
A Monte Carlo Algorithm for Cold Start Recommendation

Yu Rong
The Chinese University of

Hong Kong
yrong@se.cuhk.edu.hk

Xiao Wen
The Chinese University of

Hong Kong
wenx@se.cuhk.edu.hk

Hong Cheng
The Chinese University of

Hong Kong
hcheng@se.cuhk.edu.hk

ABSTRACT
Recommendation systems have been widely used in E-commerce
sites, social networks, etc. One of the core tasks in rec-
ommendation systems is to predict the users’ ratings on
items. Although many models and algorithms have been
proposed, how to make accurate prediction for new users
with extremely few rating records still remains a big chal-
lenge, which is called the cold start problem. Many exist-
ing methods utilize additional information, such as social
graphs, to cope with the cold start problem. However, the
side information may not always be available. In contrast
to such methods, we propose a more general solution to ad-
dress the cold start problem based on the observed user rat-
ing records only. Specifically we define a random walk on a
bipartite graph of users and items to simulate the preference
propagation among users, in order to alleviate the data spar-
sity problem for cold start users. Then we propose a Monte
Carlo algorithm to estimate the similarity between different
users. This algorithm takes a precomputation approach, and
thus can efficiently compute the user similarity given any
new user for rating prediction. In addition, our algorithm
can easily handle dynamic updates and can be parallelized
naturally, which are crucial for large recommendation sys-
tems. Theoretical analysis is presented to demonstrate the
efficiency and effectiveness of our algorithm, and extensive
experiments also confirm our theoretical findings.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms
Algorithms, Experimentation

Keywords
Preference propagation; random walk on bipartite graph;
Monte Carlo simulation; cold start

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2567978.

1. INTRODUCTION
With the huge volume of information available on the

Web, it is necessary to help users filter overloaded data
and extract relevant information. As a result, recommen-
dation systems have been widely used in E-commerce sites,
social networks, etc. An important recommendation task
is to predict the missing ratings according to users’ histor-
ical rating records. One of the most popular recommen-
dation frameworks to address this problem is Collaborative
Filtering (CF). Generally, CF methods can be divided into
memory-based approach [21, 22] and model-based approach
[14, 15, 20]. Memory-based approach, such as user-based
method [21] and item-based method [22], is now widely used
in practice. In recent years, model-based approach, espe-
cially the latent factor model based on matrix factorization,
has attracted a lot of attention in research. Many matrix
factorization (MF) methods have been proposed [14, 15, 20].

However, challenges still remain in recommendation sys-
tems, such as the cold start problem, dynamic model update
and the scalability issue. Cold start is one of the most com-
mon but crucial problems in the real-world recommendation
tasks, which is defined as how to provide accurate recommen-
dations for new users. Because new users often have very
few records in the system, it is hard to guess their prefer-
ences given the insufficient information. While many MF
methods [14, 15, 20] achieve very good performance in the
warm start situation, they cannot obtain satisfactory predic-
tion accuracy in the cold start situation due to data sparsity.
What’s more, they may cause overfitting. In order to solve
the data sparsity problem, many models have been proposed
[27, 8, 10, 17] which utilize additional information, such as
social relationships, to help improve the prediction accuracy.
However, in many applications, especially the E-commerce
sites, lack of such side information limits the successful ap-
plication of these models.

Furthermore, any recommendation systems should not be
static. Users are constantly added into the system, so are
the new ratings made by existing users. It is desirable that
a recommendation system can efficiently deal with the dy-
namic changes for model update. However, the MF methods
have to re-factor the whole rating matrix given any changes,
which is time-consuming and impractical.

Motivated by the above issues, we propose a novel Monte
Carlo algorithm which utilizes the preference propagation
between users to enhance the recommendation performance.
We model the ratings as a bipartite graph between users and
items and construct a random walk on this graph. This ran-
dom walk process can effectively simulate the propagation

327

of user’s rating preference to other users, providing an es-
timate of the user similarity. We design an efficient Monte
Carlo algorithm on this random walk process, which can
precompute the similarity between existing users in a rec-
ommendation system as the model. Given any target user,
the model can be easily applied for predicting his missing
ratings. Our algorithm can solve the cold start problem
very well, especially for the extremely cold start situation
since the propagated preference of users can alleviate the
data sparsity issue. What’s more, our algorithm can easily
handle dynamic updates and can be parallelized naturally,
which are crucial for handling large recommendation sys-
tems.

The main contributions of this work are summarized as
follows.

• We define a random walk process to simulate the pref-
erence propagation among users based on the rating
information only. This can alleviate the data sparsity
problem for cold start users.

• A Monte Carlo algorithm based on the random walk
process is designed to estimate the user similarity. Our
algorithm works independently of new target users,
thus allows us to separate the model training phase
and the rating prediction phase. In particular, the
model can be trained offline first and applied subse-
quently for rating prediction in an efficient way.

• We provide theoretical analysis on the accuracy and
convergence of our algorithm. Extensive experiments
on real-world large data sets show the superiority of
our method and confirm our theoretical findings.

The rest of the paper is organized as follows. We formally
define the rating prediction problem and introduce prelim-
inary concepts in Section 2. Our random walk model is
introduced in Section 3. In Section 4 we propose a Monte
Carlo algorithm to efficiently estimate the user similarity
and provide theoretical analysis. Experimental results are
presented in Section 5. We discuss related work in Section
6 and conclude our work in Section 7.

