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Speaker Verification via High-Level Feature Based
Phonetic-Class Pronunciation Modeling

Shi-Xiong Zhang, Man-Wai Mak, Member and Helen M. Meng, Member

Abstract— It has been shown recently that the pronunciation
characteristics of speakers can be represented by articula-
tory feature-based conditional pronunciation models (AFCPMs).
However, the pronunciation models are phoneme-dependent,
which may lead to speaker models with low discriminative power
when the amount of enrollment data is limited. This paper
proposes to mitigate this problem by grouping similar phonemes
into phonetic classes and representing background and speaker
models as phonetic-class dependent density functions. Phonemes
are grouped by (1) vector quantizing the discrete densities in the
phoneme-dependent universal background models, (2) using the
phone properties specified in the classical phoneme tree, or (3)
combining vector quantization and phone properties. Evaluations
based on 2000 NIST SRE show that this phonetic-class approach
effectively alleviates the data spareness problem encountered in
conventional AFCPM, which results in better performance when
fused with acoustic features.

Index Terms— Speaker verification, pronunciation modeling,
articulatory features, phonetic classes, NIST speaker recognition
evaluation.

I. INTRODUCTION

State-of-the-art text-independent speaker verification systems
typically extract speaker-dependent features from short-term spec-
tra of speech signals to build speaker-dependent Gaussian mixture
models (GMMs) [1]. One advantage of using short-term spectra
is that promising results can be obtained from a limited amount
of training data. However, the lack of robustness to mismatched
conditions remains a serious problem. Although approaches such
as feature transformation [2], [3], model transformation [4], and
score normalization [5] have shown promise in reducing the
mismatches, these methods have almost reached their limit in
terms of error rate reduction.

To further reduce error rate, researchers have started to inves-
tigate the possibility of using long-term, high-level features to
characterize speakers. The idea is based on the observation that
humans rely not only on the low-level acoustic information but
also on some high-level information to recognize speakers. There
is convincing evidence supporting this idea. For example, studies
in speech prosody have shown that individual speakers exhibit
substantial differences in voluntary speaking behaviors such as
lexicon, prosody, intonation, pitch range, and pronunciation [6],
[7]. Studies in linguistics have shown that speaking styles have
significant effect on pronunciation patterns [8]. Kuehn and Moll
[9] measured the velocity and displacement of the tongue during
speech production and found appreciable variation of these two
measurements among different speakers. Shaiman et al. [10] used
X-ray to capture the movement of the upper lip and jaw and
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found substantial speaker-dependent patterns in the articulator
coordination.

The use of long-term or high-level features for automatic
speaker recognition was pioneered by Doddington in 2001 [11].
This work has led to extensive investigations into high-level
features in the SuperSID project [12] in which prosodic features
[13], [14], phone features [15]–[18], and conversational features
[19] were combined and fused with acoustic features. The results
show that there is significant benefit of fusing high- and low-
level features for speaker verification. Among the high-level fea-
tures investigated, the conditional pronunciation modeling (CPM)
technique [20] that extracts multilingual phone sequences from
utterances achieves the best performance [12]. CPM aims to
model speaker-specific pronunciations by learning the relation-
ship between what has been said (phonemes) and how speech
is pronounced (phones). The rationale behind using CPM for
speaker verification is that different speakers have different ways
of pronouncing the same phonemes.

One limitation of the CPM in [20] is that it requires multi-
lingual corpora to build speaker and background models. To
overcome this limitation, Leung et al. [21] proposed using ar-
ticulatory feature (AF) streams to construct CPM and called the
resulting models AFCPM. AFs are abstract classes describing
the movement or positions of different articulators during speech
production. The idea hinges upon the linkage between the states of
articulation during speech production and the actual phones pro-
duced by speakers. In contrast to the conventional speaker recog-
nition systems in which short-term spectral characteristics are
represented by Gaussian mixture models (GMM) [1], AFCPM-
based systems use discrete probabilistic models to represent two
articulatory properties: manner and place of articulation. More
specifically, the speaker models are composed of conditional
probabilities of articulatory classes in these two properties, and
each speaker has N phoneme-dependent discrete probabilistic
models, one for each phoneme. It was found in [21] that AFCPM
can reduce the error rate of conventional CPM by 25%.

While promising results have been obtained, AFCPM requires
a large amount of speech data for training the phoneme-dependent
speaker models. Insufficient enrollment data will lead to imprecise
speaker models and poor performance. To improve the accuracy
of articulatory feature-based models, this paper proposes using
phonetic-class based AFCPM. In this method, phonemes with
similar manner and place of articulation are grouped together
based on the similarity between the AFCPM-based phoneme-
dependent universal background models. Then, a discrete density
function is computed for each phonetic class. It was found that
this phonetic-class AFCPM approach can reduce the side effect
caused by the error in the phoneme recognizer and effectively
solve the data sparseness problem encountered in conventional
AFCPM. Experimental results show that the proposed modifica-
tion leads to a significantly lower error rate as compared to the
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conventional AFCPM. Results also show that further performance
gain can be obtained by fusing the scores derived from AFCPMs
and acoustic GMMs.

