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Frequent Patterns

frequent pattern: support no less than min_sup

min_sup: the minimum frequency threshold

TID Items bought
10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Diaper, Eggs, Beer

Frequent Itemsets Frequent Graphs
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Major Mining Methodologies

Apriori approach
Candidate generate-and-test, breadth-first search
Apriori, GSP, AGM, FSG, PATH, FFSM 

Pattern-growth approach
Divide-and-conquer, depth-first search
FP-Growth, PrefixSpan, MoFa, gSpan, Gaston

Vertical data approach
ID list intersection with (item: tid list) representation 
Eclat, CHARM, SPADE
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Apriori Approach

• Join two size-k patterns to a size-(k+1) 
pattern

• Itemset: {a,b,c} + {a,b,d} {a,b,c,d}

• Graph:
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Pattern Growth Approach

• Depth-first search, grow a size-k pattern to 
size-(k+1) one by adding one element

• Frequent subgraph mining
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Vertical Data Approach

• Major operation: transaction list intersection

Item Transaction id
A t1, t2, t3,…
B t2, t3, t4,…
C t1, t3, t4,…
… …

)()()( BtAtABt I=
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Mining High Dimensional Data

• High dimensional data
– Microarray data with 10,000 – 100,000 

columns

• Row enumeration rather than column 
enumeration
– CARPENTER [Pan et al., KDD’03]
– COBBLER [Pan et al., SSDBM’04]
– TD-Close [Liu et al., SDM’06]



9

Mining Colossal Patterns
[Zhu et al., ICDE’07]

• Mining colossal patterns: challenges
– A small number of colossal (i.e., large) patterns, but a 

very large number of mid-sized patterns
– If the mining of mid-sized patterns is explosive in size, 

there is no hope to find colossal patterns efficiently by 
insisting “complete set” mining philosophy

• A pattern-fusion approach
– Jump out of the swamp of mid-sized results and 

quickly reach colossal patterns
– Fuse small patterns to large ones directly
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Impact to Other Data Analysis Tasks
• Association and correlation analysis

– Association: support and confidence
– Correlation: lift, chi-square, cosine, all_confidence, coherence
– A comparative study [Tan, Kumar and Srivastava, KDD’02]

• Frequent pattern-based Indexing
– Sequence Indexing [Cheng, Yan and Han, SDM’05]
– Graph Indexing [Yan, Yu and Han, SIGMOD’04; Cheng et al., 

SIGMOD’07; Chen et al., VLDB’07]

• Frequent pattern-based clustering
– Subspace clustering with frequent itemsets

• CLIQUE [Agrawal et al., SIGMOD’98]
• ENCLUS [Cheng, Fu and Zhang, KDD’99]
• pCluster [Wang et al., SIGMOD’02]

• Frequent pattern-based classification
– Build classifiers with frequent patterns (our focus in this talk!)
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Classification Overview

Model 
Learning

Positive

Negative

Training 
Instances

Test 
Instances

Prediction 
Model 
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Existing Classification Methods

Support Vector Machine

age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

Decision Tree

Neural Network

Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

Bayesian Network

and many more…



132008-12-23 ICDM 08 Tutorial 13

Text Categorization

Many Classification Applications

Face Recognition

Drug Design

Spam Detection

Spam 
Detection
Classifier
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Major Data Mining Themes

Frequent Pattern 
Analysis

Clustering Outlier Analysis

Classification

Frequent 
Pattern-Based 
Classification
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Why Pattern-Based Classification?
Feature construction

Higher order
Compact 
Discriminative 

Complex data modeling
Sequences
Graphs
Semi-structured/unstructured data
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Feature Construction

Phrases vs. 
single words

… the long-awaited Apple iPhone has arrived …

… the best apple pie recipe …

Sequences vs.
single commands

… login, changeDir, delFile, appendFile, logout …

… login, setFileType, storeFile, logout …

higher order, 
discriminative

temporal order

disambiguation
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Complex Data Modeling

Training 
Instances

age income credit Buy?