2. PRELIMINARY CONCEPTS

2.1 Problem Definition
In a recommendation system we have a user set U =

{u1, . . . , um} and an item set O = {o1, . . . , on}. For any user
u ∈ U , the set of items rated by u is denoted as Ou ⊆ O. For
any item o ∈ O, the set of users who have rated o is denoted
as Uo ⊆ U . The rating of user ui on item oj is denoted by
rij , which can be any real number, but is often represented
by an integer in the range [1, 5]. We use a rating matrix R
of size m × n to represent the ratings between the user set
U and the item set O. We set rij = 0 in R if user ui has not
rated item oj .

Definition 1. (Rating Prediction) Given the rating ma-
trix R and the set of items Ouτ rated by a target user uτ ,
predict the ratings rτj of the other items oj ∈ O \ Ouτ by
uτ . The predicted rating is denoted by r̂τj .

There have been many approaches for solving the rating
prediction problem in the literature. In this paper we adopt

the user-based collaborative filtering approach [21] which
uses the similarity between users to make the rating pre-
diction. Specifically, for any user u, we define a similarity
vector cu to indicate the preference similarity of u to other
users, the i-th element of which, denoted as cu(i), quanti-
fies the degree that user u is similar to user ui ∈ U . Then
we use the weighted mean with user preference to make the
prediction as follows:

r̂τj = r̄τ − r̄a +

∑
ui∈Uoj

cτ (i) · rij∑
ui∈Uoj

cτ (i)
. (1)

In Equation (1), r̄τ is the average rating of user uτ in Ouτ ,
and r̄a is the average of all available ratings in R. We ob-
serve that different users have different rating biases, for
example, a critical user may give consistently low ratings to
all items. Thus we remove the common rating bias r̄a and
add the individual bias r̄τ to improve the accuracy of rating
prediction.

In the user-based collaborative filtering recommendation
framework, the key issue is how to compute the similarity
vector cu for any user u for accurate rating prediction. Many
existing studies rely on additional information, for example,
social network [23, 9] or voting graph [2], to estimate the
trust between users. However, such additional information
may not always be available for the concerned user set. Thus
we propose to estimate the user similarity vector from the
available ratings without any side information. So our task
is defined as follows.

Definition 2. (Similarity Estimation) Given the rating
matrix R and the set of items Ouτ rated by a target user
uτ , estimate the similarity vector cτ of uτ from R.

For a target user uτ who has rated a large enough set of
items Ouτ , we can make accurate predictions for uτ . How-
ever, for a new user who has very limited rating information
available, making accurate predictions for such a cold start
user remains a big challenge. In this work we focus on pre-
dicting the missing ratings of the cold start users.

2.2 Challenges and Intuitions
In this section we analyze the challenges of the cold start

problem and describe the intuitions behind our approach.
The basic idea of the collaborative filtering framework is

to find the most similar user/item as the recommendation
based on the observed information from the target user uτ

[21, 22]. Unfortunately, this approach only utilizes a very
small portion of information embedded in the rating matrix
and may lead to poor prediction performance. The situation
becomes worse for the cold start users who have very limited
rating information. The essence of the cold start problem is
the data sparsity. So the key issue to address the cold start
problem is how to make the most use of the available rating
information.

Instead of considering only the users who have common
rated items with the target user uτ , we can utilize more data
to estimate similarity based on the preference propagation.
Consider the following illustrative example as depicted in
Figure 1. For the target user and two existing users A, B,
the numbers in the circles represent their ratings on cor-
responding items. The task is to predict the target user’s
missing ratings on items o4, . . . , o10. Traditional recommen-
dation methods will regard user A as a similar user based

328

� � � � �

� � � � � � � � � �

� � � � �

Target User:

User A:

User B:

Observed Items Missing Data

Figure 1: An example of rating prediction

Target User

User A

User B

Common Items Common Items

Observed Ratings

B’
s r

at
ed

ite
m

s

Predicted Ratings

Preference Propagation

Figure 2: The user-item graph constructed from
Figure 1

on his ratings on items o1, o2, o3, and then predict the tar-
get user’s ratings on o6, o7 by A’s rating profile. However,
the target user’s ratings on items o8, . . . , o10 still remain un-
known under this simple similarity based recommendation.

From this example, a crucial observation we make is that
besides these available ratings, we can infer the structural
information of users and items if we model them as a bipar-
tite graph. Consider the graph constructed between users
and items as depicted in Figure 2. We can observe that the
target user and user A have similar ratings on a subset of
items, and users A, B also have similar ratings on another
subset of items. Although the target user and user B may
not have any connections in the rating system, it is reason-
able to propagate the preference from the target user to B,
and exploit B’s ratings to make predictions for the target
user on items o8, . . . , o10. That is, we can estimate the sim-
ilarity between the target user and user B by the preference
propagation over the user-item graph. This example shows
that we can infer more information from the bipartite graph
for more effective rating prediction, especially for cold start
users with very few rating records.

3. RANDOM WALK ON BIPARTITE GRAPH
We model the users, the items and the ratings as an undi-

rected weighted bipartite graph G = (U, O, ER), where the
users U and the items O form two sets of vertices, and ER

denotes the edge set. There exists an edge between user ui

and item oj if rij �= 0. We define a random walk on the bi-
partite graph G to model the preference propagation. Anal-
ogous to personalized PageRank [11] in which the stationary
distribution represents the importance of web pages, in our

model the stationary distribution reflects the similarity be-
tween users, which is expressed by the similarity vector.

