
Planning for Marketing Campaigns

Qiang Yang and Hong Cheng

Department of Computer Science
Hong Kong University of Science and Technology

Clearwater Bay, Kowloon, Hong Kong, China
(qyang, csch)@cs.ust.hk

Abstract
In business marketing, corporations and institutions are
interested in executing a sequence of marketing actions to
affect a group of customers. For example, a financial
institution may derive marketing strategies for turning their
reluctant customers into active ones and a
telecommunications company may plan actions to stop their
valuable customers from leaving. These marketing plans
are aimed at converting groups of customers from an
undesirable class to a desirable one. In this paper, we
formulate this group marketing-plan generation problem as
a planning problem. We design a novel search algorithm
to find a cost-effective and highly probable plan for
switching a group of customers from their initial states to
some more desirable final states. We explore the tradeoff
among time, space and quality of computation in this
planning framework. We demonstrate the effectiveness of
the methods through empirical results.

Introduction

Marketing campaign planning in business marketing can be
considered as a process of planning in which the objective
is to convert groups of customers from one class to another,
more profitable class. In business marketing literature
(Dibb et. al 1996), planning for marketing campaigns
corresponds to developing action plans by taking into
account the customer segmentation, marketing objectives
and budgetary constraints into consideration. In the
marketing practice today, it is a common practice to design
action plans by a human experts through focus group
studies (Bank Marketing Association 1989). The
planning process itself is both long and laborious.
 Marketing planning can be divided into two types.
Direct marketing or one-to-one marketing plans are aimed
at generating plans to target individual customers. This is
an expensive process that is only applied to valuable
customers. Direct marketing usually assumes that the next
action to be performed can be decided based on
observation of a customer’s current state. In this paper we
consider a second kind of marketing plans called
segmentation-marketing plans. These plans are aimed at

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

marketing to multiple groups of customers rather than a
single customer, where a sequence of actions is executed
on a segment of chosen customers until they are completed.
 Essentially, the planning process can be considered as
building a statistical model based on past data and using the
model to formulate a plan to be executed on a group of
customers. These marketing actions can hardly be
formulated as traditional classical planning representations.
Often marketing plans are expected to be effective on only
a subset of the customers in the target group, and the
planning is currently done by hand through various
marketing studies such as focus groups. A marketing plan
thus generated will be applied to a chosen subset of
customers to be effective. For example, a cell-phone
company may decide to reduce the monthly fee for a
subgroup of its customers who are both highly valuable and
likely to leave the company for its competitors.
 To illustrate, we consider the following scenario.
Suppose that a company is interested in marketing to a
group of 100,000 customers in the financial market to
promote a special loan signup. We start with a customer-
loan database with historical customer information on past
loan-marketing results in Table 1. Suppose that we are
interested in building a 3-step plan to market to the selected
group of customers in the new customer list. There are
many candidate plans to consider in order to move as many
customers as possible from non-signup status to a signup
one. The signup status corresponds to a positive class that
we would like to move the customers to, and the non-
signing up status corresponds to the initial state of our
customers. Our plan will choose not only low-cost actions,
but also highly successful actions from the past experience.
For example, a candidate plan might be:

Step 1: Send mails;

Step 2: Call home #;

Step 3: Offer low interest rate
 This example also introduced a number of interesting
aspects for the planning problem. First, not all people in the
group of 100,000 customers should be considered as
candidates for the conversion. Some people should not be
considered as part of marketing campaign because they are
too costly or nearly impossible to convert. To identify a
group of applicable customers, certain data mining