25 80k good Yes

50 200k good No

32 50k fair No

Classification 
model

Prediction 
Model 

Training 
Instances

Classification 
model

Prediction 
Model 

NO Predefined 
Feature vector

?
Predefined 

Feature vector
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Discriminative Frequent Pattern-
Based Classification

Model 
Learning

Positive

Negative

Training 
Instances

Test 
Instances

Prediction 
Model 

Pattern-Based
Feature

Construction

Discriminative 
Frequent Patterns

Feature Space
Transformation
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Pattern-Based Classification on 
Transactions

Attributes Class

A, B, C 1
A 1

A, B, C 1
C 0

A, B 1
A, C 0
B, C 0

A B C AB AC BC Class
1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1
0 0 1 0 0 0 0
1 1 0 1 0 0 1
1 0 1 0 1 0 0
0 1 1 0 0 1 0

Mining

Augmented

Frequent 
Itemset

Support

AB 3
AC 3
BC 3min_sup=3
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Pattern-Based Classification on Graphs
Inactive

Inactive

Active Mining Transform g1 g2 Class
1 1 0
0 0 1
1 1 0

Frequent Graphs

g1

g2

min_sup=2
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Applications: Drug Design

Classifier Model

O

N

Class = Active / Inactive?

Test Chemical 
CompoundO

H

H

HH
H

HH

H

HH

HO

Cl

H

H

H

O

N

H

H

H

H

H

Active

Inactive

Active

...
Training 
Chemical

Compounds

Descriptor-space
Representation

Courtesy of Nikil Wale
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Applications: Bug Localization

1

3

4

5

2
1: makepat
2: esc
3: addstr
4: getccl
5: dodash
6: in_set_2
7: stclose

(1)

1

3

4

5

2

1

3

4

5

2

6

7

(2) (3)

3

4

5

2
1: makepat
2: esc
3: addstr
4: getccl
5: dodash
6: in_set_2
7: stclose

(1)

3

4

5

2

3

4

5

2

6

7

(2) (3)

correct executions incorrect executions

calling graph

Courtesy of Chao Liu
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Associative Classification
Data: transactional data, microarray data

Pattern: frequent itemsets and association rules

Representative work
CBA [Liu, Hsu and Ma, KDD’98]
Emerging patterns [Dong and Li, KDD’99]
CMAR [Li, Han and Pei, ICDM’01]
CPAR [Yin and Han, SDM’03]
RCBT [Cong et al., SIGMOD’05]
Lazy classifier [Veloso, Meira and Zaki, ICDM’06]
Integrated with classification models [Cheng et al., ICDE’07]
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CBA [Liu, Hsu and Ma, KDD’98]
• Basic idea

• Mine high-confidence, high-support class 
association rules with Apriori

• Rule LHS: a conjunction of conditions
• Rule RHS: a class label
• Example:

R1: age < 25 & credit = ‘good’ buy iPhone (sup=30%, conf=80%)

R2: age > 40 & income < 50k  not buy iPhone (sup=40%, conf=90%)
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CBA
• Rule mining

• Mine the set of association rules wrt. min_sup and 
min_conf

• Rank rules in descending order of confidence and 
support

• Select rules to ensure training instance coverage

• Prediction
• Apply the first rule that matches a test case
• Otherwise, apply the default rule
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CMAR [Li, Han and Pei, ICDM’01]

• Basic idea
– Mining: build a class distribution-associated FP-tree
– Prediction: combine the strength of multiple rules

• Rule mining
– Mine association rules from a class distribution-

associated FP-tree
– Store and retrieve association rules in a CR-tree
– Prune rules based on confidence, correlation and 

database coverage
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Class Distribution-Associated 
FP-tree
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CR-tree: A Prefix-tree to Store and 
Index Rules
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Prediction Based on Multiple Rules

• All rules matching a test case are collected and 
grouped based on class labels. The group with 
the most strength is used for prediction

• Multiple rules in one group are combined with a 
weighted chi-square as: 

where            is the upper bound of chi-square of 
a rule. 