3.1 Random Walk Construction
As the stationary distribution in a bipartite graph is re-

lated to the parity of number of steps [16], we force our
random walk to start from and end at user nodes in G, as-
suring that we obtain the stationary distribution over the
user set. Thus we construct an even-length random walk
process {Zt}t≥0 on G from user to user to estimate the sim-

ilarity vector for any single user. {Zt}t≥0 is comprised of
two types of walks on G:
Type 1. From user ui to item oj. Type 1 walk re-
flects a user’s preference over different items. Similar to the
random walk on the homogeneous graph, we assume that a
user chooses his rated items uniformly. Thus, the transition
probability of type 1 walk is defined as:

P (ui → oj) =
1

|Oui |
, (2)

where oj ∈ Oui .
Type 2. From item oj to user uk. Type 2 walk indicates
the transition from an item to a user. Based on the idea of
preference propagation, there is a larger chance to jump to
a user uk who gives a more similar rating on oj as the user
ui in the previous step of the random walk process. Thus
we define the transition probability of type 2 walk as:

P (oj → uk) =
sim(rij , rkj)∑

up∈Uoj
sim(rij , rpj)

, (3)

where oj ∈ Ouk , and sim(rij , rkj) measures the similarity
between ratings rij and rkj . In this paper, we measure the
rating similarity by

sim(rij , rkj) = MAXSCORE − |rij − rkj |, (4)

where MAXSCORE is the maximum rating score in the
system.

Next we define the transition probability between two
users based on length-2 walk. For a length-2 walk from
user ui to user uk connected by item oj , we can write the
transition probability from ui to uk as:

p(uk|ui, oj) = P (ui → oj)P (oj → uk). (5)

As there can be more than one length-2 path between two
users, we sum up the probability of each such path as the
transition probability from ui to uk:

pi,k =
∑
oj∈ξ

p(uk|ui, oj)

ξ = Oui ∩ Ouk .

(6)

Based on this definition of transition probability, we denote
the transition matrix between users as P . Then we define
the random walk process {Zt}t≥0 as follows:

Definition 3. (Random Walk on Bipartite Graph)
{Zt}t≥0 begins with the user ui, i.e., ut=0 = ui. At each step
this random walk terminates with probability α, or makes
the transition between two users according to the matrix
P with probability 1 − α. Each step contains two types of
transitions: a type 1 walk from a user to an item according
to (2), followed by a type 2 walk from the item to another
user according to (3).

329

4. SAMPLING ALGORITHM
In this section we present the sampling algorithm to es-

timate the stationary distribution of {Zt}t≥0. For conve-
nience, we permute the target user uτ to the first place in
matrix P and denote the stationary distribution (similarity
vector) as cτ . We call u ∈ U \ {uτ} a training user.

4.1 Online Sampling Algorithm
First we propose an online sampling algorithm for a target

user. In {Zt}t≥0, the transition matrix P̃ is:

P̃ = (1 − α)P + α�1m×1c0. (7)

The stationary distribution cτ satisfies the following equal-
ity:

cτ = cτ P̃ . (8)

According to (7) and (8), we have:

cτ = (1 − α)cτ P + αc0. (9)

In (7), c0 = [1,�01×(m−1)] is the initial distribution deter-
mined by the target user uτ , because {Zt}t≥0 always starts

from uτ . Inspired from [3], we design the basic Monte Carlo
algorithm to estimate the similarity vector cτ of uτ as fol-
lows.

Algorithm 1. Simulate N runs of random walk process
{Zt}t≥0 starting from the target user uτ . Evaluate cτ (j)
as the fraction of N random walks which end at user j =
1, . . . , m.

Let ĉτ,N(j) be the estimator of cτ (j) obtained by Algo-
rithm 1. According to [3]:

E(ĉτ,N(j)) = cτ (j)

V ar(ĉτ,N(j)) = N−1cτ (j)(1 − cτ (j)).
(10)

To guarantee the precision of the estimation, N should be of
the order m2 [3]. But in practice, m2 rounds of simulations
are not necessary. In most cases O(m) rounds are enough
for accurate estimation.

4.2 Monte Carlo Algorithm with Precompu-
tation

In the previous section we have introduced the online
Monte Carlo algorithm (Algorithm 1) to estimate the sim-
ilarity vector for the target user. Although this algorithm
is quite intuitive and easy to implement, it is impractical
in reality, because we need to simulate N runs of random
walk process for every target user to estimate his similarity
vector. When the number of target users is very large, the
random walk simulation is very time-consuming. Thus we
design another Monte Carlo algorithm with a precomputa-
tion approach to build a model to estimate any target users’
similarity vector.

First, we divide the matrix P into four blocks in the fol-
lowing form:

P =

[
πττ πτ ·

πT
·τ P∗

]
. (11)

In (11), πτ · is a 1 × (m − 1) transition vector from the tar-
get user uτ to the training users, and π·τ is a 1 × (m − 1)
transition vector from the training users to the target user
uτ , πττ is the transition probability from uτ to himself, P∗

is the transition matrix of the training user set. Here we
set πττ = 0, π·τ = �01×(m−1) by approximation. With this,
we simply do not jump back to the target user in a random
walk. This approximation allows us to separate the train-
ing users from the target user, and thus we can precompute
the similarity between the training users independently of
the target user. This approximation is also reasonable in
the sense that we do not need the similarity of user uτ to
himself for rating prediction.