algorithms for customer segmentation can be applied.
Second, the group marketing problem is to use the same
plan for different customers in the intended customer group,
instead of a different action plan for each different
customer. This makes the group marketing different from
the direct-marketing problem that some authors have
considered in the data mining literature (Domingos and
Richardson 2001; Pednault et. al 2002; Ling and Li 1998;
Yang and Cheng 2002). For group marketing, we don’ t
have the luxury of observing intermediate states during a
plan execution in order to decide what to do next. Instead,
we must build an N-step plan ahead of time, and evaluate
the plan according to cross-validation from the historical
records. Third, for the customers in the group to be
marketed to, there are potentially many possible actions
that we can provide. Each action comes with an inherent
cost associated with it. In addition, an action is not
guaranteed to produce its intended result. For example, it
may be more costly to call a customer at his home than to
send mail. However, sending a mail to a customer may
have less effect than calling a customer at home. Neither
mailing nor calling can guarantee that all customers
contacted will be converted to signup status afterwards.
Additionally, calling a customer may have an adverse effect
of annoying the customer more than necessary. Finally, it
is difficult to formulate this problem as a classical planning
problem, because the preconditions and effects of actions
are only implicit in the database, rather than given ahead of
time by “experts” in a crisp logical formulation.
 We formulate the above problem as a probabilistic
planning problem, where the key issue is to look for good
plans for converting customer groups. Our approach is to
first identify a state space and assign the potential
customers to initial states. We classify the customer states
into groups belonging to desirable or undesirable classes.
Our objective becomes one to convert customers from
undesirable class to desirable one. We propose an
algorithm called MPlan as a solution to this planning
problem using the historical database as an AND-OR tree
search problem. The resulting plan will provide a basis
for the final marketing plans. Our aim is to choose high-
utility actions to be included in our plan where the notion
of utility is introduced to increase the probability of success
while reducing costs.
 This research deviates from the traditional planning
applications and formulation of classical planning in
several aspects. Compared to classical planning, in group
marketing we cannot guarantee with certainty the result of
actions; each action may result in an initial group to be split
into several subgroups, each landing in a potential state
following a probability distribution. This distribution can
be learned from historical plan traces obtained before. A
second difference from classical planning is that there is no
easy way to formulate the actions in terms of relations and
logic formulas needed fro preconditions and effects. The
only observable fact before and after an action’s execution
is from the historical databases, which records the customer
status in various attributes. By applying a statistical

classifier to the attributes, we could learn a customer’s
potential standing in terms of desirable versus undesirable
classes.
 The problem is also different from the traditional MDP
approach (Sutton and Barto 1998) to solving the
probabilistic planning problem. In MDP, it is assumed
that at all time during a plan’s execution, the intermediate
states can be known either completely or partially. The
problem is that of finding a policy in which to direct an
agent’s action no matter where the agent is observed to
land. The MDP formulation is more suitable for direct
marketing (Ling and Li 1998), which is geared towards
finding a plan for each individual such that an action is
chosen based on the agent’s observed resulting state.
However, in group marketing, it is often the case that we
have no such opportunity to obtain the intermediate states
for a group of customers in the middle of plan execution.
Instead, we have to find a single plan for a group of similar
customers and to execute this plan to completion. Thus,
this aspect where a sequence of actions is built and
executed is more akin to classical planning.
 The problem is also different from the probabilistic
planning framework of (Draper et. al 1994), which
considered modeling each action in a probabilistic version
of the pre-conditions and post-conditions. The problem
there is still to consider how to build a plan from a single
initial state to a single goal state. In contrast, in our
problem the actions’ logical representations are not
available; all that we can observe are action labels and their
association with states. In addition, we consider customer
groups that are scattered into multiple initial states. The
goal state (Keeney and Raiffa 1976) is not clearly definable
in our case either, because the positive class in general
defines the potential goal state sets.
 In data mining area, a related area is cost-sensitive
learning and decision making (Domingos 1999; Elkan,
2001) in the machine learning community. However,
significant differences remain. Cost-sensitive methods try
to minimize the cost of a single decision. However, in
many applications, sequences of decisions in the form of
plans are needed.

Marketing-Planning Problem Formulation

We now consider how to formulate the marketing problem
more formally as a planning problem. We first consider
how to build a state space from a given set of customer
records.
 As in any machine learning and data mining schemes,
the input customer records consist of a set of attributes for
each customer, along with a class attribute that describes
the customer status. A customer’s attribute may be his
age, income, gender, credit with the bank, and so on. The
class attribute may be “Applied” , which is a Boolean
indicating whether the customer has applied and is
approved for loan. As with any real customer databases,
the number of attributes may be extremely large; for the
KDDCUP-98 data (Blake and Merz 1998), there are a total

of 481 attributes to describe each customer. Of the many
attributes, some may be removed when constructing a state.
For convenience, we refer to this database table as the
Customer Table. Table 1 is an example of Customer Table.

Table 1. An example customer-loan database. The last
attribute is the class attribute.

Table 2. An example Marketing-log database.