This paper is organized as follows. Section II introduces
articulatory features and explains how they can be extracted
from speech signals. Section III outlines the phoneme-dependent
AFCPM and discusses the problem that may arise when the
amount of training data is limited. Section IV then proposes the
phonetic-class dependent AFCPM and three phoneme-to-phonetic
class mapping functions to address the problem of insufficient
enrollment data. Sections V and VI demonstrate the advantage
of the proposed approach via experimental evaluations using the
NIST2000 corpus. Finally, conclusions are drawn in Section VII.

II. ARTICULATORY FEATURE EXTRACTION

Articulatory features (AFs) are the representations of some
important phonological properties appeared during speech pro-
duction. More precisely, AFs are abstract classes describing the
movements or positions of different articulators during speech
production. Since AFs are closely related to the speech produc-
tion process, they are suitable for capturing the pronunciation
characteristics of speakers.

In Leung et al. [21], the manner and place of articulation
as shown in Table I were used for pronunciation modeling.
These properties describe the way and location that the air-stream
along the vocal tract is constricted by the articulators. Leung
et al. [21] adopted the AF extraction approach outlined in [22].
Specifically, the AFs were automatically determined from speech
signals using AF-based multilayer perceptrons (MLPs) [23] as
shown in Figure 1. For each articulatory property, an AF-MLP
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Fig. 1. Articulatory feature-based multilayer perceptrons (AF-MLP) for the
place of articulation. The MLP for the manner of articulation has a similar
architecture.

takes 9 consecutive frames of 26-dimensional normalized MFCCs
Xt (with consecutive frame indexes ranging from t− 4 to t + 4)
as input to determine the posterior probabilities of the output
classes at frame t. For example, given Xt at frame t, the place
MLP determines ten posterior probabilities of the output classes,
i.e., P (LP = p|Xt) where p ∈ P with P defined in Table I. Using

Articulatory
Properties

Classes Number of
Classes

Manner(M) Silence, Vowel, Stop, Fricative, Nasal,
Approximant-Lateral

6

Place(P) Silence, High, Middle, Low, Labial,
Dental, Coronal, Palatal, Velar, Glottal

10

TABLE I
ARTICULATORY PROPERTIES AND THE NUMBER OF CLASSES IN EACH

PROPERTY.

these probabilities, the manner class label lM
t ∈M and place class

label lP
t ∈ P at frame t are determined by

lM
t = arg max

m∈M
P (LM = m|Xt)

lP
t = arg max

p∈P
P (LP = p|Xt).

(1)

The two AF streams—one from the manner MLP and another
from the place MLP—for creating the conditional pronunciation
models are formed by concatenating lM

t ’s and lP
t ’s for t =

1, . . . , T , where T is the total number of frames in the utterance.
Interestingly, the AF-MLPs do not need to be very accurate

for the purpose of capturing articulatory features.1 This is mainly
because their main purpose is to capture the articulatory features
of speakers instead of classifying the articulatory properties.
Therefore, as long as the patterns of mistakes made by these
MLPs are consistent for the same speaker and different for differ-
ent speakers, they can still provide valuable speaker information
for building the pronunciation models.

III. PHONEME-DEPENDENT AFCPM

A. Phoneme-Dependent UBMs

As illustrated in Figure 3, N phoneme-dependent univer-
sal background models (UBMs) are trained from the AF and
phoneme streams of a large number of speakers2 to represent
the speaker-independent pronunciation characteristics. Each UBM
comprises the joint probabilities of the manner and place classes
conditioned on a phoneme. The training procedure begins with
aligning two AF streams obtained from the AF-MLPs and a
phoneme sequence obtained from a null-grammar recognizer [21].
The joint probabilities corresponding to a particular phoneme q

is given by

P PD
b (m, p|q)

= P PD
b (LM = m, LP = p|Phoneme = q, Background)

=
#((m, p, q) in the utterances of all background speakers)
#((∗, ∗, q) in the utterances of all background speakers)

(2)
where m ∈ M, p ∈ P, (m, p, q) denotes the condition for
which LM = m, LP = p, and Phoneme = q, ∗ represents all
possible members in that class, and #() represents the total
number of frames with phoneme labels and AF labels fulfill the
description inside the parentheses. For each phoneme, a total of
60 probabilities can be obtained (some of them could be zero).
These probabilities are the products of 6 manner classes and 10

1In our experiments, the manner and place MLPs achieve an average
accuracy of 79.49% and 67.69% on the HTIMIT corpus.