∑ 2

22

maxχ
χχ

2maxχ
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CPAR [Yin and Han, SDM’03]

• Basic idea
– Combine associative classification and FOIL-based 

rule generation
– Foil gain: criterion for selecting a literal

– Improve accuracy over traditional rule-based 
classifiers

– Improve efficiency and reduce number of rules over 
association rule-based methods
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CPAR

• Rule generation
– Build a rule by adding literals one by one in a greedy 

way according to foil gain measure
– Keep all close-to-the-best literals and build several 

rules simultaneously

• Prediction
– Collect all rules matching a test case
– Select the best k rules for each class
– Choose the class with the highest expected accuracy 

for prediction
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Performance Comparison 
[Yin and Han, SDM’03]

Data C4.5 Ripper CBA CMAR CPAR
anneal 94.8 95.8 97.9 97.3 98.4

breast 95.0 95.1 96.3 96.4 96.0

crx 84.9 84.9 84.7 84.9 85.7

german 72.3 69.8 73.4 74.9 73.4

hepatic 80.6 76.7 81.8 80.5 79.4
horse 82.6 84.8 82.1 82.6 84.2
hypo 99.2 98.9 98.9 98.4 98.1
iono 90.0 91.2 92.3 91.5 92.6
iris 95.3 94.0 94.7 94.0 94.7

labor 79.3 84.0 86.3 89.7 84.7
… … … … … …

Average 83.34 82.93 84.69 85.22 85.17

austral
auto

cleve

diabetes

glass
heart

87.3 84.9 86.1 86.284.7
80.1

78.2

74.2

68.7

72.8 78.3 78.1 82.0

82.2 82.8 82.2 81.5

74.7 74.5 75.8 75.1

69.1 73.9 70.1 74.4
80.8 80.7 81.9 82.2 82.6
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Emerging Patterns 
[Dong and Li, KDD’99]

• Emerging Patterns (EPs) are contrast patterns between 
two classes of data whose support changes significantly 
between the two classes. 

• Change significance can be defined by:

• If supp2(X)/supp1(X) = infinity, then X is a jumping EP.
– jumping EP occurs in one class but never occurs in the other 

class.

similar to RiskRatio
big support ratio:
supp2(X)/supp1(X) >= minRatio

big support difference:
|supp2(X) – supp1(X)| >= minDiff defined by Bay+Pazzani 99

Courtesy of Bailey and Dong
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A Typical EP in the Mushroom 
Dataset

• The Mushroom dataset contains two classes: edible and 
poisonous

• Each data tuple has several features such as: odor, ring-
number, stalk-surface-bellow-ring, etc.

• Consider the pattern 
{odor = none, 
stalk-surface-below-ring = smooth, 
ring-number = one}

Its support increases from 0.2% in the poisonous class 
to 57.6% in the edible class (a growth rate of 288).

Courtesy of Bailey and Dong
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EP-Based Classification: CAEP 
[Dong et al, DS’99]

• The contribution of one EP X (support weighted confidence):

• Given a test T and a set E(Ci) of EPs for class Ci, the 
aggregate score of T for Ci is

• Given a test case T, obtain T’s scores for each class, by 
aggregating the discriminating power of EPs contained in T; assign 
the class with the maximal score as T’s class.
• The discriminating power of EPs are expressed in terms of 
supports and growth rates. Prefer large supRatio, large support

• For each class, may use median (or 85%) aggregated value to 
normalize to avoid bias towards class with more EPs

strength(X) = sup(X) * supRatio(X) / (supRatio(X)+1)

score(T, Ci) = Σ strength(X) 
(over X of Ci matching T)

Courtesy of Bailey and Dong
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Top-k Covering Rule Groups for Gene 
Expression Data [Cong et al., SIGMOD’05 ]
• Problem

– Mine strong association rules to reveal correlation between 
gene expression patterns and disease outcomes

– Example: 
– Build a rule-based classifier for prediction

• Challenges: high dimensionality of data
– Extremely long mining time
– Huge number of rules generated 

• Solution
– Mining top-k covering rule groups with row enumeration
– A classifier RCBT based on top-k covering rule groups

classbagenebagene nnn →],[],...,,[ 111
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A Microarray Dataset

Courtesy of Anthony Tung
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Top-k Covering Rule Groups

• Rule group
– A set of rules which are supported by the same set 

of transactions
– Rules in one group have the same sup and conf
– Reduce the number of rules by clustering them into 

groups 

• Mining top-k covering rule groups
– For a row     , the set of rule groups 

satisfying minsup and there is no more significant 
rule groups

}|{ IACAG ii ⊆→=

ir ],1[},{ kjjri
∈γ
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Row Enumeration

tid
item
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TopkRGS Mining Algorithm

