
Mining Colossal Frequent Patterns by Core Pattern Fusion∗

Feida Zhu† Xifeng Yan‡ Jiawei Han† Philip S. Yu‡ Hong Cheng†

†University of Illinois at Urbana-Champaign {feidazhu, hanj, hcheng3}@cs.uiuc.edu
‡IBM T. J. Watson Research Center {xifengyan,psyu}@us.ibm.com

Abstract

Extensive research for frequent-pattern mining in the
past decade has brought forth a number of pattern mining
algorithms that are both effective and efficient. However,
the existing frequent-pattern mining algorithms encounter
challenges at mining rather large patterns, called colos-
sal frequent patterns, in the presence of an explosive num-
ber of frequent patterns. Colossal patterns are critical to
many applications, especially in domains like bioinformat-
ics. In this study, we investigate a novel mining approach
called Pattern-Fusion to efficiently find a good approxima-
tion to the colossal patterns. With Pattern-Fusion, a colos-
sal pattern is discovered by fusing its small core patterns
in one step, whereas the incremental pattern-growth mining
strategies, such as those adopted in Apriori and FP-growth,
have to examine a large number of mid-sized ones. This
property distinguishes Pattern-Fusion from all the existing
frequent pattern mining approaches and draws a new min-
ing methodology. Our empirical studies show that, in cases
where current mining algorithms cannot proceed, Pattern-
Fusion is able to mine a result set which is a close enough
approximation to the complete set of the colossal patterns,
under a quality evaluation model proposed in this paper.

1 Introduction
Frequent pattern mining is one of the most important

data mining problems that has been well recognized over
the past decade. A pattern is frequent if and only if it oc-
curs in at least σ fraction of a dataset, where σ is user-
defined. It is essential to a broad range of applications in-
cluding association rule mining [2, 14], time-related process
and scientific sequence data analysis, bioinfomatics, classi-
fication, indexing and clustering. Intense research on this
topic has produced a series of mining algorithms for finding

∗ The work was supported in part by the U.S. National Science Founda-
tion NSF IIS-05-13678/06-42771 and NSF BDI-05-15813. Any opinions,
findings, and conclusions or recommendations expressed here are those of
the authors and do not necessarily reflect the views of the funding agencies.

frequent patterns in large databases of itemsets, sequences
and graphs [16, 22, 11]. For many applications, these al-
gorithms have proved to be effective. Efficient open source
implementations were also available over years. For exam-
ple, FPClose [8] and LCM2 [18] (an improved version of
MaxMiner [3]) published in 2003 and 2004 Frequent Item-
set Mining Implementations Workshop (FIMI) can report
the complete set of frequent itemsets in a few seconds for
reasonably large data sets.

However, the frequent pattern mining problem, even for
frequent itemset mining, has not been completely solved for
the following reason: According to frequent pattern defi-
nition, any subset of a frequent itemset is frequent. This
well-known downward closure property leads to an explo-
sive number of frequent patterns. The introduction of closed
frequent itemsets [16] and maximal frequent itemsets [9, 3]
partially alleviated this redundancy problem. A frequent
pattern is closed if and only if a super-pattern with the same
support does not exist. A frequent pattern is maximal if and
only if it does not have a frequent super-pattern. Unfor-
tunately, for many real-world mining tasks with increasing
importance, such as microarray data analysis in bioinfor-
matics and frequent graph pattern mining, it often turns out
that the mining results, even those for closed or maximal
frequent patterns, are explosive in size.

It comes with no surprise that this phenomenon should
fail all mining algorithms which attempt to report the com-
plete answer set. Take one microarray dataset, ALL [6],
for example, which contains 38 transactions each with 866
items. Our experiments show that, when given a low sup-
port threshold of 10, FPClose, LCM2 and TFP (top-k) [19]
all failed to complete execution.

More importantly, mining tasks in practice usually at-
tach much greater importance to patterns that are larger in
pattern size, e.g., longer sequences are usually of more sig-
nificant meaning than shorter ones in bioinfomatics. We
call these large patterns colossal patterns, as distinguished
from the patterns with large support set. When the com-
plete mining result set is prohibitively large, yet only the
colossal ones are of real interest and there are, as in most

cases, merely a few of them, it is inefficient to wait forever
for the mining algorithm to finish running, when it actually
gets “trapped” at those mid-sized patterns. Here is a sim-
ple example to illustrate the scenario. Consider a 40 × 40
square table with each row being the integers from 1 to 40
in increasing order. Remove the integers on the diagonal,
and this gives a 40 × 39 table, which we call Diag40. Add
to Diag40 20 identical rows, each being the integers 41 to
79 in increasing order, to get a 60×39 table. Take each row
as a transaction and set the support threshold at 20. Ob-
viously, it has an exponential number (i.e.,

(
40
20

)
) of mid-

sized closed/maximal frequent patterns of size 20, but only
one that is colossal: α = (41, 42, . . . , 79) of size 39. We
checked several fast itemset mining algorithms, including
FPClose [8] (the winner of FIMI’03), LCM2 [18] (the win-
ner of FIMI’04). It turned out that none of them can finish
within 10 hours. A visualization of the pattern search space
is illustrated in Figure 1.

Colossal Patterns

Mid-sized Patterns

Figure 1. Pattern Search Space
Each node in the search space is a pattern. Nodes at level i
is of size i. Node β is a child of node α if and only α ⊂ β
and |β| = |α| + 1. Both breadth-first and depth-first style
mining strategies would have to spend exponential time when
the number of closed or maximal mid-sized patterns explodes,
even though there are only a few colossal patterns.