2In this work, 230 male and 309 female background speakers from NIST99
were used.
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place classes. Therefore, a system with N phonemes has 60N

probabilities in the UBMs. Eq. 2 will be used in Section IV-A to
train a mapping function that maps phonemes to phonetic classes.

B. Phoneme-Dependent Speaker Models

A speaker model can be obtained from speaker-dependent data
as follows:

P PD
s (m, p|q)

= P PD
s (LM = m, LP = p|Phoneme = q , Speaker = s)

=
#((m, p, q) in the utterances of speaker s)

#((∗, ∗, q) in the utterances of speakers)
.

(3)

However, the accuracy of speaker models obtained by Eq. 3 is lim-
ited by the amount of training data available. For some phonemes
(e.g., /th/, /sh/, and /v/), the number of occurrences is too small for
an accurate estimation of the joint probabilities. To overcome this
data-sparseness problem, speaker models can be adapted from the
UBMs. Specifically, given the background model corresponding
to phoneme q , the joint probabilities P̂ PD

s (m, p|q) for speaker s

are given by

P̂ PD
s (m, p|q) = βqP PD

s (m, p|q) + (1− βq)P
PD
b (m, p|q)

where βq ∈ [0, 1] is a phoneme-dependent adaptation coefficient
controlling the contribution of the unadapted speaker model (Eq.
3) and the background model (Eq. 2) on the adapted model.
Similar to MAP adaptation of GMM-based systems [1], βq can
be obtained by

βq =
#((∗, ∗, q) in the utterances of speaker s)

#((∗, ∗, q) in the utterances of speaker s) + rβ

,

where rβ is a fixed relevance factor common to all phonemes and
speakers. The purpose of rβ is to control the dependence of the
adapted model on speaker’s data. If the number of occurrences of
(∗, ∗, q) is much less than rβ , then βq will be very close to 0 and
the estimation of the new model is less dependent on speaker’s
data. On the contrary, if the number of occurrences of (∗, ∗, q) is
significantly greater than rβ , then βq will be very close to 1 and
the the adapted model will become more dependent on speaker’s
data.

C. Problem of Phoneme-Dependent Speaker Models

While it has been demonstrated that phoneme-dependent
AFCPM can achieve reasonably good performance [21], it has
its own limitation. Since the method is phoneme based, it builds
phoneme-dependent models regardless of the fact that some
phonemes are very similar in terms of articulatory properties. This
causes some of the phoneme-based background models to be al-
most identical. Worse yet, because the speaker models are adapted
from the background models, for those “similar” phonemes that
rarely occur in the speakers’ utterances, the corresponding speak-
ers models will be almost identical to the background models,
making the speaker models fail to discriminate the speakers. This
situation is exemplified in Figure 2 where the density functions
of background and speaker models are illustrated as gray-scale
images. Evidently, there is substantial similarity between the two
background models (Figures 2(a) and 2(b)). Comparisons between
Figures 2(c) and 2(d) and between Figures 2(e) and 2(f) also
reveal that the models of speaker 1018 are very similar to those
of speaker 3823.
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IV. PHONETIC-CLASS DEPENDENT AFCPM

The limitation of phoneme-dependent AFCPM mentioned ear-
lier can be overcome by grouping the similar AFCPMs into
a model set. In other words, each density function can be
conditioned on a phonetic-class instead of a single phoneme.
Figures 3 and 4 illustrates the training and verification procedures
of the phonetic-class dependant AFCPMs, respectively.

A. Mapping Functions

The success of the proposed approach relies on an effective
mapping function that groups similar phonemes into a phonetic
class. There are several ways of grouping the phonemes: (1)
according to the similarity (Euclidean distance) between the
AFCPMs, (2) according to the phoneme properties as depicted
in the classical phoneme tree [24], and (3) combination of (1)
and (2).

1) Method 1: Grouping based on Euclidean distance: The
phoneme-dependent UBMs, P PD

b (m, p|q), are vectorized to N 60-
dimensional vectors called AFCPM vectors (see Figure 3):

aq =




P PD
b (LM = ‘Vowel’, LP = ‘High’|Phoneme = q)

P PD
b (LM = ‘Vowel’, LP = ‘Low’|Phoneme = q)

· · ·
P PD

b (LM = ‘Nasal’, LP = ‘Glottal’|Phoneme = q)




where q ∈ {Phoneme 1, . . . , Phoneme N}. Then, K-means clus-
tering or VQ can be applied to cluster the N AFCPM vectors
into G classes. The mapping from a specific phoneme to its
corresponding phonetic class index c is defined as a mapping
function:

c = fG
VQ(q), c ∈ {1, 2, . . . , G}. (4)

This function will be used to train the phonetic-class UBMs and
speaker models, which is to be detailed in Section IV-B.