• Perform a depth-first traversal of a row 
enumeration tree

• for row    are initialized
• Update

– If a new rule is more significant than existing rule 
groups, insert it

• Pruning
– If the confidence upper bound of a subtree X is below 

the minconf of current top-k rule groups, prune X

}{ jri
γ ir
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RCBT

• RCBT uses a set of matching rules for a 
collective decision

• Given a test data t, assume t satisfies     rules of 
class    , the classification score of class     is 

where the score of a single rule is

im

icic
ii

i
i c

norm
c
i

m

i

c StStScore /)))((()(
1

γ∑
=

=

i

iii
c

ccc dsupconfS /..)( γγγ ∗=
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Mining Efficiency

Top-k
Top-k
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Classification Accuracy



452008-12-23 ICDM 08 Tutorial 45

Lazy Associative Classification 
[Veloso, Meira, Zaki, ICDM’06]

• Basic idea
– Simply stores training data, and the classification model (CARs) 

is built after a test instance is given
• For a test case t, project training data D on t
• Mine association rules from Dt
• Select the best rule for prediction

– Advantages
• Search space is reduced/focused

– Cover small disjuncts (support can be lowered)
• Only applicable rules are generated

– A much smaller number of CARs are induced
– Disadvantages

• Several models are generated, one for each test instance
• Potentially high computational cost

Courtesy of Mohammed Zaki
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Caching for Lazy CARs

• Models for different test instances may share 
some CARs
– Avoid work replication by caching common CARs

• Cache infrastructure
– All CARs are stored in main memory
– Each CAR has only one entry in the cache
– Replacement policy

• LFU heuristic Courtesy of Mohammed Zaki
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Integrated with Classification 
Models [Cheng et al., ICDE’07]

Framework
Feature construction

Frequent itemset mining

Feature selection
Select discriminative features
Remove redundancy and correlation

Model learning
A general classifier based on SVM or C4.5 or other 
classification model
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Information Gain vs. Frequency?
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Fisher Score vs. Frequency?
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Analytical Study on Information Gain

∑
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Pattern 
frequency

Information Gain Expressed by 
Pattern Frequency

X: feature;   C: class labels

∑ ∑
∈ ∈
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Conditional Entropy in a Pure Case

• When         (or          )
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Frequent Is Informative

the H(C|X) minimum value when (similar for q=0)

Take a partial derivative
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Too Frequent is Less Informative

• For         , we have a similar conclusion:

• Similar analysis on Fisher score

p≥θ
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Accuracy
Single Feature Frequent Pattern

Data Item_All* Item_FS Pat_All Pat_FS
austral 85.01 85.50 81.79 91.14

auto 83.25 84.21 74.97 90.79
cleve 84.81 84.81 78.55 95.04

diabetes 74.41 74.41 77.73 78.31
glass 75.19 75.19 79.91 81.32
heart 84.81 84.81 82.22 88.15
iono 93.15 94.30 89.17 95.44

Single Feature Frequent Pattern
Data Item_All Item_FS Pat_All Pat_FS

austral 84.53 84.53 84.21 88.24
auto 71.70 77.63 71.14 78.77
Cleve 80.87 80.87 80.84 91.42

diabetes 77.02 77.02 76.00 76.58
glass 75.24 75.24 76.62 79.89
heart 81.85 81.85 80.00 86.30
iono 92.30 92.30 92.89 94.87

Accuracy based on SVM Accuracy based on Decision Tree

* Item_All: all single features                           Item_FS: single features with selection

Pat_All: all frequent patterns                         Pat_FS: frequent patterns with selection
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Classification with A Small Feature Set

min_sup # Patterns Time SVM (%) Decision 
Tree (%)

1 N/A N/A N/A N/A
2000 68,967 44.70 92.52 97.59
2200 28,358 19.94 91.68 97.84
2500 6,837 2.91 91.68 97.62
2800 1,031 0.47 91.84 97.37
3000 136 0.06 91.90 97.06

Accuracy and Time on Chess
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Substructure-Based Graph
Classification

Data: graph data with labels, e.g., chemical compounds, software 
behavior graphs, social networks

Basic idea
Extract graph substructures 
Represent a graph with a feature vector                         , where      is 
the frequency of      in that graph
Build a classification model

Different features and representative work
Fingerprint
Maccs keys
Tree and cyclic patterns [Horvath et al., KDD’04]
Minimal contrast subgraph [Ting and Bailey, SDM’06]
Frequent subgraphs [Deshpande et al., TKDE’05; Liu et al., SDM’05]
Graph fragments [Wale and Karypis, ICDM’06]

}{ ,...,1 nggF =
ix},...,{ 1 nxx=x

ig
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Fingerprints (fp-n)

Enumerate all paths up 
to length l and certain cycles

1      2     ■ ■ ■ ■
■ n ...