S# A# S# A# S# A# S#
S1 A1 S2 A2 S3 A3 S4
S0 A0 S1 A1 S2 A4 S5
S2 A2 S3 A4 S4 A4 S7
… … … … … … …
… … … … … … …
S0 A0 S3 A4 S4 A4 S7

 A second source of input is the previous marketing-
record database. This is a database that describes how the
previous marketing actions have changed each customer’s
attributes as a result of the actions’ execution. For
example, after a customer receives a promotional mail, the
customer’s response to the marketing action is obtained and
recorded. As a result of the mailing, the action count for
the customer in this marketing campaign is incremented by
one, and the customer may have decided to respond by
filling out a general information form and mailing it back to
the bank. The status of the customer at any instant of time
is referred to as a state, and state may change as a result of
executing an action. Thus, the historical marketing-record
database consists of state-action sequences, one for each
participating customer. This sequence database will serve
as the training data for our planner. For convenience, this
historical marketing database table is referred to as the
Marketing-log Table. Table 2 is an example of Marketing-
log Table.
 Given the Customer table and the Marketing-log table,
our first task is to formulate the problem as a planning
problem. In particular, we wish to find a method to map
the customer records in the customer table into states using
a statistical classifier. This task in itself is not trivial
because it maps a large attribute space into a more concise
space. The problem is more complicated when there are
missing values in the database. In this paper, we will not
delve into this issue, because it involves the issues of data
cleaning and data mining (Han and Chamber 1998).

 After the state space is obtained, we will use a second
classifier to classify the states into either desirable or
undesirable states based on the training data provided in the
Customer table. Classification algorithms such as decision
tree or Naïve Bayes are possible choices as long as the
classification error rate is low enough.
 Next, the state-action sequences in the Marketing-log
table will be used for obtaining action definitions in a state
space, such that each action is represented as a probabilistic
mapping from a state to a set of states. To make the
representation more realistic, we will also consider the cost
of executing each action.
 To summarize, from the two tables we can obtain the
following information:
• jis srf =)(maps a customer record ir to a state

js . This function is known as the customer-state mapping
function;
•)(sp c is a probability function that returns the
probability that state s is in a desirable class. We call
this classifier the state-classification function;
•),|(jik assp returns the transition probability that,
after executing an action ja in state is , one ends up in
state ks .
 Once the customer records are converted to states and
the state transition through actions are learned from the
Marketing-log table, the state space can be formulated as
an AND-OR graph. In this graph, there are two types of
nodes. A state node represents a state. From each state
node, an action links the state node to an outcome node,
which represents the outcome of performing the action
from the state. An outcome node then splits into multiple
state nodes according to the probability distribution given
by the),|(jik assp function. This graph essentially is
an AND-OR graph, where each state is an OR node, with
the actions that can be performed on the node forming the
OR-branches. Each outcome node is an AND node,
where the different arcs connecting the outcome node to the
state nodes are the AND edges. A figure illustrating the
scenario is shown in Figure 1.
 Given a set of customers for whom the marketing plan
is designed, we use a customer-state mapping function to
convert the customer records to a set of initial states which
these customers belong to initially in the state space. Note
that because of the potentially large number of customers
involved, there could be a set of initial states corresponding
to the customers, instead of a single initial state as in
classical planning. These initial states provide an initial
segmentation of the customers.
 In this setting, we can give a definition of the
marketing-plan planning problem. Given a set of initial
customers, our goal is to find a sequence of actions for each
initial state that converts as many of the customers in that
state from the undesirable class to the desirable one while
incurring minimal costs. The plan must satisfy some
constraints, in one of the following forms:
• length constraint: the number of actions must be at most
N;

Customer Salar
y

Cars Mortga
ge

Loan
Signup?

John 80K 3 None Y
Mary 40K 1 300K Y

… … … … …
Steve 40K 1 None N

• probability constraint: the expected probability of being
in a desirable class of all terminal states a plan leads to
must be at least Success_Threshold.

Figure1. An example of AND-OR graph.

 Not all customers in the given set of customers are
convertible to the desirable class. In this case, we also
want to identify a subset of customers who can be
converted within the constraint.
 The marketing plan generation problem can be
considered in several forms. A variation of the problem is
to find a uniform plan for all different customer segments,
regardless of which initial states they start from, so that as
many customers as possible are converted to the desirable
class under the length and probability constraint. This
formulation corresponds to the need for corporations to
market to an entire group of customers with the same
actions for consistency and cost-cutting. In this paper, we
focus on the first problem where we can have different
plans for different segments of customers.

Marketing-Campaign Planning Algorithm

Algorithm Overview
A major difficulty in solving the marketing-planning
problem stems from the fact that there are potentially many
states and many connections between states. This
potentially large space can be reduced significantly by
observing that the states and their connections are not all
equal; some states and action sequences in this state-space
are more significant than others because they are more
frequently “ traveled” by traces in the Marketing-log table.
This observation allows us to use an approach in which we
exploit planning by abstraction.