2) Method 2: Grouping based on phoneme properties: Because
the phoneme grouping in classical phoneme tree [24] is partly
based on articulatory properties, we can also use the tree to
determine the mapping between phonemes and phonetic classes.
This results in the mapping function

c = fG
P (q), c ∈ {1, 2, . . . , G}. (5)

Table II shows the mapping between the phonemes and phonetic
classes obtained from the classical phoneme tree [24] for three
different values of G.
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(c) to (f): Phoneme-dependent speaker models of two speakers in NIST00 adapted from (a) and (b). d represents the Euclidean distance between the models
pointed to by arrows. The 60 discrete probabilities corresponding to the combinations of the 6 manner and 10 place classes are nonlinearly quantized to 256
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3) Method 3: Grouping based on Euclidean distance and
phoneme properties: Note that Method 1 and Method 2 group
phonemes according to different criteria. Specifically, the former
is based on the articulatory properties, whereas the latter is
based on continuant/noncontinuant properties of phonemes. For
example, phonemes are grouped in part by the vertical positions
(high, middle, and low) of the tongue via the place of articulation
in Method 1, whereas they are grouped by the horizontal tongue
positions (front, central, and back) in Method 2. Since these two
ways of phoneme classification may complement each other, we
propose a hybrid method based on the classical phoneme tree and
Euclidean distance between AFCPMs to build the third mapping

function:

c = fG
P+VQ(q), c ∈ {1, 2, . . . , G}. (6)

In this method, phonemes are grouped firstly by using phoneme
properties. The phonemes in the same group are then further
divided into subgroups by VQ. For example, all phonemes
belonging to ‘Vowels’ in Table II are grouped together and then
divided into 3 subgroups by using VQ. For the groups with a very
small number of phonemes, such as ‘Affricates’, no clustering
will be applied to the corresponding AFCPM vectors. A similar
procedure is also applied to the phoneme groups with members
that seldom appear in the training utterances. Table III shows the
mapping function fG

P+VQ(q) used in this work.
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Class label for phoneme qPhoneme q
G=8 G=11 G=13

Front Vowels:  iy, ih, ey, eh, ae 1 1
Mid Vowels:  er, ax, ah 2 2
Back Vowels: uw, uh, ow, ao, aa 

1

3 3
Voiced Fricatives:  v, dh, z, zh 4 4
Unvoiced Fricatives:  f, th, s, sh 

2
5 5

Whisper:  hh 3 6 6
Affricates:  jh, ch 4 7 7
Diphthongs:  ay, aw, oy 5 8 8
Liquids:  r, l, el 9
Glides:  w, y 

6 9
10

Voiced Consonants:  b, d, g 11
Unvoiced Consonants:  p, t, k 

7 10
12

Nasals:  m, en, n, ng  8 11 13

TABLE II
THE MAPPING BETWEEN THE PHONEMES AND PHONETIC CLASSES BASED

ON THE CLASSICAL PHONEME TREE FOR THREE DIFFERENT VALUES OF G.
SEE APPENDIX I FOR THE DETAILED RELATIONSHIP BETWEEN THE

PHONEMES AND THE PHONETIC CLASSES.

Phonetic Class c Phoneme q Obtained by
1 iy, uw, ih P+VQ
2 er, uh, ax, ey P+VQ
3 eh, ah, ow, ae, ao, aa P+VQ
4 v, f, th, dh P+VQ
5 z, zh, s, sh P+VQ
6 hh P
7 jh, ch P
8 ay, aw, oy P
9 r, l, el, w, y P
10 b, d, p, t P+VQ
11 g, k P+VQ
12 m, en, n, ng P

TABLE III
THE RELATIONSHIP BETWEEN PHONEMES AND PHONETIC CLASSES IN THE

MAPPING FUNCTION fG
P+VQ(q), I.E., EQ. 6. VQ: VECTOR QUANTIZATION;

P: PHONEME PROPERTIES. PHONEMES ARE FIRSTLY DIVIDED INTO 8
GROUPS ACCORDING TO THE PHONEME PROPERTIES (SEE TABLE VI IN

APPENDIX I). THEN, SOME OF THESE GROUPS ARE FURTHER DIVIDED

INTO SUBGROUPS VIA VQ.