Hash features to position(s) in 
a fixed length bit-vector

1      2     ■ ■ ■ ■
■ n

ON

O

O

Chemical
Compounds

...

N

O

O

N

O

O
N

N

O

Courtesy of Nikil Wale
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Maccs Keys (MK)

Domain Expert

Each Fragment forms a 
fixed dimension in the 
descriptor-space 

Identify “Important”
Fragments
for bioactivity

HO
O

NH2

NH2

O

OH

O

NH

NH2

O

Courtesy of Nikil Wale
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Cycles and Trees (CT) 
[Horvath et al., KDD’04]

Identify
Bi-connected
components

Delete
Bi-connected
Components

from the 
compound

O

NH2

O

O

Left-over
Trees

Fixed number 
of cycles

Bounded 
Cyclicity

Using
Bi-connected
components

Chemical Compound

O

O

O

NH2

O

Courtesy of Nikil Wale
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Frequent Subgraphs (FS)
[Deshpande et al., TKDE’05]

Discovering Features

OOO
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graph representation
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Courtesy of Nikil Wale
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Graph Fragments (GF)
[Wale and Karypis, ICDM’06]

• Tree Fragments (TF): At least one node of the tree 
fragment has a degree greater than 2 (no cycles). 

• Path Fragments (PF): All nodes have degree less 
than or equal to 2 but does not include cycles.

• Acyclic Fragments (AF): TF U PF
– Acyclic fragments are also termed as free trees.

NH

NH2

O

OH
O

Courtesy of Nikil Wale
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Comparison of Different Features
[Wale and Karypis, ICDM’06]
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Minimal Contrast Subgraphs
[Ting and Bailey, SDM’06]

• A contrast graph is a subgraph appearing 
in one class of graphs and never in 
another class of graphs
– Minimal if none of its subgraphs are contrasts
– May be disconnected

• Allows succinct description of differences
• But requires larger search space

Courtesy of Bailey and Dong
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Mining Contrast Subgraphs

• Main idea
– Find the maximal common edge sets

• These may be disconnected
– Apply a minimal hypergraph transversal 

operation to derive the minimal contrast edge 
sets from the maximal common edge sets

– Must compute minimal contrast vertex sets 
separately and then minimal union with the 
minimal contrast edge sets

Courtesy of Bailey and Dong
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Frequent Subgraph-Based Classification 
[Deshpande et al., TKDE’05]

• Frequent subgraphs
– A graph is frequent if its support (occurrence frequency) in a given dataset 

is no less than a minimum support threshold

• Feature generation
– Frequent topological subgraphs by FSG
– Frequent geometric subgraphs with 3D shape information

• Feature selection
– Sequential covering paradigm

• Classification
– Use SVM to learn a classifier based on feature vectors
– Assign different misclassification costs for different classes to address 

skewed class distribution
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Varying Minimum Support
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Varying Misclassification Cost
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Frequent Subgraph-Based Classification for 
Bug Localization [Liu et al., SDM’05]

• Basic idea
– Mine closed subgraphs from software behavior graphs
– Build a graph classification model for software behavior prediction
– Discover program regions that may contain bugs

• Software behavior graphs
– Node: functions
– Edge: function calls or transitions
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Bug Localization
• Identify suspicious 

functions relevant to 
incorrect runs
– Gradually include more trace 

data
– Build multiple classification 

models and estimate the 
accuracy boost

– A function with a significant 
precision boost could be bug 
relevant

PB

PA

PB-PA is the accuracy boost 
of function B
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Case Study
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• All graph substructures up to a given length (size or 
# of bonds)
– Determined dynamically → Dataset dependent descriptor space
– Complete coverage → Descriptors for every compound
– Precise representation → One to one mapping
– Complex fragments → Arbitrary topology