 In particular, significant state-action sequences in the
state space can be discovered through a frequent string-
mining algorithm. We start by defining a minimum-
support threshold for finding the frequent state-action
sequences. Support represents the number of occurrences
of a state-action sequence from the Marketing-log table.
More formally, let)(seqcount be the number of times
sequence “seq” appears in the database for all customers.
Then the support for sequence “seq” is defined as

)()sup(seqcountseq = , (1)

 Then, a string-mining algorithm based on moving
windows will mine the Marketing-log table database to
produce state-action subsequences whose support is no less
than a user-defined minimum-support value. For
connection purpose, we only retained substrings both
beginning and ending with states, in the form
of >< ++ niiii sasas ,......,,,, 11 .
 Once the frequent sequences are found, we piece
together the segments of paths corresponding to the
sequences to build an abstract AND-OR graph in which we
will search for plans. If >< 210 ,, sas and

>< 432 ,, sas are two segments found by the string-
mining algorithm, then >< 43210 ,,,, sasas is a new path
in the AND-OR graph. Since each component of the
AND-OR graph is guaranteed to be frequent, the AND-OR
graph is a highly concise and representative state space.
Suppose that we wish to find a marketing plan starting from
a state 0s , we consider all action sequences in the AND-
OR graph that start from 0s satisfying the length or
probability constraint.
 We used a function),()(),(pshpgpsf += to
estimate how “good” a plan is. Let s be an initial state
and p be a plan. Let)(pg be a function that sums up the
cost of each action in the plan. Let),(psh be a heuristic
function estimating how promising the plan is for
transferring customers initially belonging to state s .

),(psh is a kind of utility estimation of the plan. This
function can be determined by users in different specific
applications. In our work, we estimated),(psh in the
following manner. We start from an initial state and
follow a plan that leads to several terminal states is , 1+is ,

2+is , …, jis + . For each of these terminal states, we
estimate the state-classification probability)|(isP + . Each
state has a probability of)|(1 isP +− to belong to a
negative class. The state requires at least one further
action to proceed to transfer the)|(1 isP +− who remain
negative, the cost of which is at least the minimum of the
costs of all actions. We compute heuristic estimation for
terminal states where the plan leads. For an intermediate
state leading to several states, an expected estimation is
calculated from the heuristic estimation of its successive
states weighted by the transition probability),|(jik assp .
The process starts from terminal states and propagates back
to the root, until reaching the initial state. Finally, we
obtain the estimation of),(psh for the initial state s
under the plan p .

S0

A1

O1 O2

A2

S1 S2

S3

S7 S8

S4 S5 S6

A
2

O3 O4

A
2

 Based on the above heuristic estimation methods, we
can perform a best-first search in the space of plans until
the termination condition is met. The termination
conditions are determined by the probability or the length
constraints in the problem domain.

Search for Plans using MPlan
In the AND-OR graph, we carry out a procedure MPlan
Search to perform a best-first search for plans. We
maintain a priority queue Q by starting with a single-action
plan. Plans are sorted in the priority queue in terms of the
evaluation function),(psf .
 In each iteration of the algorithm, we select the plan
with minimum value of),(psf from the queue. We
then estimate how promising the plan is. That is, we
compute the expected state-classification probability

)|(0sE + from back to front in a similar way as with
),(psh calculation, starting with the)|(isP + of all

terminal states the plan leads to and propagating back to
front, weighted by the transition probability

),|(jik assp . We compute)|(jsE + , the expected value
of the state-classification probability of all terminal states.
If this expected value exceeds a predefined threshold
Success_Threshold, i.e. the probability constraint, we
consider the plan to be good enough and the search process
terminates. Otherwise, one more action is attached to this
plan and the new plans are inserted into the priority queue.

)|(
i

sE + is the expected state-classification probability
estimating how “effective” a plan is at transferring
customers from state is . Its calculation can be defined in
the following recursive way:

)|(*),|()|(kjiki sEasspsE +�=+ ; if is is a non-
terminal state; or

)|()|(ii sPsE +=+ if is is a terminal state. (2)

 We define Success_Threshold as a lower bound on

)|(
i

sE + . We conduct the above search procedure for
all initial states, finding one plan for each. It is possible
that in some AND-OR graphs, we cannot find a plan whose

)|(isE + exceeds the Success_Threshold, either because
the AND-OR graph is not good enough or because the
Success_Threshold is too high. To address this, we define
a parameter Max_Step which defines the maximum length
of a plan, i.e. the length constraint. We will discard a
candidate plan which is longer than the Max_Step and

)|(isE + value less than the Success_Threshold. Table
3 is the pseudo code of the MPlan Search algorithm.
 Consider an example of MPlan Search algorithm using
the AND-OR graph in Figure 1. Suppose that we are
looking for a plan for customers starting at state 0s .
Suppose we have a finite set of actions and the minimum
cost among these actions is denoted by MinC.