B. Phonetic-Class Dependent UBMs

Given the mapping functions, phonetic-class dependent UBMs
can be obtained as follows. For a particular phonetic class c,
the joint probabilities of the phonetic-class dependent UBMs are
determined by:

P CD
b (m, p|c)

= P CD
b (LM = m, LP = p|PhoneClass = c, Background)

=
#((m, p, c)in the untterances of all background speaker s)

#((∗, ∗, c)in the untterances of all background speaker s)
(7)

where m ∈ M, p ∈ P , (m, p, c) denotes the condition for which
LM = m, LP = p, and PhoneClass = c.

Note that the accuracy of the mapping functions and hence the
phonetic-class dependent UBMs depends on the amount of data in

individual phonetic classes. Therefore, it is necessary to weight
the models’ density functions according to the amount of data
available for training the mapping functions. Here, we propose to
compute the weighting coefficients as follows:

wc =

#
(
(∗, ∗, c) in the untterances of all background speakers

)

#
(
(∗, ∗, c) in the untterances of all background speakers

)
+ rw

G∑

c=1

#((∗, ∗, c) in the untterances of all background speakers)
# ((∗, ∗, c) in the untterances of all background speakers) + rw

(8)
where c ∈ {1, . . . , G} and rw is a relevance factor. These coef-
ficients will be used for weighting the phonetic-class dependent
speaker models (see Section IV-C below).

C. Phonetic-Class Dependent Speaker Models

A phonetic-class speaker model can be obtained from speaker-
dependent data as follows (see Figure 5):

P CD
s (m, p|c)

= P CD
s (LM = m, LP = p|PhoneClass = c, Speaker = s)

=
#((m, p, c) in the utterances of speaker s)

#((∗, ∗, c) in the utterances of speaker s)
.

(9)

Similar to the phoneme-dependent case, MAP adaptation is ap-
plied to obtain the final speaker model:3

P̂ CD
s (m, p|c) = βcwcP

CD
s (m, p|c) + (1− βc)wcP

CD
b (m, p|c)

(10)
where, βc ∈ [0, 1] is a phonetic class-dependent adaptation
coefficient controlling the contribution of the speaker data and
the background models (Eq. 7) on the MAP-adapted model. It is
obtained by:

βc =
#((∗, ∗, c) in the utterances of speaker s)

#((∗, ∗, c) in the utterances of speaker s) + rβ

(11)

where rβ is a fixed relevance factor common to all phonetic
classes and speakers. Its purpose is to control the dependence
of the adapted model on speaker’s data.4

For each speaker, the accuracy of his/her phonetic-class models
depends on the amount of training data for estimating the mapping
functions. Therefore, it is intuitive to weight the density functions
by the weighting coefficients wc in Eq. 10. Alternatively, we may
also train an MLP to optimally weight the phonetic classes, as in
[25].

Figure 6 shows the background model for phonetic class c = 3

of which phonemes /ah/ and /ow/ in Figure 2 are members.
Also shown are the phonetic-class speaker models of speakers
1018 and 3823 in NIST00. Figures 6(b) and 6(c) show that the
two phonetic-class speaker models are more distinctive (therefore
more discriminative) than the phoneme-dependent speaker models
shown in Fig. 2. The Euclidean distance d between the phonetic-
class speaker models (Figures 6(b) and 6(c)) is also 1.3 times
that of the phoneme-dependent models (Figures 2(c)–(f)): 11.08
vs. 8.34 and 7.36. Moreover, the distances between the speaker

3Although strictly speaking P̂ CD
s (m, p|c) is not probability because of

the weighting factor wc, we use the symbol P̂ here for readability and
consistency.

4Our results suggest that the system performance is not sensitive to the
relevance factor, see Section VI-C.
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Fig. 5. The procedure of training the phonetic-class dependent speaker models. fG(q) ∈ {fG
VQ(q), fG

P (q), fG
P+VQ(q)}.

models and the background models are also larger in the phonetic-
class case, primarily because of more data are available for
training the phonetic-class speaker models. All of these results
suggest that phonetic-class dependent speaker models are more
discriminative.

Distribution corresponding to phoneme ah of speaker female.bkg.count.PhnCla

Place  class, p

M
a

n
n

e
r 

cl
a

ss
, 

m

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

Distribution corresponding to phoneme ah of speaker 1018.spk.count.PhnCla

Place  class, p

M
a

n
n

e
r 

cl
a

s
s

, 
m

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

      

Distribution corresponding to phoneme ah of speaker 3823.spk.count.PhnCla

Place  class, p

M
a

n
n

e
r 

cl
a

s
s

, 
m

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

CD ( , | =3)bP m p c

Speaker 3823
CD

( , | =3)sP m p cSpeaker1018
CD

( , | =3)sP m p c

M
an

n
er

 c
la

ss
 ,

 m
 

M
an

n
er

 c
la

ss
 ,

 m
 

Place class, p 

(b)

Place class, p 

(c)

M
an

n
er

 c
la

ss
 ,

 m
 

(e) (f)

Place class, p

(a)

d=11.08 

d=8.52 d=9.84

Fig. 6. Phonetic-class dependent models in which the phonemes /ah/ and
/ow/ are members of the phonetic class (c = 3 in Table III). The speaker
models were obtained from the training utterances of speakers 1018 and 3823
in NIST00, using the mapping function fG

P+VQ(q). d represents the Euclidean
distance between the models pointed to by arrows. Refer to Figure 2 for the
manner and place class labels.