From (9), we can obtain the stationary distribution c:

c = αc0(Ĩ − (1 − α)P)−1, (12)

where Ĩ is an m×m identity matrix. According to (11), we

can get a closed form of (Ĩ − (1 − α)P)−1:

(Ĩ − (1 − α)P)−1 =

[
1 (1 − α)πτ ·(I − (1 − α)P∗)

−1

�0T (I − (1 − α)P∗)
−1

]
,

(13)
where I is an (m − 1) × (m − 1) identity matrix. So the
stationary distribution can be written as:

c = α[1, (1 − α)πτ ·(I − (1 − α)P∗)
−1]. (14)

Since the first component of c is the similarity to the target
user himself, we only need the last (m − 1) components of
c, which correspond to the target user’s similarity cτ to the
(m − 1) training users.

After normalization, we have

cτ = απτ ·(I − (1 − α)P∗)
−1. (15)

In (15), how to estimate (I−(1−α)P∗)
−1 is the key problem.

Note that for all i, j = 1, . . . , m − 1, the element wij of the
matrix

W = (I − (1 − α)P∗)
−1 =

∞∑
k=0

(1 − α)k(P∗)
k (16)

can be regarded as the average number of times that the
random walk {Zt}t≥0 visits a user j given that this random
walk starts at user i. Denote

w·j =

m−1∑
i=1

πτiwij . (17)

So

cτ (j) = αw·j . (18)

Thus we can propose an estimator based on a complete path
of the random walk {Zt}t≥0.

Algorithm 2. MC Complete Path Algorithm This
algorithm consists of three stages:

1. Precomputation stage: Simulate the random walk
{Zt}t≥0 exactly N times from each training user. For
any user i, evaluate wij as the average number of visits
to user j given that the random walk starts from i,
denoted as w̄ij .

2. Similarity estimation stage: For any target user
uτ , we calculate πτ · by enumerating all the paths from
uτ to the training users. Then we estimate cτ (j) as

ĉτ (j) = α

m−1∑
i=1

πτiw̄ij . (19)

330

3. Rating prediction stage: For the target user uτ , the
estimated rating on item oj is

r̂τj = r̄τ − r̄a +

∑
ui∈Uoj

ĉτ (i) · rij∑
ui∈Uoj

ĉτ (i)
. (20)

Different from Algorithm 1, Algorithm 2 precomputes the
matrix (I − (1−α)P∗)

−1 in (15) by Monte Carlo simulation
on the training set in stage 1. This precomputation can be
done offline before any target user arrives for rating predic-
tion. Given any target user, we only need to compute πτ ·

to estimate the similarity vector cτ . The precomputation
result in stage 1 can be reused for all target users for rat-
ing prediction. Thus the computational cost can be reduced
remarkably.

4.2.1 Theoretical Analysis
The key issue in Algorithm 2 is how many rounds to sim-

ulate for each training user in stage 1 to guarantee the esti-
mation accuracy. In this section we will provide a detailed
theoretical analysis on: (1) the accuracy of the estimator,
and (2) the simulation round to bound the error of the esti-
mator.

Expectation and Variance of ĉτ (j).

Definition 4. Let Wij be a random variable distributed as
the average number of visits to user j = 1, . . . , m− 1 by the
random walk {Zt}t≥0 given that the random walk initiates
at user i = 1, . . . , m − 1. Formally,

P (Wij = x) = P

([
∞∑

t=0

1{Zt=j}

]
= x|Z0 = i

)
, x = 0, 1, . . . ,

where 1{·} is the indicator function.

Then let W
(l)
ij , l ≥ 1, be independent random variables

distributed as Wij . The estimator produced by Algorithm
2 can be written as

ĉτ (j) =
α

N

N∑
l=1

m−1∑
i=1

πτiW
(l)
ij .

For i, j = 1, . . . , m − 1, define

W̄ij =
1

N

N∑
l=1

W
(l)
ij

W̄·j =
m−1∑
i=1

πτiW̄ij ,

then the estimator can be rewritten as

ĉτ (j) = αW̄·j .

Similar to the analysis in [3], we have

E(Wij) = wij =
qij

1 − qjj

V ar(Wij) =
1 + qjj

1 − qjj
wij − w2

ij ,

where qij is the probability that starting from user i, the
random walk {Zt}t≥0 reaches user j, and it is obvious qjj ≤
1 − α for all j.

Assuming that all Wij ’s are independent, we obtain

E(ĉτ (j)) = E(αW̄·j) = αE(

m−1∑
i=1

πτiW̄ij)

= α

m−1∑
i=1

πτiE(W̄ij) = α

m−1∑
i=1

πτiwij

= cτ (j) (21)

and

V ar(ĉτ (j)) = V ar(αW̄·j)

= α2V ar(

m−1∑
i=1

πτiW̄ij)

= α2
m−1∑
i=1

π2
τiV ar(W̄ij)

=
α2

N

m−1∑
i=1

π2
τi(

1 + qjj

1 − qjj
wij − w2

ij)

≤
α2

N
max

i
(πτi) ·

1 + qjj

1 − qjj
w·j

≤
α2

N
max

i
(πτi) ·

2 − α

α
w·j

≤
2 − α

N
cτ (j) (22)

(21) shows that our estimator by Algorithm 2 is unbiased.
In the following we will use (22) to bound the simulation
round N by the central limit theorem.

Estimation of Simulation Round N.
We have the following theorem with proof to bound the sim-
ulation round N .