It should become clear by now that, in these cases, what
we need is an efficient computation of a subset of the com-
plete frequent pattern mining result which gives a good ap-
proximation to the colossal patterns. The goodness of such
an approximation is measured by how well it represents the
set of colossal ones among the complete set. Consequently,
it motivates us to solve the following problem: How to effi-
ciently find a good approximation to the colossal frequent
patterns?

There have been some recent work on pattern summa-
rization [21] focusing on post-processing of the complete
mining result in order to give a compact answer set. These
approaches do not apply for our problem as we intend to
avoid the generation of the complete mining set in the first
place. A closer examination of the current mining models
would expose the insurmountable difficulty posed by this
mining challenge: As a result of their inherent mining mod-

els in which candidates are examined by implicitly or ex-
plicitly traversing a search tree in either a breadth-first or
depth-first manner, when the search tree is exponential in
size at some level, such exhaustive traversal has to run with
an exponential time complexity.

This motivates us to develop a new mining model to at-
tack the problem. Our mining strategy, Pattern-Fusion, dis-
tinguishes itself from all the existing ones. Pattern-Fusion
is able to fuse small frequent patterns into colossal patterns
by taking leaps in the pattern search space. It avoids the pit-
falls of both breadth-first and depth-first search by applying
the following concepts.

1. Pattern-Fusion traverses the tree in a bounded-breadth
way. It always pushes down a frontier of a bounded-size
candidate pool, i.e., only a fixed number of patterns in
the current candidate pool will be used as starting nodes
to go downwards in the pattern tree. As such, it avoids
the problem of exponential search space.

2. Pattern-Fusion has the capability to identify “shortcuts”
whenever possible. The growth of each pattern is not
performed with one item addition, but an agglomeration
of multiple patterns in the pool. These shortcuts will
direct Pattern-Fusion down the search tree much more
rapidly toward the colossal patterns.

Figure 2 conceptualizes this mining model.

Colossal Patterns

Pattern Candidates

Figure 2. Pattern Tree Traversal

As Pattern-Fusion is designed to give an approximation
to the colossal patterns, a quality evaluation model is in-
troduced in this paper to assess the result returned by an
approximation algorithm. This could serve as a framework
under which other approximation algorithms can be evalu-
ated. Our empirical study shows that Pattern-Fusion is able
to efficiently return answers of high quality.

The main contributions of our paper are outlined as fol-
lows:

1. We studied the characteristics of colossal frequent item-
sets and proposed the concept of core pattern. Proper-
ties of core patterns that are useful in the mining process
are explored. The essential idea exposed in this paper,

can be extended to pattern mining in more complicated
data sets, such as sequences and graphs.

2. A new mining model, Pattern-Fusion, is introduced,
which is different from all existing frequent pattern min-
ing models. Based on the core pattern concept, Pattern-
Fusion is the first mining algorithm that generates an
approximation set of the colossal patterns directly in the
mining process.

3. A quality evaluation model is proposed to assess the
mining result. This model is able to measure the dis-
tance between two arbitrary pattern sets, thus providing
a way to measure the goodness of an approximate solu-
tion against a complete solution.

4. Empirical studies are conducted on both synthetic and
real data sets, demonstrating that (1) Pattern-Fusion
gave high quality colossal pattern mining results on data
sets that the current mining algorithms can handle; and
(2) the method is able to mine colossal patterns out of
data sets that no existing mining algorithm would com-
plete in a reasonable amount of time (e.g., 24 hours).

The rest of the paper will be presented as follows: Sec-
tion 2 reveals the design of Pattern-Fusion based on the con-
cept of core pattern and gives an overview of the mining
framework. Section 3 continues to explore the underlying
foundation for Pattern-Fusion’s ability to mine colossal pat-
terns. The algorithm is elaborated in Section 4. Section
5 proposes the quality evaluation model. Section 6 reports
experimental results on various data sets. Related work is
discussed in Section 7. We conclude our paper in Section 8.

2 Pattern-Fusion: Design and Overview
2.1 Preliminaries

Let I be a set of items {o1, o2, . . . , od}. A nonempty
subset of I is called an itemset. A transaction dataset D is a
collection of itemsets, D = {t1, . . . , tn}, where ti ⊆ I. For
any itemset α, we denote the set of transactions that contain
α as Dα = {i|α ⊆ ti and ti ∈ D}. Define the cardinality
of an itemset α as the number of items it contains, i.e., |α| =
|{oi|oi ∈ α}|.

Definition 1 (Frequent Itemset) For a transaction dataset
D, an itemset α is frequent if |Dα|

|D| ≥ σ, where |Dα|
|D| is called

the support of α in D, written s(α), and σ is the minimum
support threshold, 0 ≤ σ ≤ 1.

We use support set to denote the set of transactions that
contain a pattern, i.e., Dα is the support set of α. A frequent
itemset is called a frequent pattern, or a pattern for short in
this paper. For two patterns α and α′, if α ⊂ α′, then α is a
subpattern of α′, and α′ is a super-pattern of α.

Definition 2 (Closed Frequent Pattern) A frequent pat-
tern α is closed if and only if it has no frequent super-
pattern which has the same support set, i.e., for any frequent
pattern α′, if α ⊂ α′, then Dα 6= Dα′ .

Lemma 1 For itemsets α and α′, if α ⊆ α′, then Dα′ ⊆
Dα.