• Recurrence relation to generate graph fragments of 
length l

Graph Fragment 
[Wale and Karypis, ICDM’06]

Courtesy of Nikil Wale
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Performance Comparison
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Tutorial Outline
Frequent Pattern Mining

Classification Overview

Associative Classification

Substructure-Based Graph Classification

Direct Mining of Discriminative Patterns

Integration with Other Machine Learning Techniques

Conclusions and Future Directions
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Re-examination of Pattern-Based 
Classification

Model 
Learning

Positive

Negative

Training 
Instances

Test 
Instances

Prediction 
Model 

Pattern-Based
Feature

Construction

Compu
tat

ion
all

y 

Exp
en

siv
e!

Feature Space
Transformation



772008-12-23 ICDM 08 Tutorial 77

The Computational Bottleneck

Data
Frequent Patterns

104~106 Discriminative 
Patterns

Two steps, expensive

Mining Filtering

Data Discriminative 
Patterns

Direct mining, efficient
Direct MiningTransform

FP-tree
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Challenge: Non Anti-Monotonic

Anti-Monotonic

Non Monotonic

Non-Monotonic: Enumerate all subgraphs then check their score?

Enumerate subgraphs
: small-size to large-size
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Direct Mining of Discriminative 
Patterns

• Avoid mining the whole set of patterns
– Harmony [Wang and Karypis, SDM’05]
– DDPMine [Cheng et al., ICDE’08]
– LEAP [Yan et al., SIGMOD’08]
– MbT [Fan et al., KDD’08]

• Find the most discriminative pattern 
– A search problem?
– An optimization problem?

• Extensions
– Mining top-k discriminative patterns
– Mining approximate/weighted discriminative patterns
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Harmony 
[Wang and Karypis, SDM’05]

• Direct mining the best rules for classification
– Instance-centric rule generation: the highest confidence rule for 

each training case is included

– Efficient search strategies and pruning methods
• Support equivalence item (keep “generator itemset”)

– e.g., prune (ab) if sup(ab)=sup(a)

• Unpromising item or conditional database
– Estimate confidence upper bound
– Prune an item or a conditional db if it cannot generate a rule with higher 

confidence

– Ordering of items in conditional database
• Maximum confidence descending order
• Entropy ascending order
• Correlation coefficient ascending order
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Harmony

• Prediction
– For a test case, partition the rules into k 

groups based on class labels
– Compute the score for each rule group
– Predict based the rule group with the highest 

score
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Accuracy of Harmony
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Runtime of Harmony
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DDPMine [Cheng et al., ICDE’08]

• Basic idea
– Integration of branch-and-bound search with 

FP-growth mining
– Iteratively eliminate training instance and 

progressively shrink FP-tree

• Performance
– Maintain high accuracy
– Improve mining efficiency
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FP-growth Mining with Depth-first 
Search
)sup()sup( parentchild ≤

)sup()sup( aab ≤
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Branch-and-Bound Search

Association between information 
gain and frequency

a

b

a: constant, a parent node

b: variable, a descendent
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Training Instance Elimination

Examples covered
by feature 1

(1st BB)

Examples covered
by feature 2

(2nd BB)

Training 
examples

Examples covered
by feature 3

(3rd BB)
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DDPMine Algorithm Pipeline

1. Branch-and-Bound Search

3. Output discriminative patterns

2. Training Instance Elimination

Is Training Set Empty ?
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Efficiency Analysis: Iteration Number
• ; frequent itemset at i-th iteration  

since                                                           

• Number of iterations:

• If                               ;

0θ=min_sup iα

||)1(...||)1(|)(||||| 00101 DDTDD i
iiii θθα −≤≤−≤−= −−

|||)(| 10 −≥ ii DT θα

||log 0
1

1

0

Dn
θ−

≤

5.00 =θ ||log 02 Dn ≤ 2.00 =θ ||log 025.1 Dn ≤
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Accuracy

Datasets Harmony PatClass DDPMine

adult
chess

crx
hypo

mushroom
sick

sonar
waveform

81.90
43.00
82.46
95.24
99.94
93.88
77.44
87.28

84.24
91.68
85.06
99.24
99.97
97.49
90.86
91.22

84.82
91.85
84.93
99.24
100.00
98.36
88.74
91.83

Average 82.643 92.470 92.471

Accuracy Comparison
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Efficiency: Runtime
PatClass