Theorem 1. If we run N = (2 − α)
x2

1−β/2

ε2cτ (j)
rounds of

random walk for each training user, then with probability
1 − β, the estimator ĉτ (j) output by Algorithm 2 satisfies

|ĉτ (j) − cτ (j)| < εcτ (j),

where α is the restart probability, cτ (j) is the target user’s
similarity to training user uj , and x1−β/2 is (1 − β/2)-
quantile of the standard normal distribution.

Proof. Consider the confidence interval for ĉτ (j) defined
as

P (|ĉτ (j) − cτ (j)| < εcτ (j)) ≥ 1 − β.

Since ĉτ (j) is a sum of a large number of terms, the random

variable [ĉτ (j) − cτ (j)]/
√

V ar(ĉτ (j)) has approximately a
standard normal distribution. Thus, we deduce

εcτ (j)/
√

V ar(ĉτ (j)) ≥ x1−β/2

which results in

N ≥ (2 − α)
x2

1−β/2

ε2cτ (j)
,

where x1−β/2 is (1 − β/2)-quantile of the standard normal
distribution.

According to Theorem 1, given ε and β, the simulation
round N is related to cτ (j) and the restart probability α.

331

With a larger α, we can achieve the same accuracy with
fewer simulation rounds. From (14), we know that the sta-
tionary distribution will be affected by α. Especially when
α = 1, W becomes an identity matrix according to (16), so
no simulation is needed.

On the other hand, cτ (j) affects N in a way that smaller
cτ (j) leads to more simulations. It takes more simulations
to estimate cτ (j) when its value is small. However, from
(20), the users who are more similar to the target user have
more influence on the rating prediction, so it is important
for us to obtain an accurate estimation for those users who
have very high similarity value. A reasonable assumption is
that we should care more about those users whose similarity
is larger than the average, i.e., cτ (j) ≥ 1

m−1
. Under this

circumstance we have

N = (2 − α)
x2

1−β/2

ε2cτ (j)

≤
(2 − α)x2

1−β/2(m − 1)

ε2
,

which means we only conduct O(m) rounds of simulations
for each training user to achieve the given accuracy.

4.3 Extensions

4.3.1 Parallel Implementation
One of the advantages of the Monte Carlo simulation is

that simulations are independent of each other, thus we can
easily parallelize our precomputation algorithm in a shared-
memory environment. Assume that we have t processors,
and the number of training users is m. The training users
are evenly distributed across the processors and each pro-
cessor is assigned m/t training users for the Monte Carlo
simulation. Each processor performs O(Tseq/t) amount of
computation, where Tseq is the time needed to solve the
same problem on a single processor. Thus Algorithm 2 can
achieve a speedup of t using t processors in parallel.

4.3.2 Dynamic Updates
Owing to the Monte Carlo method, our approach can be

easily extended to handle dynamic updates in the recom-
mendation system. A common scenario is that new users
along with their ratings are added who can serve as addi-
tional training users. Instead of recomputing the model from
scratch, we treat a new training user as a target user and
compute the stationary distribution based on the original
model to approximate the new model. This approximation
treats the new training users as having no connections with
each other. For a small number of new training users, this
approximation works well.

5. EXPERIMENTS

5.1 Data Set Description
To evaluate the performance and robustness of our al-

gorithm, we conduct a series of experiments on five real-
world data sets: MovieLens-1M1 (ML-1M), Epinions [18],
Bookcrossing [28] (Bc), Amazon2 and Yahoo! Music R13.

1http://www.grouplens.org/datasets/movielens/
2http://memetracker.org/
3http://webscope.sandbox.yahoo.com/

The ratings in the first four data sets are real numbers in
the range [1, 5], while the ratings in Yahoo! Music are in-
tegers in the range [1, 100]. Table 1 shows the statistics of
these data sets.

Table 1: Statistics of The Data Sets
#users #items #ratings avg density

ML-1M 6040 3952 1,000,209 4.19%
Epinions 40,163 139,738 664,823 0.012%
Bc 105,274 340,545 1,149,766 0.0032%
Amazon 1,555,170 402,724 6,359,182 0.001%
Yahoo! 1,948,882 1,101,749 81,113,494 0.0038%

5.1.1 Experimental Configuration
We perform the test using 4-fold cross validation to reduce

the influence of sampling. For each test user, we split his
ratings into two parts: observed items and held-out items.
Our task is to use the ratings of the observed items to predict
the ratings of the held-out items. We use the split ratio of
10 : 90, i.e., for any test user, we use 10% of the items
rated by the user to predict the ratings of the remaining
90% items. Since we are particularly interested in the cold
start problem, we divide the test users into three subsets
based on the number of their observed items. Table 2 shows
the configuration in the experiment, and Table 3 reports the
percentage of test users in different settings for the first four
smaller data sets. The experiment on the largest data set,
Yahoo! Music, is reported in Section 5.2.3.

Table 2: Experimental Configuration
of observed item

Extremely cold start users (D1) ≤ 3
Cold start users (D4) [4, 9]
Warm start users (D10) ≥ 10

Table 3: Percentage of Different Types of Test Users
D1 D4 D10

ML-1M 13.36% 35.04% 51.60%
Epinions 44.42% 46.75% 8.83%
Bc 32.30% 41.98% 25.72%
Amazon 45.23% 41.62% 13.15%

5.1.2 Evaluation Metrics
We use Mean Absolute Error as the evaluation metric to

measure the prediction quality. This metric has been widely
used in the recommendation problem [7]:

MAEi =
∑

j∈Oui

|rij − r̂ij |

|Oui |
, (23)

where rij and r̂ij are the true rating and predicted rating
of item oj by user ui, respectively. We report the average
MAE on the test set.