It is clear from Lemma 1 that for a pattern α, Dα =⋂
β⊂α Dβ .

2.2 Robustness of colossal patterns

In this subsection, we show our observation on colossal
patterns which is crucial for Pattern-Fusion. Our study on
the relationship between the support set of a colossal pattern
and those of its subpatterns reveals the notion of robustness
of colossal patterns. Colossal patterns exhibit robustness
in the sense that if a small number of items are removed
from the pattern, the resulting pattern would have a similar
support set. The larger the pattern size, the more prominent
this robustness is observed. We capture this relationship
between a pattern and its subpattern by the concept of core
pattern.

Definition 3 (Core Pattern) For a pattern α, an itemset
β ⊆ α is said to be a τ -core pattern of α if |Dα|

|Dβ | ≥ τ ,
0 < τ ≤ 1. τ is called the core ratio.

For a pattern α, let Cα be the set of all its core patterns, i.e.,
Cα = {β|β ⊆ α, |Dα|

|Dβ | ≥ τ} for a specified τ . In the rest of
the paper, we would simply refer to a τ -core pattern as core
pattern for brevity. With the definition of core pattern, we
can formally define the robustness of a colossal pattern.

Definition 4 ((d, τ)-Robustness) A pattern α is (d, τ)-
robust if d is the maximum number of items that can be re-
moved from α for the resulting pattern to remain a τ -core
pattern of α, i.e.,

d = max
β
{|α|− |β||β ⊆ α, and β is a τ -core pattern of α}

Due to its robustness, a colossal pattern tend to have a
large number of core patterns. Let α be a colossal pattern
which is (d, τ)-robust. The following two lemmas show that
the number of core patterns of α is at least exponential in d.

Lemma 2 For a pattern β ∈ Cα and any itemset γ ⊆ α,
β ∪ γ ∈ Cα.

Proof. It follows from Lemma 1 that Dβ∪γ ⊆ Dβ , and as
such, |Dα|

|Dβ∪γ | ≥
|Dα|
|Dβ | ≥ τ . By definition, we have β ∪ γ ∈

Cα.

Lemma 3 For a (d, τ)-robust pattern α, |Cα| ≥ 2d.

Proof. For any β, such that |β| = |α| − d, let U be the
set of items in α \ β, i.e., U contains all the items that are
in α but not in β. Then 2U ,the power set of U , is of size
2|α|−|β| = 2d. According to Lemma 2, for any itemset
t ∈ 2U , β ∪ t ∈ Cα. Hence, |Cα| > 2d.

Since we observed that colossal patterns are more robust
than patterns of smaller sizes, given a fixed core ratio τ ,
the set of core patterns of a colossal pattern is therefore
much larger. Let’s check an example. Figure 3 shows a

Transactions Core Patterns (τ = 0.5)
(# of Transactions)
(abe) (100) (abe),(ab),(be),(ae),(e)
(bcf) (100) (bcf),(bc),(bf)
(acf) (100) (acf),(ac),(af)
(abcef) (100) (ab),(ac),(af),(ae),(bc),(bf),(be)

(ce),(fe),(e),(abc),(abf),(abe)
(ace),(acf),(afe),(bcf),(bce),(bfe)
(cfe),(abcf),(abce),(bcfe),(acfe)
(abfe),(abcef)

Figure 3. A transaction database and core
patterns for each distinct transaction

simple transaction database with four different transactions
each with 100 duplicates. {α1 = (abe), α2 = (bcf), α3 =
(acf), α4 = (abcef)}. If we set τ = 0.5, then, for exam-
ple, (ab) is a core pattern of α1 because (ab) is only con-
tained by α1 and α4, thus |Dα1 |

|D(ab)| = 100
200 ≥ τ . α1 is (2, 0.5)-

robust while α4 is (4, 0.5)-robust. The example shows that
a larger pattern, e.g., (abcef), has far more core patterns
than a smaller one, e.g., (bcf).

The core pattern relationship can be extended to multiple
levels by the definition of core descendant.

Definition 5 (Core Descendant) For two patterns β and
β′, if there exists a sequence of βi, 0 ≤ i ≤ k, k ≥ 1 such
that β = β0, β

′ = βk and βi ∈ Cβi+1 for all 0 ≤ i < k, β
is said to be a core descendant of β′.

This core-pattern-based view of the pattern space leads
to the following two observations which are essential in our
algorithm design. In-depth exploration of these observa-
tions will be given in Section 3.
Observation 1. Due to the observation that a colossal pat-
tern has far more core patterns than a smaller-sized pattern
does, given a small c, a colossal pattern therefore has far
more core descendants of size c. This means that a ran-
dom draw from the complete set of patterns of size c would
be more likely to pick a core descendant of a colossal pat-
tern than that of a smaller-sized one. In Figure 3, consider
the complete set of patterns of size c = 2 which contains

(
5
2

)
= 10 patterns in total, the probability of picking a core

descendant of the colossal pattern abcef on a random draw
is 0.9, while the probability is at most 0.3 for all the other
smaller-sized patterns.
Observation 2. A colossal pattern can be generated by
merging a proper set of its core patterns. In fact, as any
singe item o of the colossal pattern appears in more than
one of its core patterns, o is missed only if all the core pat-
terns containing o are absent in the set to be merged. For
instance, abcef can be generate by merging just two of its
core patterns ab and cef , instead of merging all its 26 core
patterns.