Step 1. We inserted two single-step plans – <A1> and
<A2> into Q with the evaluation function as follows:

Table 3. The MPlan Search Algorithm

f(S0, A1)=Cost(A1) + P(S1|S0, A1) * (1-P(+|S1)) * MinC +
P(S2|S0, A1) * (1-P(+|S2)) * MinC

f(S0, A2)=Cost(A2) + P(S7|S0, A2) * (1-P(+|S7)) * MinC +
P(S8|S0, A2) * (1-P(+|S8)) * MinC

Step 2. Suppose <A1> is the plan with minimum),(psf
value in Q. Therefore, <A1> is deleted from Q and
examined to see whether it is a qualified plan.

)|(0sE + =P(S1|S0, A1) * P(+|S1) + P(S2|S0, A1) * P(+|S2)

 If)|(0sE + is less than Success_Threshold, then
<A1> is not a “good” plan. Thus, actions A1 and A2 are
appended to the end of plan <A1> to form two new plans
<A1A1> and <A1A2>. These two plans are then
inserted into Q.
 Because there is no path <A1A1> in the AND-OR
graph, we discard the candidate <A1A1> from Q. The

),(psf value of <A1A2> is:

f(S0, A1A2)=Cost(A1A2) + P(S1|S0, A1) * (P(S3|S1, A2)
* (1-P(+|S3)) * MinC + P(S4|S1, A2) * (1-P(+|S4)) * MinC)
+ P(S2|S0, A1) * (P(S5|S2, A2) * (1-P(+|S5)) * MinC +
P(S6|S2, A2) * (1-P(+|S6)) * MinC))

Step 3. Now we have plans <A2>, <A1A2> in Q. Suppose
<A1A2> is the plan with minimum),(psf . Therefore,
<A1A2> is deleted from Q to see whether it is a promising
plan.

)|(0sE + = P(S1|S0, A1) * (P(S3|S1, A2) * P(+|S3) +
P(S4|S1, A2) * P(+|S4)) + P(S2|S0, A1) * (P(S5|S2, A2) *
P(+|S5) + P(S6|S2, A2) * P(+|S6))

If)|(0sE + >= Success_Threshold, then <A1A2> is a
“good” plan with minimum cost from Q.

1. Insert all possible one-action plans into Q.
2. While (Q not empty) {
3. Get a plan with minimum value of),(psf

from Q.
4. Calculate)|(sE + of this plan.
5. If ()|(sE + >= Success_Threshold)
 Return Plan;
6. If (length(Plan) > Max_Step)

 Discard Plan;
7. Else

 7.1 Expand plan by appending an action.
 7.2 Calculate),(psf for the new plans
and insert into Q.

8 } end while
9 Return “plan not found” ;

Step 4. Return the plan <A1A2>. Stop.

Analysis
The Marketing-Plan algorithm has two major components
in terms of time complexity – one is state space abstraction
by string mining algorithm; the other is Mplan, the best-
first algorithm.
 In the string-mining algorithm, we find frequent strings
which satisfy the predefined minimum support threshold.
Suppose that there are N sequences in the Marketing-log
table. The average length of the sequences is K. We scan
the sequences with a finite window of size W. We need to
find all the frequent strings with length less than or equal to
W. For each sequence with an average length K, time
complexity is)2/)1()1((+−+ WWWKO . If W << K,
then it is)(KO . For totally N sequences, it is)(NKO .
If W is comparable to K, then it is)(2NKO .
 In the MPlan Search Algorithm, the number of
iterations is bounded by the parameter Max_Step. Suppose
the number of different actions is A. In the worst case when
the algorithm exits with “No plan found” , the number of
iterations is)(_ StepMaxAO . However, in an average case
the plan should complete faster than the worst case. The
time complexity for a single iteration is determined by the
size of the state space. In general, it takes more time to
calculate),(psf and)|(isE + in a complex state space
than in a simple one because the planner has more states
and paths to explore.
 Note that although our proposed state space abstraction
method using string mining does not reduce the number of
iterations of MPlan algorithm, it saves a lot of time in
exploring in the state space in each iteration because many
statistically trivial paths are discarded before the search
process.