D. Scoring Method

Following the scoring method in [21], we define the verification
score of a test utterance X = {X1, . . . , Xt, . . . , XT } as:

SCD-AFCPM(X) =

T∑

t=1

[
log p̂CD

s (Xt)− log pCD
b (Xt)

]
(12)

where the speaker models (Eq. 10) and background models (Eq. 7)
are used to compute the scores

p̂CD
s (Xt) = P̂ CD

s (lM
t , lP

t |ct)

= P̂ CD
s (LM = lM

t , LP = lP
t |PhoneClass = ct, Speaker = s)

(13)

and

pCD
b (Xt) = P CD

b (lM
t , lP

t |ct)

= P CD
b (LM = lM

t , LP = lP
t |PhoneClass = ct, Background),

(14)
where ct = fG(qt) is the phonetic class of frame t.

For the acoustic GMM system, we applied feature transforma-
tion [26] and short-time Gaussianization [27] to reduce the effect
of channel distortion. Then, acoustic scores SGMM were computed
based on GMM-UBM framework [1]:

SGMM(X) =

T∑

t=1

[log p(Xt|Λs)− log p(Xt|Λb)] (15)

where Λs and Λb are the acoustic GMM of speaker s and the
acoustic UBM, respectively.

V. EXPERIMENTS

A. Speech Corpora and Speech Features

NIST99 [28], NIST00 [29], SPIDRE [30], and HTIMIT [31]
were used in the experiments. NIST99 was used for creating
the background models and mapping functions, and NIST00 was
used for creating speaker models and for performance evaluation.
HTIMIT and SPIDRE were used for training the AF-MLPs and
the null-grammar phone recognizer, respectively.

NIST00 contains landline telephone speech extracted from the
SwitchBoard-II, Phase 1 and Phase 4 Corpus. The evaluation set
comprises 457 male and 546 female target speakers. For each
speaker, approximately 2 minutes of speech is available for enroll-
ment, and after silence removal, approximately 1 minute of speech
remains. There are 3,026 female and 3,026 male verification
utterances. Each verification utterance has length not exceeding
60 seconds and is evaluated against 11 hypothesized speakers of
the same sex as the speaker of the verification utterance. This
amounts to 6,096 speaker trials and 60,476 impostor attempts.

The acoustic features for training the HMMs and speaker
models are slightly different. For the HMMs, acoustic vectors
of 39 dimensions—each comprising of 12 Mel-frequency cepstral
coefficients (MFCCs) [32], the normalized energy, and their first-
and second-order derivatives—were used. For the MFCC-based
and AFCPM-based speaker models, 19-dimensional MFCCs and
their first-order derivatives were computed every 10ms using a
Hamming window of 25ms. The MFCCs and delta MFCCs were
concatenated to form 38-dimensional feature vectors. Cepstral
mean subtraction (CMS), fast blind stochastic features transfor-
mation (fBSFT) [26], [3] and short-time Gaussianization (STG)
[27] were applied to the MFCCs to remove channel effects.
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The feature vectors for the AF-MLPs comprise 12-dimensional
MFCCs and energy plus their derivatives. These vectors were ex-
tracted from speech signals at 100Hz using a Hamming windows
of 25ms.

B. Training and Evaluation Procedures

3,794 utterances selected from HTIMIT were used to train the
manner and place MLPs, and utterances from SPIDRE were used
to train a null-grammar phoneme recognizer with 46 context-
independent phoneme models (HMMs with 3 states, 16 mixtures
per state).

The training part of NIST99 was used to create gender-
dependent acoustic (MFCC-based) background models with 1024
mixtures. The same set of data was also used to build phoneme-
dependent and phonetic-class dependent AF-based UBMs, which
were subsequently used for obtaining the gender-dependent map-
ping functions based on the three methods mentioned in Sec-
tion IV-A. Then, for each target speaker in NIST00, his/her
speaker models were created using Eq. 10 and the 2-minute
enrollment speech based on the mapping functions and the
phonetic-class dependent UBMs.

We followed the evaluation protocol of NIST00. To ensure
statistical significance of our results, we also computed the
p-values [33] between the error rates obtained by phoneme-
dependent AFCPM and phonetic-class dependent AFCPM.