5.1.3 Candidate Methods for Comparison
Our method Monte Carlo Complete Path algorithm is de-

noted as MCCP. We compare it with the following state-
of-the-art recommendation methods.

332

Table 4: MAE(Smaller is Better) Comparison with Other Algorithms

ML-1M Epinions
D1 D4 D10 Overall D1 D4 D10 Overall

MCCP 0.7823 0.7668 0.7027 0.7117 0.8116 0.7983 0.7749 0.7946
SVD++ 0.8067 0.7793 0.7272 0.7346 0.8859 0.8764 0.8626 0.8746
CDTF 0.8716 0.8182 0.7624 0.7708 0.9509 0.9434 0.9174 0.9375
LFL 0.8100 0.7892 0.7609 0.7649 1.3435 1.3222 1.2600 1.3091

Bookcrossing Amazon
D1 D4 D10 Overall D1 D4 D10 Overall

MCCP 1.3682 1.2928 1.0026 1.0938 0.8013 0.7670 0.6700 0.7234
SVD++ 1.4664 1.4093 1.0488 1.1585 0.9324 0.8876 0.7605 0.8301
CDTF 1.4741 1.4172 1.1571 1.2375 - - - -
LFL 1.5884 1.6457 1.6816 1.6666 1.3730 1.3410 1.1526 1.2455

• SVD++. This is a latent factor model which com-
bines the matrix factorization technique with implicit
feedback from the users [13].

• CDTF. This is a generalized Cross Domain Triadic
Factorization over the triadic relation user-item-domain
[8].

• LFL. This is a latent feature log-linear model for the
dyadic prediction task [19].

To provide the sufficient samples to do the evaluation, in
each data set, we select users who have rated more than 20
items, and items which have been rated by at least 5 users
in the test set.

5.2 Experimental Results

5.2.1 Rating Prediction Performance
Table 4 presents the MAE results of all methods on the

first four data sets. The column “Overall” reports the MAE
performance on the whole test user set, i.e., D1 ∪D4 ∪D10.
Note that CDTF cannot terminate in 48 hours on Amazon.
For our method we set the restart probability α = 0.8 and
the number of simulations N = m according to our theo-
retical analysis on convergence in Section 4.2.1. As shown
in Table 4, our method MCCP consistently outperforms the
other methods on all four data sets in both the cold start
and warm start settings. This indicates that our method
is very effective for recommendation on sparse data sets.
Among the three comparison methods, SVD++ performs
better than CDTF and LFL, and LFL has the worst predic-
tion performance.

5.2.2 Impact of Parameters
Our method has two parameters: the restart probability α

and the number of simulations N . In this section we will in-
vestigate the sensitivity of the rating prediction performance
w.r.t. α and N , respectively.
The restart probability α: We use ML-1M to study the
impact of the restart probability α. We fix the simulation
round N = m, and vary α from 0.1 to 1.0 linearly. For
each configuration, we run 4-fold cross validation. Figure 3
presents the average MAE on the whole test user set, i.e.,
D1 ∪ D4 ∪D10, under different restart probability α. When
α increases from 0.1 to 0.9, the MAE becomes lower, which
means a better recommendation performance. This result

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7116

0.7118

0.7120

0.7122

0.7124

0.7126

Restart Probability
Av

er
ag

e
M

AE

Figure 3: Parameter sensitivity w.r.t. α

log(m) log(m)+0.5m m
0.7116

0.7117

0.7118

0.7119

0.7120

0.7121

Simulation Number

Av
er

ag
e

M
AE

Figure 4: Parameter sensitivity w.r.t. N

indicates that in reality, the influence of preference propaga-
tion for rating prediction decays quickly in a small number of
hops. This also validates the conclusion that a larger restart
probability leads to fewer simulation rounds for a given error
tolerance in our theoretical analysis. But when α = 1.0, the
MAE increases again indicating a worse performance. This
is because when α = 1.0, there is no random walk simulation
between training users to propagate the preference among
them. Thus the algorithm performs rating prediction only
based on the transition from the target user to training users
through their commonly rated items. The performance de-
terioration is most notable on the extremely cold start situ-
ation (D1), when a target user has no more than 3 observed
ratings. This confirms the effectiveness of the propagated

333

preference for cold start recommendation from a different
perspective. Finally, we observe that the maximum MAE
difference under different restart probability is only 0.0008,
which indicates that our approach is very robust to the vari-
ation of restart probability.
The number of simulations N : We evaluate the impact
of the simulation round on the prediction performance. We
fix the restart probability α = 0.8 and vary the number of
simulation from N = log(m) to m linearly. Figure 4 shows
the average MAE under different rounds of simulation. We
can conclude that our method performs already well even
with N = log(m) rounds of simulation. More simulation
rounds yield a little improvement on the prediction accuracy.
This result shows that the theoretical bound on convergence
we analyze in Section 4.2.1 is quite conservative in the real
application.

