 
(WD)” node, as described in equation (2).  Hence, the 
Durational-AVCM can explicitly model the temporal 



asynchrony within one word between the two streams for 
different word combinations. 

The CPD of the “Word Trans (WT)” node is defined as: 
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4. Experiments 
In order to validate whether modeling the partial temporal 
synchrony between audio and visual streams can really 
improve the performance of audio-visual bimodal model, we 
perform the following experiments to compare the 
performance of Coupled-HMM (CHMM), original AVCM 
and the new proposed Durational-AVCM. 

Because we focus on validating the benefits of explicitly 
modeling the partial temporal synchrony for audio-visual 
bimodal modeling, relatively simple experiments on text-
prompts speaker identification are performed as the test bed.  
The speaker identification results from CHMM, the original 
AVCM and Durational-AVCM are compared. 

The experiments are based on the audio-visual bimodal 
database from Carnegie Mellon University (CMU database) 
[17] as well as our own home-grown database.  The CMU 
database includes 10 subjects (7 males and 3 females) 
speaking 78 isolated words repeated 10 times.  These words 
include numbers, weekdays, months, and others that are 
commonly used for scheduling applications.  The home-
grown database includes 60 subjects (38 males and 22 
females, aged from 20 to 65) with each subject speaks 30 
connect-digit words (the digit length differs from 2 to 6), and 
each utterance is repeated three times at intervals of one 
month. 

The acoustic front-end includes 13 Mel frequency cepstral 
coefficients (MFCCs) and 1 energy parameter (with frame 
window size of 25ms and frame shift of 11ms) together with 
their delta parameters.  Hence the audio feature vector has 28 
dimensions. 

The visual front-end includes mouth width, upper lip 
height, lower lip height [17] and their delta parameters.  Thus 
the visual feature vector has 6 dimensions.  The video frame 
rate is 30 frames per second (fps), which is up-sampled to 
90fps (11ms) by copying and inserting two frames between 
each two original video frames.  It should be noted that the 
visual features might be a bit too simple for speaker 
identification (as more complicate facial features can be used 
instead), however, given the purpose of the experiment to 
validate the benefits of modeling the partial temporal 
synchrony, it is enough already. 

Artificial white Gaussian noise was added to the original 
audio data (SNR=30dB) to simulate various SNR levels.  The 
models were trained at 30dB SNR and tested under SNR 
levels ranging from 0dB to 30dB at 10dB intervals.  We 
applied cross-validation for every subject’s data, i.e. 90% of 
all the data are used as training set, and the remaining 10% as 
testing set.  The partitioning was repeated until all the data 
had been covered in the testing set. 

All the models are implemented as DBNs.  A DBN is 
developed for each word, with a left-to-right no skipping 
logical structure, which means the no. of the new transited 
state is always equal to or 1 greater than the original state.  
The audio model has 5 states, and video model has 3 states, 
each state is modeled using the Gaussian mixture model 
(GMM) with 3 mixtures.  During speaker identification, the 
words’ DBNs are connected to form a whole sentence model, 
which is then used to identify the speakers.  The DBNs are 
implemented using the GMTK toolkit [18]. 

Table 1: Average accuracies (%) of speaker identification 
under different SNR on CMU database. 

audio signal-to-noise 
ratio (SNR) 30dB 20dB 10dB 0dB 

CHMM 100 88 79 60 
Original AVCM 100 92 79 65 

Durational-AVCM 100 93.5 82 69 

Table 2: Average accuracies (%) of speaker identification 
under different SNR on own homegrown database. 

audio signal-to-noise 
ratio (SNR) 30dB 20dB 10dB 0dB 

CHMM 100 85 77 57 
Original AVCM 100 89 78 61 

Durational-AVCM 100 91 80 66 
 

The identification accuracies from all the testing data are 
averaged and reported as the final result.  The results on CMU 
database are summarized in table 1.  The experiments are also 
conducted on our own homegrown database with a larger 
number of speakers and results are summarized in table 2. 

As can be seen from the results that the original AVCM 
model outperforms Coupled-HMM (CHMM) as it can, to 
some extend, describe the temporal synchrony between audio 
and video stream in one state.  Moreover, the Durational-
AVCM model proposed in this paper has even higher 
accuracy than original AVCM.  This indicates that the 
Durational-AVCM can model the partial temporal synchrony 
even with more accuracy which indicates that the new 
proposed Durational-AVCM is efficient.  The results also 
indicate that it is important to model the partial temporal 
relationships (partial synchrony) between audio and video 
streams in the audio-visual bimodal modeling. 

5. Conclusions 
This paper investigates the partial temporal synchrony 
between audio and video streams.  A new durational audio-
visual correlative model (Durational-AVCM) is proposed, 
which explicitly models the maximum temporal asynchrony 
(i.e. where the audio leads video, audio lags video, and/or 
audio is synchronized with video) between the audio and 
video streams at the word level.  The experiments on the 
audio-visual bimodal speaker identification demonstrate that 
the Durational-AVCM model improves the identification 
accuracies compared to the coupled HMM and original 
AVCM.  The results also indicate that it is important to model 
temporal synchrony between audio and visual modalities for 
audio-visual bimodal applications such as speaker 
identification. 

 



Our further work will focus on this to explicitly model the 
state durations at the state level.  We will also investigate the 
use of Durational-AVCM for audio-visual speech recognition 
(AVSR) and text-to-audio-visual-speech synthesis (TTAVS). 
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