Experimental Setup

Although we are able to obtain Customer data, it has been
difficult to obtain Marketing-log data from real world. To
test our ideas, we used a simulator to generate the
customer-log data according to some customer distributions
we can specify. The Customer data are used for training a
classifier for state-classification function)(sp c . The
Marketing-log data are used in two ways: (1) Frequent
state-action subsequences are mined from the Marketing-
log data to construct a highly concise and representative
AND-OR graph; (2) Models of transition probability

),|(jik assp are estimated from the statistics of the
Marketing-log data.

Data set
We used the IBM Synthetic Generator
(http://www.almaden.ibm.com/cs/quest/syndata.html) to
generate a Customer dataset with two classes and nine
attributes. The positive class has 30,000 records
representing successful customers and negative has 70,000
representing unsuccessful ones. Those 70,000 negative

records are treated as starting points for Marketing-log data
generation. We carried out the state abstraction and
mapping by feature selection, only keeping four attributes
out of nine. Those four attributes were converted from
continuous range to discrete values. The state space has
400 distinct states. A classifier is trained using the C4.5
decision tree algorithm (Quinlan 1993) on the Customer
dataset. The classifier will be used later to decide on the
class of a state.
 We generated the Marketing-log data using another
simulator. Each of the 70,000 negative records is treated
as an initially failed customer. A trace is then generated
for the customer, transforming the customer through
intermediate states to a final state. We also defined four
types of actions, each of which has a cost and impacts on
attribute transitions. We can illustrate the definition of an
action’s impact on attribute transitions through an example.

�
�
�

�

�

�
�
�

�

�

=
5.03.02.0

010

05.015.08.0

13M

 In this matrix, 13M is a matrix representing the impact
of action 1A on Attribute three. The matrix is n by n if
attribute i has n different values. Suppose attribute 3 has
three distinct values 0, 1, 2. The first row in the matrix
means if attribute 3 takes value 0, after action 1A , Attribute
three will take on the first value with 80% probability,
value 1 with 15% probability and value 2 with 5%
probability. After an action is taken, attributes for a
customer will change probabilistically according to the
definition of impact of actions.
 The Marketing-log data generation algorithm is shown
in Table 4. In this procedure, we define terminal* as
follows: once a customer changes from the negative class
to the positive class, the state for the first time he is
classified as positive is a terminal state. If a customer
received actions for a predefined number of times, say, 20
times and still remained negative, the 20th state is the
terminal state. Using this method, we generated 70,000
traces for the 70,000 failed records. Figure 2 illustrates the
distribution of different-length traces.

Table 4. The Marketing-log data generation algorithm.

Input: A set of initially failed states
iS and a set of

actions
iA with state-transition matrices.

Output: Sequences of trace data preserving temporal
order, in the form of >< ++ niiii sasas ,......,,,, 11 .
Algorithm:
For each initially failed state s

while s is not a terminal* state
randomly select an action a;

 generate the next state s’ according to
the impact of action a on attributes;

 end while
end for

 In Figure 2, the horizontal axis represents the number
of actions in a trace. The vertical axis represents the
number of “n-actions” traces. For example, the first dot
represents that there are about 18,000 traces that has only
one action before success. We can see that long traces with
more than 6 actions are very rare.

0

5000

10000

15000

20000

1 5 9 13 17 21

Figure2. Distribution of number of traces as a function of
plan length.

Test Criteria
We evaluated the quality of the plans via simulation. Again,
we used the IBM Synthetic Generator to generate 100,000
customer records that correspond to the failed class. Our
goal is to find marketing plans to convert them to a
successful class. This testing process corresponds to the
testing phase for a trained model in machine learning.
 In this simulation, if there is a plan suitable for
converting a customer record, a sequence of actions is
carried out on that record. The plan will then change the
customer record probabilistically according to impact of
actions on attributes. At the end, the classifier is used to
decide whether the changed record has turned into a
successful one.
 We define a number of quantities to measure the
success of the test results. Let },...,{ 21 nsss be a set of
terminal states in a current plan from an initial state. We
wish to estimate the success probability of the plan. We
define a quantity -- the expected success probability