5.2.3 Scalability Test
As mentioned in Section 4.3.1, our method can be par-

allelized naturally, which makes our algorithm suitable for
handling big data. We conduct an experiment on the Ya-
hoo! Music data set, one of the largest open data sets on
user-item ratings, to evaluate the scalability of our approach.
Our precomputation algorithm (MCCP) is implemented in
Matlab and C++. We run 4 Matlab processes and each
process runs 10 threads using the Parallel Computing Tool-
box in Matlab. The experiment is conducted on a Windows
server with an Intel Xeon 2.4GHz CPU and 384GB mem-
ory. For the testing process, we randomly select 2000 users
in the test set, and set the split ratio as 5 : 95 to divide
the ratings into observed items and held-out items. We fol-
low the configuration in Table 2 to divide the test users into
D1, D4, D10 based on the number of observed items. Due to
the scale of this data set, most comparison methods cannot
finish in reasonable time. So we only report the performance
of SVD++ and our method MCCP.

Table 5: MAE on Yahoo! Music
D1 D4 D10 Overall

MCCP 14.0961 14.6828 17.4747 14.9501
SVD++ 13.6275 14.8153 15.7766 15.0996

Table 6: Total Training Time on Yahoo! Music
Training Time (seconds)

MCCP 21,564
SVD++ 85,918

Table 5 presents the MAE of the predicted ratings in the
range [1, 100]. We can see that the MAE of SVD++ is
slightly lower than that of MCCP in extremely cold start
users (D1) and warm start users (D10), while MCCP achieves
a better performance in cold start users (D4). MCCP is su-
perior to SVD++ in the overall test set as well.

Table 6 shows the total model training time of MCCP and
SVD++ for the three test configurations. MCCP performs
model training by Monte Carlo simulation independently of
the test set. For SVD++, we embed the three test sets
D1, D4, D10 into the training set and train the model once.
The training time of SVD++ is 4 times longer than that of
MCCP. Importantly, MCCP is a precomputation algorithm
which is independent of test users. Given a training set, it
only needs to train a model once which can be subsequently

applied on different test users. In contrast, SVD++ needs
to embed the test set into the training process for matrix
factorization. For the real world application, we need to
make the recommendation for any new user when he enters
the system. Our precomputation method can handle this
situation much better than SVD++.

5.2.4 Handling Dynamic Updates
In this experiment we test the performance of our algo-

rithm in a dynamic environment. To simulate the situation
where new training users are added to the system, we divide
the training set of the ML-1M data evenly into 10 parts.
We use 1, 2, 3, 4, or 5 parts as the new training set respec-
tively, and the remaining as the original training set. The
new data ratio, defined as the percentage of new training
users w.r.t. the original training users, varies from 11.1% to
100%. We evaluate the rating prediction performance of our
incremental computing approach introduced in Section 4.3.2
given new training users. For comparison, we use the recom-
puting approach as a baseline, which simply combines the
original training set and the new training set and re-runs the
random walk simulation. Figure 5 reports the MAE scores
for different test configurations.

We can see that MAE increases very little using the in-
cremental computing approach, which demonstrates that
the incremental approach can achieve almost the same re-
sult with the recomputing approach. Another observation
is that, under all test configurations, the MAE of the in-
cremental computing approach increases slightly with the
increasing of the new data ratio. This is because the in-
cremental approach simply treats the new training users as
having no connections with each other, and thus ignores the
preference propagation among them. When the user similar-
ity among a large number of training users is not considered,
the rating prediction performance will be compromised, es-
pecially for the cold start users. On the other hand, the
prediction performance of the recomputing approach is not
affected by the varying ratio of new training data, as it com-
bines the original and new training sets (always equivalent
to the 10 parts of training users) for model training.

6. RELATED WORK
In this section, we will review some existing works on rec-

ommendation and the cold start problem.
Memory based model. The memory based model is the
classical model in Collaborative Filtering. Two early rep-
resentatives are user-based [21] and item-based [22] models,
which calculate the similarity between users or items. Since
memory based models cannot handle the cold start problem
well, a lot of follow-up studies try to refine the model to ad-
dress the cold start problem. Some additional information,
such as item taxonomy information [24], is used to refine the
prediction results. Some other methods [4] define a new sim-
ilarity measure to gain more reliable recommendation from
users. The modification of the basic model, such as an error
reflection model [12] can also enhance the prediction accu-
racy.
Latent factor model. Another group of very popular
model in the past decade is the latent factor model based
on matrix factorization, such as Singular Value Decomposi-
tion (SVD) [14], Non-negative Matrix Factorization (NMF)
[15], Probabilistic Matrix Factorization (PMF) [20] and so
on. There are a lot of studies addressing the cold start prob-

334

11.1% 25% 42.8% 66.7% 100.0%

0.7560

0.7580

0.7600

0.7620

0.7640

0.7660

0.7680

New Data Ratio

M
AE

D1
incremental
recomputing

11.1% 25% 42.8% 66.7% 100.0%0.7560

0.7570

0.7580

0.7590

0.7600

New Data Ratio

M
AE

D4
incremental
recomputing

11.1% 25% 42.8% 66.7% 100.0%
0.7030

0.7035

0.7040

0.7045

0.7050

0.7055

New Data Ratio

M
AE

D10
incremental
recomputing

Figure 5: The performance comparison between dynamic update algorithm and original algorithm

lem based on this model. Some methods consider the side
information such as user/item profiles [27], cross domain in-
formation [8] and social network [10, 17] to improve the pre-
diction accuracy. Another way to enhance the prediction
accuracy is combining the memory-based approach with the
latent factor model [13]. Since learning the latent factor is
very crucial in the latent factor model, some methods adopt
different learning schema, such as LDA model [1], log-linear
model [19] to pursue better and more reasonable learning
results. Moreover, some permutation techniques are used
for generating denser sub-matrix to make the matrix factor-
ization more accurate and efficient [26].
Random sampling model. The most related work to our
study is the random sampling model for recommendation.
Some studies employ the random sampling technique on the
side information, such as the trust network [9], item simi-
larity graph [25], contextual graph [5], to refine prediction
result. Another way is to use the random walk technique to
measure similarities between users/items, which can over-
come the sparsity problem [6] compared with the traditional
measure in memory-based model. The major difference be-
tween our method and these random sampling methods is
that, we do not use any side information for rating predic-
tion. Instead we use the preference propagation solely based
on the ratings to address the cold start problem.