2.3 Pattern fusion overview

These observations on colossal patterns inspires the fol-
lowing mining approach: First generate a complete set of
frequent patterns up to a small size, and then randomly pick
a pattern, β. By our foregoing analysis β would with high
probability be a core-descendant of some colossal pattern
α. Identify all α’s core-descendants in this complete set,
and merge all of them. This would generate a much larger
core-descendant of α, giving us the ability to leap along a
path toward α in the core-pattern tree Tα. In the same fash-
ion we pick K patterns. The set of larger core-descendants
generated would be the candidate pool for the next iteration.

A question arises: Given β, which is a core-descendant
of a colossal pattern α, how to find the other core-
descendants of α? We first give the following pattern dis-
tance definition, with which we can show that two core pat-
terns of a pattern α exhibit proximity in the corresponding
metric space.

Definition 6 (Pattern Distance) For patterns α and β, the
pattern distance of α and β is defined to be Dist(α, β) =
1− |Dα∩Dβ |

|Dα∪Dβ | .

Theorem 1 [21] (S, Dist) is a metric space, where S is a
set of patterns and Dist : S × S 7→ R+ is defined as in
Definition 6.
This means all the pattern distances satisfy the triangle in-
equality.
Theorem 2 For two patterns β1, β2 ∈ Cα, Dist(β1, β2)
≤ r(τ), where r(τ) = 1− 1

2/τ−1 .

Proof. Since both β1, β2 ∈ Cα, we have

|Dβ1 ∩Dβ2 |
|Dβ1 ∪Dβ2 |

≥ |Dα|
|Dβ1 ∪Dβ2 |

=
|Dα|

|Dβ1 |+ |Dβ2 | − |Dβ1 ∩Dβ2 |
≥ |Dα|

|Dα|/τ + |Dα|/τ − |Dα|
=

1
2/τ − 1

Therefore, Dist(β1, β2) = 1− |Dβ1∩Dβ2 |
|Dβ1∪Dβ2 |

≤ 1− 1
2/τ−1 =

r(τ).

It follows that all core patterns of a pattern α are bounded
in the metric space by a “ball” of diameter r(τ). This means
that given one core pattern β ∈ Cα, we can identify all of
α’s core patterns in the current pool by posing a range query.

Note that the reverse direction of Theorem 2 is not true.
In general, if β1 ∈ Cα and Dist(β1, β2) ≤ r(τ), it is not
necessary the case that β2 ∈ Cα. In our mining algorithm,
each randomly picked pattern could be a core-descendant of
more than one colossal pattern, and as such, when merging
the patterns found by the “ball”, more than one larger core-
descendant could be generated.

Now we are ready to give an overview of our mining
model. Details of the algorithm will be presented in Section
4. Pattern-Fusion works in two phases.

1. Initial Pool: Pattern-Fusion assumes available an ini-
tial pool of small frequent patterns, which is the com-
plete set of frequent patterns up to a small size, e.g., 3.
This initial pool can be mined with any existing efficient
mining algorithm.

2. Iterative Pattern Fusion: Pattern-Fusion takes as input
a user-specified parameter, K, which is the maximum
number of patterns to be mined. The mining process is
conducted iteratively. At each iteration, K seed patterns
are randomly picked from the current pool. For each of
these K seeds, we find all the patterns within a ball of
a size specified by τ as defined in Definition 5. All the
patterns in each “ball” are then fused together to gener-
ate a set of super-patterns. All the super-patterns thus
generated are put together as a new pool. If this pool
contains more than K patterns, the next iteration begins
with this pool for the new round of random drawing.
The termination of the iteration process is guaranteed
by Lemma 1, as the support set of every super-pattern
shrinks with each new iteration.

Note that Pattern-Fusion merges all the small subpat-
terns of a large pattern in one step instead of expanding
patterns with additional single items. This gives Pattern-
Fusion the advantage to circumvent mid-sized patterns and
progress on a path leading to a potential colossal pattern.
The idea is illustrated in Figure 4. Each point shown in
the metric space represents a core pattern. A larger pattern
has far more core patterns close to each other, all of which
would be bounded by a ball as shown in dotted line, than a
smaller pattern. Since the ball of the larger pattern is much
denser, we will hit one of its core patterns with a higher
probability when performing a random draw from the ini-
tial pattern pool.

Colossal Pattern Small Pattern

Figure 4. Pattern Metric Space

3 Towards Colossal Patterns
We show in this section why Pattern-Fusion could give

a good approximation. First, we will show why Pattern-
Fusion’s mining result would favor colossal patterns over
smaller-sized ones. Then we explore how Pattern-Fusion
gives a good approximation by catching the outliers in the
complete answer.

3.1 Why are colossal patterns favored?

In the last subsection, we have shown that a colossal pat-
tern can be generated by merging just a subset of its core
patterns. The message is that since any single item is likely
to appear in a large number of core patterns, and so long as
we grab one of these core patterns we won’t miss the item,
we will therefore be able to generate a colossal pattern with
high probability. Let’s look at a simple case to get a feel
of the situation. Given a colossal pattern α of pattern size
n and a drawing pool of size

(
n
k

)
consisting of all k-tuples

of the items in α, how large should a randomly-picked set
from this pool be in order to recover α with high probabil-
ity? The following theorem shows that it is actually a rather
small set compared to the size of the drawing pool, which is(
n
k

) ≥ (n/k)k.

Theorem 3 With probability at least 1− 1/n2, a set of size
m∗ = (en ln n)/k picked uniformly at random will contain
all items of α.