)|(0sE + recursively as equation (2).
 As mentioned before, a user-defined
Success_Threshold is used as a lower bound on)|(0sE + ;
we consider a plan is found successfully for an initial state
only when)|(0sE + is no less than the Success_Threshold.
 We define the Max_Step as a length constraint,
whereby plans longer than this limit will not be examined.
 Let N be the number of customers who are to be
converted through the marketing plans. Those are the
customers who belong to the negative class initially. Let
PlanSet be the set of plans that are found by the MPLan
planner for these N customers. Then the Transition Rate
is defined as the proportion of people who are transformed
to the successful class after the application of the plan.
Let M be the number of customers among the N people
who belong to the successful class after the plans are
applied. Then

N

M
RateTransition = , (3)

 Finally, let L be the number of initial segments which
corresponds to L initial states. Let K be the number of
initial states among the L where a marketing plan is
successfully found within the stated limits. Then the Plan
Rate is defined as:

L

K
PlanRate = , (4)

 We also measure the CPU time used to search for the
plan. This is denoted as Time.

Evaluation Results
Figure 3 (a) illustrates the Transition Rate, Plan Rate of a
plan as a function of Success_Threshold.
Success_Threshold corresponds to a threshold on the
expected probability that the terminal states are considered
belonging to the positive class. This parameter determines
how easy it is to find a successful plan. When
Success_Threshold is low, many states are considered
positive, and thus plans can be easily and quickly found for
most of the initial states in the graph. Thus we can
observe from Figures 3 (a) and (b) that searching Time is
low and Plan Rate is high with low Success_Threshold.
However, because Success_Threshold is low, the plans
found don’ t guarantee high probability of success. So
Transition Rate is also low at first. As Success_Threshold
increases, so does the Transition Rate and searching Time.
When Success_Threshold is too high, no plan can be found
for some initial states. Therefore, both of the Plan Rate and
Transition Rate decrease. The Time is much higher
because the searching process doesn’ t terminate until all
the plans expanded longer than Max_Step.
 Figures 4 and 5 illustrate the Transition Rate, Plan Rate
and searching Time of a plan as a function of minimum
support MinSupport. MinSupport =N means a sequence
has to appear at least N times in Marketing-log data to be
frequent. An AND-OR graph with minimum support
MinSupport=1 corresponds to a state space constructed
without undergoing frequent string mining procedure.
Generally speaking, MinSupport determines the frequent
state-action sequences mined from Marketing-log data and
thus the size of the AND-OR graph – the search space for a
plan. When MinSupport is low, the search space is very
large and complex; searching will then take a lot of time to
complete. As MinSupport gets larger, the search space
becomes more and more compressed, and search time will
be shorter. When MinSupport becomes extremely high,
the search space may lose many important states and
transitions, making plan searching harder again.
 However, the search efficiency also depends on other
parameters. Success_Threshold is another important factor.
When Success_Threshold is low, approximately the same
Plan Rate and Transition Rate can be found no matter how
large the state space is, as shown in Figure 4. When
Success_Threshold is higher, plan searching becomes more
difficult. In a large search space, searching for a solution
plan takes a lot more time. In an extremely concise state
space, no plans can be found because many states and

transitions are discarded by state space abstraction, as
shown in Figure 5.
 Notice that in Figure 5(a), Transition Rate reaches a
maximum for a state space when MinSupport=100. This
means that with appropriate frequent string mining, plans
found in the resulted state space won’ t lose in terms of
effectiveness compared with original state space without
string mining; the feature of string mining even provides
better performance. It also saves time in search space
construction and plan searching process, as shown in
Figure 5(b).
 Figures 6(a) (b) illustrates the Transition Rate, Plan
Rate and searching Time of a plan as a function of
Max_Step. As we can see from the figure, increasing the
length of Max_Step has little effect on Transition Rate and
Plan Rate. This is due to the fact that once a group of
customers are converted to a positive class boundary; any
further actions will not improve their chance of being
positive. However, Time increases greatly because
searching process often continues until all possible plans
within the length of Max_Step are explored.

0

25

50

75

100

0.05 0.15 0.3 0.45 0.6 0.75

PlanR(%) TransR(%)

Figure 3(a). Plan Rate, Transition Rate vs.
Success_Threshold. MinSupport = 100, Max_Step =5.

Figure 3(b). CPU Time vs. Success_Threshold.
MinSupport = 100, Max_Step =5.

0

20

40

60

80

100

1 50 100 200 300 400 500 600 700 800

PlanR(%) TransR(%)

Figure 4(a). Plan Rate, Transition Rate vs. MinSupport.
Success_Threshold=0.05. Max_Step =5.

0

10

20

30

40

50

1 50 100 200 300 400 500 600 700 800

Time(s)

Figure 4(b). CPU Time vs. MinSupport.
Success_Threshold=0.05. Max_Step =5.