Harmony

DDPMine
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Branch-and-Bound Search: Runtime
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Mining Most Significant Graph with 
Leap Search [Yan et al., SIGMOD’08]

Objective functions
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Upper-Bound
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Upper-Bound: Anti-Monotonic

Rule of Thumb : 
If the frequency difference of a graph pattern in 
the positive dataset and the negative dataset 
increases, the pattern becomes more interesting

We can recycle the existing graph mining algorithms to 
accommodate non-monotonic functions.
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Structural Similarity

Sibling

Structural similarity 
Significance similarity

)'(~)('~ gFgFgg ⇒
Size-4 graph

Size-5 graph

Size-6 graph
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Leap on g’ subtree if

: leap length, tolerance of 
structure/frequency dissimilarity

Structural Leap Search

σ≤
+

∆

−−

−

)'(sup)(sup
)',(2
gg

gg

Mining Part Leap Part

σ≤
+

∆

++

+

)'(sup)(sup
)',(2
gg

gg

σ

g : a discovered graph

g’: a sibling of g
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Frequency Association

Association between pattern’s frequency and objective scores
Start with a high frequency threshold, gradually decrease it
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LEAP Algorithm

1. Structural Leap Search with 
Frequency Threshold

3. Branch-and-Bound Search 
with F(g*)

2. Support Descending Mining

F(g*) converges
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Branch-and-Bound vs. LEAP

Branch-and-Bound LEAP

Pruning base
Parent-child bound

(“vertical”)
strict pruning

Sibling similarity
(“horizontal”)

approximate pruning

Feature
Optimality

Guaranteed Near optimal

Efficiency Good Better
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NCI Anti-Cancer Screen Datasets
Name Assay ID Size Tumor Description

MCF-7 83 27,770 Breast

MOLT-4 123 39,765 Leukemia

NCI-H23 1 40,353 Non-Small Cell Lung

OVCAR-8 109 40,516 Ovarian

P388 330 41,472 Leukemia

PC-3 41 27,509 Prostate

SF-295 47 40,271 Central Nerve System

SN12C 145 40,004 Renal

SW-620 81 40,532 Colon

UACC257 33 39,988 Melanoma

YEAST 167 79,601 Yeast anti-cancer

Data Description
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Efficiency Tests

Search Efficiency Search Quality: G-test
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OA Kernel 
scalability problem!

Mining Quality: Graph Classification

)( 32mnΟ

Name OA Kernel* LEAP OA Kernel 
(6x)

LEAP 
(6x)

MCF-7 0.68 0.67 0.75 0.76
MOLT-4 0.65 0.66 0.69 0.72
NCI-H23 0.79 0.76 0.77 0.79

OVCAR-8 0.67 0.72 0.79 0.78
P388 0.79 0.82 0.81 0.81
PC-3 0.66 0.69 0.79 0.76

Average 0.70 0.72 0.75 0.77

AUC Runtime

* OA Kernel: Optimal Assignment Kernel       LEAP: LEAP search

[Frohlich et al., ICML’05]
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Direct Mining via Model-Based Search Tree
[Fan et al., KDD’08]

• Basic flows

Mined Discriminative 
Patterns

Compact set 
of highly 

discriminative 
patterns

1
2
3
4
5
6
7
.
.
.

Divide-and-Conquer Based Frequent 
Pattern Mining

2

Mine & 
Select
P: 20%

Y

3

Mine & 
Select 
P:20%

Y

6

Y

+

Y Y
4

N

Few 
Data

N N

+

N

5

N

Mine & 
Select 
P:20%

7

N

Mine & 
Select 
P:20%

…
… Y

dataset

1

Mine & 
Select
P: 20%

Most 
discriminative 
F based on IG

Feature 
Miner

Classifier

Global 
Support: 

10*20%/10000
=0.02%
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Analyses (I)

1. Scalability of pattern enumeration

• Upper bound:

• “Scale down” ratio: 

2. Bound on number of returned 
features
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Analyses (II)

3. Subspace pattern selection

• Original set:    