C. Fusion of MFCC- and AFCPM-Based Systems

Research has shown that features and classifiers of different
types may complement each other, and thus improvement in
classification performance can be obtained by fusing them [12],
[34]. The phonetic-class AFCPMs and the acoustic GMMs char-
acterize speakers at two different levels. The former represents the
pronunciation behaviors of individual speakers, whereas the latter
focuses on their vocal tract characteristics. Therefore, fusing their
scores is expected to improve speaker verification performance.
In this work, the scores from AFCPMs and acoustic GMMs were
linearly combined to obtain the fused scores.

VI. RESULTS AND DISCUSSION

A. Comparing Different Mapping Functions

Table IV shows the equal error rates (EERs) obtained by
phoneme-dependent AFCPM (PD-AFCPM) and phonetic-class
dependent AFCPM (CD-AFCPM) using the three phoneme-to-
phonetic class mapping methods. It shows that the mapping
function fG

P+VQ(q) achieves the lowest error rates in CD-AFCPM.
This result suggests that phone properties and Euclidean distance
between AF models (VQ) play a complementary role. We conjec-
ture that the phone properties constrain the possible partitioning of
phonemes and VQ provides a fine division within the phoneme
groups where phone properties alone cannot entirely represent
the articulatory properties of speech. In particular, for some large
phoneme groups (e.g., vowels), it may be better to partition the
groups into subgroups based on the distribution of the AF models
than to divide the groups based purely on their phone properties.
Completely relying on the distribution of AF models, however, is
inappropriate because some constraints are essential for forming
the large phoneme groups.

EER(%)

Female  Male 
Phoneme-to-Phonetic 

Class Mapping Method Equally 

weighted 

Class 

weighted 

Equally 

weighted 

Class 

weighted 

8 26.72 26.42 23.85 23.74

10 25.22 24.93 23.70 23.65
VQ

VQ
( )G

c f q
12 25.64 25.36 23.73 23.71

8 25.04 24.85 24.32 24.11

11 24.13 23.92 23.31 23.24
Phone Properties 

P ( )G
c f q

13 24.48 24.25 23.09 23.10

23.63 23.46 22.89 22.83

C
D

-A
F

C
P

M

P+VQ ( )G
c f q

12
Mix gender: 23.76

26.35 24.66 
PD-AFCPM

Mix gender: 25.91

GMM (fBSFT) Mix gender: 16.11

PD-AFCPM + GMM (fBSFT) Mix gender: 15.91

CD-AFCPM + GMM (fBSFT) Mix gender: 14.87

GMM (STG+fBSFT) Mix gender: 13.81

PD-AFCPM + GMM (STG+fBSFT) Mix gender: 13.71

CD-AFCPM + GMM (STG+fBSFT) Mix gender: 13.16

Phone Properties+VQ

No. of 

Classes

G

TABLE IV
EQUAL ERROR RATES (EERS) OBTAINED BY ACOUSTIC GMM,

PHONEME-DEPENDENT AFCPM (PD-AFCPM) AND PHONETIC-CLASS

DEPENDENT AFCPM (CD-AFCPM) USING THREE DIFFERENT

PHONEME-TO-PHONETIC CLASS MAPPING METHODS. “EQUALLY

WEIGHTED” MEANS THAT wc = 1 IN EQ. 10 FOR ALL c. NOTE THAT THE

FUSION OF PHONETIC-CLASS AFCPM AND GMM IS BASED ON THE

PHONETIC-CLASS AFCPM THAT USES THE MAPPING FUNCTION fG
P+VQ .

THE p-VALUES BETWEEN THE PD-AFCPM AND ALL OF THE CD-AFCPM
AND THE p-VALUE BETWEEN PD-AFCPM+GMM AND

CD-AFCPM+GMM ARE LESS THAN 0.0001.

B. Comparing PD-AFCPM and CD-AFCPM

Table IV also shows that phonetic-class AFCPM, regardless of
the type of mapping functions, is superior to phoneme-dependent
AFCPM. This confirms our earlier argument that when the amount
of enrollment data is limited, we had better to enrich the amount
of training data per model by grouping similar phonemes together.
We advocate phonetic-class dependent AFCPMs (especially the
one that uses mapping function c = fG