0
10
20
30
40
50
60

1 50 100 200 300 400 500 600 700 800

PlanR(%) TransR(%)

Figure 5(a). Plan Rate, Transition Rate vs. MinSupport.
Success_Threshold=0.20. Max_Step =5

0

10

20

30

40

50

60

1 50 100 200 300 400 500 600 700 800

Time(s)

Figure 5(b). CPU Time vs. MinSupport.
Success_Threshold=0.20. Max_Step =5.

0

250

500

750

1000

1250

0.0
5 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time(s)

0

10

20

30

40

3 4 5 6 7 8

PlanR(%) TransR(%)

Figure 6(a). Plan Rate, Transition Rate vs. Max_Step.
MinSupport=100, Success_Threshold=0.50.

0

200

400

600

800

1000

3 4 5 6 7 8

Time(s)

Figure 6(b). CPU Time vs. Max_Step. MinSupport=100,
Success_Threshold=0.50.

Summary of the Test Results
In this test we used sequence mining as a filter before state
space construction. We observe that using frequent string
mining can indeed save a lot of searching time while at the
same time, provide much more desirable plans in terms of
their performance. Increasing the Success_Threshold can
bring about much more promising plans. Increasing
Max_Step does not bring any significant improvement in
plan searching when this parameter is over a certain
threshold.

Conclusions and Future Work
In this paper, we explored planning in the marketing
planning domain, where the problem formulation is
significantly different from the classical or probabilistic
planning situations. Our approach combines both data
mining and planning in order to build an abstraction space
in which the plans are obtained. The plans are no longer
transforming an agent’s state from one initial state to a goal
state; instead, in our situation we formulate plans that
transform groups of customers from a set of initial states to
positive class states. This formulation has many realistic
applications in the real world, well beyond marketing
planning.
 In the future, we wish to consider different variations of
the problem in marketing and other related domains. We
wish to obtain some more realistic data from the customer
relationship management domain and build a realistic
system for marketing planning.

Acknowledgments

We thank Professors Charles Ling, D.Y. Yeung and Nevin
Zhang for their valuable comments on this work. This
work is supported by Hong Kong Research Grant
Committee and SSRI grants.

References

S. Dibb, L. Simkin, and J. Bradley. 1996. The Marketing
Planning Workbook. Routledge.

Bank Marketing Association, 1989. Building a Financial
Services Plan: Working Plans for Product and Segment
Marketing. Bank Marketing Association, Financial
Sourcebooks, Naperville, Illinois.

C. L. Blake and C.J. Merz. 1998. UCI Repository of
machine learning databases Irvine, CA: University of
California, Department of Information and Computer
Science. http://www.ics.uci.edu/~mlearn/MLRepository.html

P. Domingos, 1999. MetaCost: A general method for
making classifiers cost sensitive. In Proceedings of the
Fifth International Conference on Knowledge Discovery
and Data Mining, pages 155-164. ACM Press.

P. Domingos and M. Richardson, 2001. Mining the
Network Value of Customers. In Proceedings of the
Seventh International Conference on Knowledge Discovery
and Data Mining, pages 57-66. San Francisco, CA: ACM
Press.

D. Draper, S. Hanks, and D. Weld, 1994. Probabilistic
planning with information gathering and contingent
execution. In Proceedings of the Second International
Conference on A.I. Planning Systems.

C. Elkan, 2001. The foundations of cost-sensitive learning.
In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, pages 973-978.

R. L. Keeney and H. Raiffa, 1976. Decisions with Multiple
Objectives: Preferences and Value Trade-offs. Wiley, New
York.

C. X. Ling and C. Li. 1998. Data mining for direct
marketing: Problems and solutions. In Proceedings of the
4th International Conference on Knowledge Discovery and
Data Mining (KDD’98), pages 73-79, New York.

E. Pednault, N. Abe and B. Zadrozny. 2002. Sequential
Cost-Sensitive Decision Making with Reinforcement
Learning. In Proceedings of the 8th ACM International
Conference on Knowledge Discovery and Data Mining
(KDD’02), pages 259-268. Edmonton, Canada.

J. R. Quinlan. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, Inc., San Mateo, CA.

R. Sutton and A. Barto, 1998. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA.

Q. Yang and H. Cheng, 2002. Mining Case Bases for
Action Recommendation. In Proceedings of 2002 IEEE
International Conference on Data Mining (ICDM’02).
Maebashi, Japan.