7. CONCLUSION
In this paper, we study the cold start problem in the rec-

ommendation system. To overcome the data sparsity issue,
we designed a random walk process on the bipartite graph
to model the preference propagation among users. We pro-
posed an efficient algorithm which learns the preference sim-
ilarity between users in a precomputation approach, which
can be efficiently applied for rating prediction on any new
user. The nature of Monte Carlo simulation enables the par-
allel implementation of our algorithm. Theoretical analysis
is provided to guarantee the efficiency and effectiveness of
our algorithm. Extensive experimental results on real-world
data sets also confirm our theoretical findings.

8. ACKNOWLEDGMENTS
This work is supported by the Hong Kong Research Grants

Council (RGC) General Research Fund (GRF) Project No.
CUHK 411211, 411310, and the Chinese University of Hong
Kong Direct Grant No. 4055015.

9. REFERENCES
[1] D. Agarwal and B.-C. Chen. fLDA: Matrix

factorization through latent dirichlet allocation. In
WSDM, pages 91–100, 2010.

[2] R. Andersen, C. Borgs, J. Chayes, U. Feige,
A. Flaxman, A. Kalai, V. Mirrokni, and
M. Tennenholtz. Trust-based recommendation
systems: An axiomatic approach. In WWW, pages
199–208, 2008.

[3] K. Avrachenkov, N. Litvak, D. Nemirovsky, and
N. Osipova. Monte carlo methods in pagerank
computation: When one iteration is sufficient. SIAM
Journal on Numerical Analysis, 45(2):890–904, 2007.

[4] J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal.
A collaborative filtering approach to mitigate the new
user cold start problem. Knowledge-Based Systems,
26:225–238, 2012.

[5] T. Bogers. Movie recommendation using random walks
over the contextual graph. In CARS Workshop, 2010.

[6] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens.
Random-walk computation of similarities between
nodes of a graph with application to collaborative
recommendation. IEEE Transaction on Knowledge
and Data Engineering, 19(3):355–369, 2007.

[7] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, 22(1):5–53, 2004.

[8] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu.
Personalized recommendation via cross-domain triadic
factorization. In WWW, pages 595–606, 2013.

[9] M. Jamali and M. Ester. Trustwalker: A random walk
model for combining trust-based and item-based
recommendation. In KDD, pages 397–406, 2009.

[10] M. Jamali and M. Ester. A matrix factorization
technique with trust propagation for recommendation
in social networks. In RecSys, pages 135–142, 2010.

[11] G. Jeh and J. Widom. Scaling personalized web
search. In WWW, pages 271–279, 2003.

[12] H.-N. Kim, A. El-Saddik, and G.-S. Jo. Collaborative
error-reflected models for cold-start recommender
systems. Decision Support Systems, 51(3):519–531,
2011.

[13] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD,
pages 426–434, 2008.

335

[14] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[15] D. Lee and H. Seung. Algorithms for non-negative
matrix factorization. In NIPS, pages 556–562, 2001.

[16] L. Lovász. Random walks on graphs: A survey.
Combinatorics, Paul erdos is eighty, 2(1):1–46, 1993.

[17] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social
recommendation using probabilistic matrix
factorization. In CIKM, pages 931–940, 2008.

[18] P. Massa and P. Avesani. Trust-aware recommender
systems. In RecSys, pages 17–24, 2007.

[19] A. K. Menon and C. Elkan. A log-linear model with
latent features for dyadic prediction. In ICDM, pages
364–373, 2010.

[20] A. Mnih and R. Salakhutdinov. Probabilistic matrix
factorization. In NIPS, pages 1257–1264, 2007.

[21] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for
collaborative filtering of netnews. In CSCW, pages
175–186, 1994.

[22] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW, pages 285–295, 2001.

[23] F. E. Walter, S. Battiston, and F. Schweitzer. A
model of a trust-based recommendation system on a
social network. Autonomous Agents and Multi-Agent
Systems, 16(1):57–74, 2008.

[24] L.-T. Weng, Y. Xu, Y. Li, and R. Nayak. Exploiting
item taxonomy for solving cold-start problem in
recommendation making. In ICTAI, volume 2, pages
113–120, 2008.

[25] H. Yildirim and M. S. Krishnamoorthy. A random
walk method for alleviating the sparsity problem in
collaborative filtering. In RecSys, pages 131–138, 2008.

[26] Y. Zhang, M. Zhang, Y. Liu, S. Ma, and S. Feng.
Localized matrix factorization for recommendation
based on matrix block diagonal forms. In WWW,
pages 1511–1520, 2013.

[27] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix
factorizations for cold-start recommendation. In
SIGIR, pages 315–324, 2011.

[28] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In WWW, pages 22–32, 2005.

336