Proof. Suppose the items of α are o1, o2, . . . , on. Let
ξi(m∗) denote the event that item oi is absent in a randomly
picked set of size m∗, i.e., none of the k-tuples contain oi.
Then the probability that α cannot be generated by such a
set is Pr[∪n

i=1ξi(m∗)]. Event ξi(m∗) happens with a prob-
ability:

Pr[ξi(m∗)] =

((n−1
k)

m∗
)

((n
k)

m∗
)

=

(
n−1

k

)
(
(
n−1

k

)− 1) · · · ((n−1
k

)−m∗ + 1)(
n
k

)
(
(
n
k

)− 1) · · · ((n
k

)−m∗ + 1)

≤
((

n−1
k

)
(
n
k

)
)m∗

=
(

n− k

n

)m∗

=
(

1− k

n

)m∗

Let m∗ = d(3n ln n)/ke, then Pr[ξi(m∗)] ≤ 1/n3. By
basic probability theory,

Pr[∪n
i=1ξi(m∗)] ≤

n∑

i=1

Pr[ξi(m∗)] ≤
n∑

i=1

1
n3

=
1
n2

Thus, we have established that with probability at least 1−
1

n2 , no item of α will be missing in a randomly-picked set
of size m∗ = (en ln n)/k, i.e., α will be fully recovered.

In the last section, we have shown that a colossal pattern
can be generated by merging just a subset of its core pat-
terns. In particular, merging a set of complementary core
patterns suffices.

Definition 7 (Complementary Core Pattern) For a pat-
tern α, a set S ⊆ Cα \ {α} is a set of complementary
core patterns of α if and only if

⋃
β∈S β = α.

For example, in Figure 3, {(ab), (ae)} is a set of com-
plementary core patterns of (abe). For brevity, we simply
call such a set S a complementary set when α is clear in the
context. The set of all sets of complementary core patterns
of α is denoted as Γα. If S — a set of complementary core
patterns of α — appears in any iteration of the mining algo-
rithm, and if any one pattern of S is picked by the random
draw, then all the other core patterns in S will be found by
the bounding “ball”. Merging S would generate α.
Rationale. The more the number of such sets of comple-
mentary core patterns of α (i.e., the larger the size of Γα),
the greater the probability that α is generated. Figure 3
illustrates this point well.

Then the following lemma, immediate from Lemmas 2
and 3, shows that the number of complementary sets of a
pattern is closely related to its robustness.

Lemma 4 A (d, τ)-robust pattern α has at least 2d−1 − 1
sets of complementary core patterns, i.e., |Γα| ≥ 2d−1 − 1.

Rationale. Since our observation reveals that colossal pat-
terns are more robust than those of smaller sized ones, this
lemma means Pattern-Fusion would generate colossal pat-
terns with greater probability.

There could be the case that there exist some small yet
robust patterns. The following lemma reveals why, even
for these small patterns, Pattern-Fusion also makes sure that
most of them would not survive to appear in the final result.

Lemma 5 Let li be the size of the smallest pattern in the
pool at iteration i. Then li+1 ≥ li for all i.

Proof. By the construction algorithm of a new pattern pool,
any pattern α in the pool at iteration i + 1 is the result of
fusing a set of patterns in the pool at iteration i. Since the
fusion operation takes the union of the patterns, the size of

the new pattern α is at least as large as that of the smallest
one in the fused set, which is in turn ≥ i.

Due to Lemma 5, the patterns of the smallest size at each
iteration will not be able to appear in the pool of the next
iteration, unless they are picked by the random draw. For
each of them, they survive to the next iteration with proba-
bility at most K

|S| where S is the current pool. This means
with high probability, after multiple iterations, small pat-
terns will disappear from the current pool.

3.2 Catching the outliers

To evaluate the approximation quality, we introduce an
evaluation model in Section 5 based on pattern edit dis-
tance. This distance definition gives a metric space on the
patterns. Essentially, to give a mining result of size K
which best approximate the complete set is to solve the
K-Center problem in this metric space. Informally, given
a metric space, the K-Center problem is to find the best
K vertices to serve as centers such that the maximum over
all distances from every vertex to its nearest center is min-
imized. As such, how well a subset of patterns approxi-
mate the complete answer set is measured by the maximum
over all distance from every pattern in the complete set to
its nearest neighbor in the subset. If this maximum is small,
it means the subset well represents the complete answer in
the sense that, for every pattern in the complete set, there
exists in the subset some pattern which is close to it.

Evidently, to achieve a good approximation under this
evaluation model, the mining algorithm would have to strive
to catch those “outliers”, i.e., those patterns that are far from
all the other patterns in the metric space, as missing one of
them would entail significant approximation error. We show
in the next theorem that one strength of Pattern-Fusion is
the ability to catch “outliers”—the further away they lie,
the more likely they will be generated.

Theorem 4 Given the set U of all closed patterns for a
transaction dataset D, a pattern α ∈ U and a core ratio
τ , if the minimum pattern edit distance between α and any
other pattern in U is d, then α is at least (d− 1, τ)-robust.

Proof. Since the minimum edit distance between α and any
other pattern in U is d, then for all subpatterns β ⊆ α such
that |α| − |β| < d, we have Dβ = Dα. By Definition 4, α
is hence at least (d− 1, τ)-robust.

Combining Theorem 4 and Lemma 4, an outlier which is
at edit distance d away from all others would have at least
2d−2 − 1 sets of complementary core patterns. Hence, the
further away it lies, the greater the chance that it will be
generated by Pattern-Fusion.