P+VQ(q)) for two reasons.
First, unlike phoneme-dependent AFCPM where training data
are divided into 46 classes, data are divided into a maximum
of 13 classes only in phonetic-class dependent AFCPM. As a
result, a lot more data are available for training each phonetic-
class dependent AFCPM, which leads to more reliable speaker
models under limited enrollment data. Second, because of the
small number of classes, phonetic-class dependent AFCPM is less
sensitive to the accuracy of the phoneme recognizer. In phoneme-
dependent AFCPM, acoustically confusable phonemes may cause
the phoneme recognizer to make mistakes, leading to erroneous
scores. However, some of the confusable phonemes may be
mapped to the same phonetic class in the case of phonetic-class
dependent AFCPM, which effectively alleviate the effect caused
by phoneme recognition errors. There seems to be a tradeoff
between the number of models per speaker and the representation
ability of the models. In particular, a large number of models (e.g.,
46 in PD-AFCPM) could lead to inferior performance, as evident
in Table IV.
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C. Choice of Relevance Factors

Both the phoneme-dependent and phonetic-class dependent
AFCPM use MAP adaptation. The discriminative power of the
resulting speaker models depends on the amount of adaptation,
which in turn depends on the relevance factors in the adaptation
equations. To investigate the sensitivity of the phonetic-class
dependent AFCPM to the relevance factors, we randomly selected
half of the data from NIST00 and varied the relevance factor rβ in
Eq. 11. The EER performance is shown in Table V. Clearly, the

rβ 180 280 380 480 580
EER (%) 23.78 23.68 23.46 23.55 23.75

TABLE V
THE EFFECT OF VARYING THE RELEVANCE FACTOR rβ IN EQ. 11 ON THE

SYSTEM PERFORMANCE.

performance is very stable across a wide range of rβ , suggesting
that the relevance factor is very robust. Nevertheless, the relevance
factor should not be too large or too small; otherwise, the
speaker models will either be identical to the background models
or depend purely on the adaptation data. Both scenarios are
undesirable. In this work, we set rβ to 380 in an attempt to avoid
these extreme scenarios.

D. Fusion of Low- and High-Level Features

Table IV shows that the UBM-GMM system that uses acoustic
features as inputs achieves a significantly lower error rate as
compared to the system that uses high-level features. The infe-
riority of high-level features is primarily due to the short veri-
fication utterances (15–45 seconds). However, fusing the scores
obtained from these systems can lower the error rates further.
The table also shows that fusion of phonetic-class AFCPM and
GMM outperforms the fusion of phoneme-dependent AFCPM and
GMM. The lowest error rate is achieved by fusing CD-AFCPM
and GMM where the low-level features have been transformed
by short-time Gaussianization (STG) and blind stochastic feature
transformation (BSFT). Note that the p-values between the PD-
AFCPM and all of the CD-AFCPMs are less than 0.0001, so as
the p-value between PD-AFCPM and CD-AFCPM in the fusion
cases. This suggests that fusion of low- and high-level features can
bring significant performance gain, although the gain diminishes
progressively when the low-level features become more robust.
Making the low-level features robust, however, does not come
without a price. It has been shown recently that using STG and
fast BSFT as feature preprocessors requires 52 seconds to process
a 53-second utterance on a Pentium IV 3.2GHz CPU, whereas
processing the same utterance by the less powerful cepstral mean
subtraction takes only 0.02 seconds [3].

The detection error tradeoff (DET) curves [35] corresponding to
Table IV are shown in Figure 7. Evidently, the fusion of phonetic-
class AFCPM and GMM achieves the best performance across a
wide range of decision threshold. It is obvious that the high-level
information captured by the phonetic-class dependent AFCPMs
complements the short-term spectral information very well.

VII. CONCLUDING REMARKS

Phoneme-based AFCPM represents the pronunciation charac-
teristics of speakers by building one discrete density function for
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(EER=14.87%)

GMM (fBSFT)
(EER=16.11%)
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(EER=15.91%)
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Fig. 7. Detection error tradeoff (DET) performance of phonetic-class de-
pendent AFCPM (CD-AFCPM), phoneme-dependent AFCPM (PD-AFCPM),
GMM (with fBSFT and STG applied), and their fusions. All curves are based
on mix-gender scores.

each phoneme, which requires a large amount of training data
to achieve high verification accuracy. Based on the observation
that the AFCPM of some phonemes are very similar, this paper
proposes a speaker verification system that uses phonetic class-
based articulatory pronunciation models. Specifically, speaker
models are represented by conditional probabilities of articula-
tions given phonetic classes instead of phonemes. Three mapping
functions that specify the relationship between phonemes and
phonetic classes are proposed. Results show that among the three
mapping functions, the one that combines the classical phoneme
tree and Euclidean distance between AFCPMs achieves the best
performance. Experimental results also show that phonetic-classes
AFCPM achieves a significantly lower error rate as compared to
conventional AFCPM.

APPENDIX I
PHONEMES AND PHONETIC CLASSES

Table VI shows the relationship between phonemes and pho-
netic classes obtained from the classical phoneme tree for three
different number of classes.
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