• Subset: 

4. Non-overfitting

5. Optimality under exhaustive search
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Experimental Study: Itemset Mining (I)
Scalability comparison

0
1
2
3
4

Adult Chess Hypo Sick Sonar

Log(DT #Pat) Log(MbT #Pat)

Datasets MbT #Pat #Pat using MbT
sup

Ratio (MbT #Pat / #Pat 
using MbT sup)

Adult 1039.2 252809 0.41%
Chess 46.8 +∞ ~0%
Hypo 14.8 423439 0.0035%
Sick 15.4 4818391 0.00032%
Sonar 7.4 95507 0.00775%
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Experimental Study: Itemset Mining (II)
Accuracy of mined itemsets

70%

80%

90%

100%

Adult Chess Hypo Sick Sonar

DT Accuracy MbT Accuracy

4 Wins
1 loss

0
1
2
3
4

Adult Chess Hypo Sick Sonar

Log(DT #Pat) Log(MbT #Pat)
much smaller
number of
patterns
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Tutorial Outline
Frequent Pattern Mining

Classification Overview

Associative Classification

Substructure-Based Graph Classification

Direct Mining of Discriminative Patterns

Integration with Other Machine Learning Techniques

Conclusions and Future Directions
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Integrated with Other Machine 
Learning Techniques

• Boosting
– Boosting an associative classifier [Sun, Wang 

and Wong, TKDE’06]
– Graph classification with boosting [Kudo, 

Maeda and Matsumoto, NIPS’04]

• Sampling and ensemble
– Data and feature ensemble for graph 

classification [Cheng et al., In preparation]
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Boosting An Associative Classifier
[Sun, Wang and Wong, TKDE’06]

• Apply AdaBoost to associative classification with 
low-order rules

• Three weighting strategies for combining classifiers
– Classifier-based weighting (AdaBoost)

– Sample-based weighting (Evaluated to be the best)

– Hybrid weighting
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Graph Classification with Boosting 
[Kudo, Maeda and Matsumoto, NIPS’04]

• Decision stump
– If a molecule    contains    , it is classified as   

• Gain

– Find a decision stump (subgraph) which maximizes gain

• Boosting with weight vector  
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Sampling and Ensemble 
[Cheng et al., In Preparation]

• Many real graph datasets are extremely 
skewed
– Aids antiviral screen data: 1% active samples
– NCI anti-cancer data: 5% active samples

• Traditional learning methods tend to be biased 
towards the majority class and ignore the 
minority class

• The cost of misclassifying minority examples is 
usually huge
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Sampling
• Repeated samples of the positive class
• Under-samples of the negative class
• Re-balance the data distribution

- - -
- - - -

- - - - -
- - - -

+

- -+ - -+ - -+ - -+…
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Balanced Data Ensemble

The error of each classifier is independent, could be reduced 
through ensemble.

- -+ - -+ - -+ - -+…

C1 C2 C3 Ck…

∑
=

=
k

i

iE xf
k

xf
1

)(1)(

FS-based 
Classification … … FS-based 

Classification
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ROC Curve
Sampling and ensemble
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ROC50 Comparison

SE: Sampling + Ensemble FS: Single model with frequent subgraphs
GF: Single model with graph fragments
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Tutorial Outline
Frequent Pattern Mining

Classification Overview

Associative Classification

Substructure-Based Graph Classification

Direct Mining of Discriminative Patterns

Integration with Other Machine Learning Techniques

Conclusions and Future Directions
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Conclusions

• Frequent pattern is a discriminative feature in 
classifying both structured and unstructured data.

• Direct mining approach can find the most 
discriminative pattern with significant speedup.

• When integrated with boosting or ensemble, the 
performance of pattern-based classification can 
be further enhanced.
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Future Directions
• Mining more complicated patterns

– Direct mining top-k significant patterns
– Mining approximate patterns

• Integration with other machine learning tasks
– Semi-supervised and unsupervised learning
– Domain adaptive learning

• Applications: Mining colossal discriminative 
patterns?
– Software bug detection and localization in large programs
– Outlier detection in large networks

• Money laundering in wired transfer network
• Web spam in internet
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hcheng@se.cuhk.edu.hk

http://www.se.cuhk.edu.hk/~hcheng
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