4 Pattern-Fusion in Detail

Main Algorithm. The global algorithm is outlined in Al-
gorithm 1. Lines 1 to 4 are the body of the iteration, which
calls the algorithm Pattern Fusion. After each iteration, it
checks the frequent pattern set returned by Pattern Fusion.
If the result set contains more than K patterns, it begins the
next iteration.

Algorithm 1 Main Algorithm
Input: Initial pool InitPool, Core ratio τ

Maximum number of patterns to mine K,
Output: Set of frequent patterns S
1: do
2: S ← Pattern Fusion(InitPool, K,τ);
3: InitPool ← S
4: while |S| > K
5: return S;

Pattern Fusion. Pattern Fusion randomly draws K seed
patterns from the current pool. For each pattern α thus
drawn, it examines the entire pool to find all the patterns
that are within distance r(τ) from α, and records them
in the set α.CoreList. After all K patterns are drawn, a
function Fusion(α.CoreList) fuses the patterns in each α’s
CoreList.

Line 1 initializes the result set S and the set T that will
be used to record the K seed patterns. Lines 2 to 7 are the
loop to pick the K seed patterns. Line 3 randomly draws a
seed pattern from the current pool. Line 4 adds the drawn
pattern α to T . Lines 5 to 7 examine every pattern in the
current pool to find the “ball” for α. Lines 8 and 9 fuse the
patterns in each “ball” and add the super-patterns generated
by this fusion operation to the output set S.

The function Fusion(α.CoreList) fuses α and the pat-
terns in α.CoreList to generate super-patterns. Since the
reverse direction of Theorem 2 is not true, in general the
patterns in {α} ∪ α.CoreList are core patterns of more
than one pattern. Fusion(α.CoreList) generates the pat-
terns βi, such that for some subset tβi ⊆ α.CoreList,
{α} ∪ tβi ∈ Cββi

. When the number of such βi exceeds
a threshold, which is determined by the system, we resort
to a sampling technique to decide the set of βi to retain.
The sampling is weighted on the size of tβi , which means
βi with a larger core pattern set would retain with higher
probability. The set of βi is generated by applying this sam-
pling technique multiple times. This heuristic is based on
the observation that patterns of larger size are likely to have
an accordingly larger core pattern set. As such, this helps
Pattern-Fusion to stay on paths which would be more likely
to lead toward colossal patterns.

Algorithm 2 Pattern Fusion
Input: Initial pool InitPool,Core ratio τ

Maximum number of patterns to mine K,
Output: Set of patterns S
1: S ← ∅; T ← ∅;
2: for i = 1 to K
3: Randomly draw a seed α from InitPool;
4: T ← T ∪ {α}
5: for each β ∈ InitPool
6: if Dist(α, β) ≤ r(τ)
7: Record β in α.CoreList
8: for each α ∈ T
9: S ← S ∪ Fusion(α.CoreList);
10: return S;

5 Evaluation Model

When the complete mining result is too huge to com-
pute, a good approximation could be the only solution of
exposing interesting patterns hidden in a large dataset. As
the goal of our Pattern-Fusion method is to find patterns
that have a global picture of the complete pattern set, tradi-
tional evaluation metrics in information retrieval like recall
and precision no longer apply. In this sense, we propose an
evaluation model that is able to capture how representative
the mining result is.

Definition 8 (Itemset Edit Distance) The edit distance
Edit(α, β) between two itemsets α and β is defined as
Edit(α, β) = |α ∪ β| − |α ∩ β|.

For example, the edit distance between itemsets (abcd)
and (acde) is 2. Given two collections of itemsets, P and
Q (P could be the mining result and Q be the complete
pattern set), we need a measure to check how well P ap-
proximates Q. We developed a “clustering” model that is
able to catch the semantics of patterns. Take each pattern
α ∈ P as a cluster center and patterns β ∈ Q as data points.
Assign each data point in Q to clusters in P by performing
a nearest-neighbor search. Definition 8 is taken as distance
measure. For each cluster i, 1 ≤ i ≤ |P | with center pat-
tern αi ∈ P , let ri be the edit distance between the farthest
data point and the center pattern αi. Then we regard ri

|αi|
as the maximum approximation error for cluster i. The ap-
proximation error of P with respect to Q is the average of
the maximum approximation errors of all the clusters. The
formal definition is given as follows.

Definition 9 (Pattern Set Approximation) For two pat-
tern sets P = {α1, α2, . . . , αm} and Q = {β1, β2, . . . ,
βn}, an approximation of P with respect to Q, denoted as
AP

Q, is a partition πQ of Q, πQ = {Q1, Q2, . . . , Qm}, such

that Q = ∪1≤j≤mQj , Qi ∩Qj = ∅, for i 6= j, and

Qi = {β|β ∈ Q, and Edit(β, αi) = min
1≤j≤m

Edit(β, αj)}

Definition 10 (Approximation Error) The approximation
error of an approximation AP

Q is denoted as ∆(AP
Q),

∆(AP
Q) =

∑m
i=1 ri

m

where ri = maxβ∈Qi

Edit(β,αi)
|αi|

The approximation error ∆(AP
Q) gives the average max-

imum pattern distance between any pattern in the complete
set Q and some pattern in the mining result set P . Hence,
the smaller the approximation error, the better P approxi-
mates Q, in the sense that P has better representatives of
the patterns in Q. See the following example.

Q2:acde

P1(Q4): abcde

Q3:abcd

Q1:abcdf

1

1
2

Q5:xy

P2(Q6): xyz

Q7:yz

1

1

Figure 5. Pattern Set Approximation AP
Q

Example 1 Suppose there is a complete set Q =
{Q1, . . . , Q7}, as shown in Figure 5. The approximation
set P = {P1, P2}, where P1 = Q4, and P2 = Q6.
By definition, Q1 is the pattern with the largest distance
from P1 in P1’s cluster. Since Edit(Q1, P1) = 2 and
|P1| = 5, the approximation error of P1 equals 2

5 . Simi-
larly, Q5 and Q7 are of equal distance to P2 in P2’s cluster.
Since Edit(Q5, P2) = 1 and |P2|=3, r2 = 1

3 . Therefore,
∆(AP

Q) = (2
5 + 1

3)/2 = 11
30 = 0.37. This means, on aver-

age, any pattern in Q is at most 0.37 × 5 ≈ 2 items away
from some pattern in P .

6 Experimental Results

In this section, we are going to demonstrate the effi-
ciency and effectiveness of the Patter-Fusion method. All of
the experiments are performed on a 3.2GHZ, 1GB-memory,
Intel PC running Windows XP.

in our experiments, we included one synthetic dataset
and two real datasets. The real datasets are built from pro-
gram tracing data and microarray data.

Synthetic data set. To illustrate the situation when the min-
ing result contains an exponential number of frequent pat-
terns. We use the example Diagn given in the introduction

section. Diagn is a n × (n − 1) table where the ith row
has integers from 1 to n except i. Each row is taken as
an itemset. The minimum support threshold is set at n/2.
Figure 6 shows the running time of Pattern-Fusion against
LCM maximal [18], which is a maximal pattern mining al-
gorithm. It is easy to observe that as n increases, the run-
ning time of LCM maximal increases exponentially since
the number of patterns equals (n

n
2
), rendering the time cost

unaffordable even for a moderate value of n. Therefore, in-
stead of reporting the complete set, an approximation min-
ing result is more appropriate for this scenario. Figure 7
shows the approximation errors of Pattern-Fusion running
on Diag40 with minimum support 20. Pattern-Fusion starts
with an initial pool of 820 patterns of size ≤ 2. The mining
result is compared with the complete set S each of which
is a pattern of size 20. Since the complete set S is too big,
the complete set is randomly sampled for comparison. It
is observed that Pattern-Fusion has comparable approxima-
tion error as a uniform sampling approach, which randomly
picks up K patterns from the complete answer set. It means
Pattern-Fusion will not get stuck locally during the mining.

5 10 15 20 22 24 26 28 30 32 34 40 45

10
−2

10
0

10
2

10
4

Matrix Size

Ru
n T

im
e (

se
co

nd
s)

LCM_maximal
Pattern−Fusion

Figure 6. Run Time on Diagn

0 50 100 150 200 250 300 350 400 450
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of Mined Patterns

Ap
pro

xim
ati

on
 E

rro
r ∆

(A
P Q)

Pattern−Fusion
Uniform Sampling

Figure 7. Approximation Error on Diagn

Real data set 1: Replace. Replace is a program trace data
set collected from the “replace” program, which is one of
the Siemens Programs that have been widely used in soft-
ware engineering research [12]. The program calls and tran-

sitions of 4,395 correct executions are recorded. Each type
of program calls and transitions is considered as one item.
There are 66 different program calls and transitions in to-
tal. The purpose of finding frequent patterns in this data
set is to identify frequent, and accordingly normal, program
execution structures, which will be compared against ab-
normal program execution structure in an attempt to isolate
program bugs.

The Replace data set contains 4,395 transactions. There
are 57 items in total. With a minimum support threshold of
0.03, the complete set of frequent patterns in Replace con-
tains 4,315 patterns. There are three largest patterns with
size 44. We notice that in all the experiments conducted on
Replace, with different settings of K and τ , Pattern-Fusion
is always able to find all these three colossal patterns. We
start with an initial pool of 20,948 patterns of size ≤ 3.

39 40 41 42 43 44 45
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Pattern Size (>=)

Ap
pro

xim
ati

on
 E

rro
r ∆

(A
P Q)

K=50
K=100
K=200

Figure 8. Approximation Error on Replace

Figure 8 illustrates the approximation error ∆(AP
Q) of

Pattern-Fusion’s mining result (P) compared against the
complete set (Q), showing that Pattern-Fusion’s mining re-
sult is a good approximation of the complete set. A data
point with coordinates (x̂, ŷ) means the approximation er-
ror ∆(AP

Q) is ŷ, when our mining result is compared with
the complete set for all patterns of size ≥ x̂. For example,
there are totally 98 closed frequent patterns of size ≥ 42 in
the complete set. When K = 100, Pattern-Fusion returns
80 of them. The corresponding data point is (42, 0.0039),
which means these 80 patterns represent the complete set
well such that any pattern in the complete set is on average
at most 44 · 0.0039 = 0.17 items in difference from one
of these 80 patterns. The largest ones, those of size 44, are
never missed. It is clear from Figure 8 that better approxi-
mations are achieved if more seed patterns are selected.

Real data set 2: ALL. ALL is a popular gene expres-
sion data set. It is a clinical data on ALL-AML leukemia1.
Each item is a column, which represents the activity level of
genes/proteins in the sample. Frequent patterns in the data
would reveal important correlations between gene expres-

1http://www.broad.mit.edu/tools/data.html

sion patterns and disease outcomes, offering researchers
clinically useful diagnostic knowledge.

The ALL data set contains 38 transactions, each of size
866. There are 1736 items in total. We first show that
when minimum support threshold is high (e.g., 30), Pattern-
Fusion generates mining results of high quality. We start
with an initial pool of 25,760 patterns of size ≤ 2. Figure 9
compares Pattern-Fusion’s mining result (K = 100) against
the complete set for frequent patterns of size > 70, which
are the colossal ones for this data. In fact, Pattern-Fusion is
able to get all the largest colossal patterns with size greater
than 85.

Pattern Size 110 107 102 91 86 84 83
The complete set 1 1 1 1 1 2 6
Pattern-Fusion 1 1 1 1 1 1 4
Pattern Size 82 77 76 75 74 73 71
The complete set 1 2 1 1 1 2 1
Pattern-Fusion 0 2 0 1 1 1 1

Figure 9. Mining Result Comparison on ALL

Figure 10 shows the running time for three mining algo-
rithms with decreasing minimum support threshold. Both
LCM maximal [18] and TFP (top-k) [19] suffer from ex-
ponentially increasing running time as the minimum sup-
port threshold decreases, while the running time of Pattern-
Fusion levels off.

2122232425262728293031
0

10

20

30

40

50

60

70

80

90

Minimum Support Threshold

Ru
n T

im
e (

se
co

nd
s)

LCM_maximal
Top−k
Pattern−Fusion

Figure 10. Run Time on ALL

7 Related Work

Frequent itemset mining, initiated by the introduction of
association rule mining [1], has been extensively studied
[2, 17, 10, 4, 3, 11, 22, 13]. Efficient implementations ap-
peared in the FIMI workshops. Most of the well studied
frequent pattern mining algorithms, including Apriori [2],
FP-growth [11], and CARPENTER [15], mine the complete
set of frequent itemsets.

According to the Apriori property, any subset of a fre-
quent itemset is frequent. This downward closure property
leads to an explosive number of frequent patterns. The in-
troduction of closed frequent itemsets [16] and maximal
frequent itemsets [9, 3] can partially alleviate this redun-
dancy problem. Extensive studies have proposed fast al-
gorithms for mining frequent closed itemsets, such as A-
close [16], CHARM [22] and CLOSET+ [20], and maxi-
mum closed itemsets, such as, Max-Miner [3], MAFIA [5]
and GenMax[7].

In all of these studies, the mining of the complete pattern
set becomes the major task. While in many applications,
there exist an explosive number of closed or maximum pat-
terns, none of the existing algorithms is able to complete
the mining in a reasonable amount of time. To the best of
our knowledge, ours is the first work to acknowledge the
existence of this problem and provide a novel solution. Fur-
thermore, our proposed quality measure system provides a
benchmark to evaluate any partial mining result.

8 Conclusions
We studied the problem of efficient computation of a

good approximation for the colossal frequent itemsets in
the presence of an explosive number of frequent patterns.
Based on the concept of core pattern, a new mining method-
ology, Pattern-Fusion, is introduced. An evaluation model
is proposed to evaluate the approximation quality of the
mining results of Pattern-Fusion against the complete an-
swer set. This model also provides a general mechanism
to compare the difference between two sets of frequent pat-
terns. Empirical studies conducted on both synthetic and
real data sets demonstrated that Pattern-Fusion is able to
give good approximation for colossal patterns in data sets
that no existing mining algorithm can. This paper is an ini-
tial effort toward mining colossal frequent patterns in more
complicated data, such as sequences and graphs, where the
essential idea developed in this paper could be applied.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in large
databases. In SIGMOD’93, pages 207–216.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB’94, pages 487–499.

[3] R. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD’98, pages 85–93.

[4] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dy-
namic itemset counting and implication rules for mar-
ket basket analysis. In SIGMOD’97, pages 255–264.

[5] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A
maximal frequent itemset algorithm for transactional
databases. In ICDE’01, pages 443–452.

[6] G. Cong, K. Tan, A. K. H. Tung, and X. Xu. Mining
top-k covering rule groups for gene expression data.
In SIGMOD’05, pages 670–681.

[7] K. Gouda and M. J. Zaki. Efficiently mining maximal
frequent itemsets. In ICDM’01, pages 163–170.

[8] G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In FIMI’03.

[9] D. Gunopulos, H. Mannila, R. Khardon, and H. Toivo-
nen. Data mining, hypergraph transversals, and ma-
chine learning. In PODS’97, pages 209 – 219.

[10] D. Gunopulos, H. Mannila, and S. Saluja. Discovering
all most specific sentences by randomized algorithms.
In ICDT’97, pages 215–229.

[11] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD’00, pages
1–12.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In ICSE’94,
pages 191–200.

[13] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent
item sets by opportunistic projection. In KDD’02,
pages 239–248.

[14] H. Mannila, H Toivonen, and A. Verkamo. Efficient
algorithms for discovering association rules. KDD’94,
pages 181–192.

[15] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki.
CARPENTER: Finding closed patterns in long biolog-
ical datasets. In KDD’03, pages 637–642.

[16] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In ICDT’99, pages 398–416.

[17] H. Toivonen. Sampling large databases for association
rules. In VLDB’96, pages 134–145.

[18] T. Uno, T. Asai, Y. Uchida, and H. Arimura.
Lcm ver. 2: Efficient mining algorithms for fre-
quent/closed/maximal itemsets. In FIMI’04.

[19] J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An effi-
cient algorithm for mining top-k frequent closed item-
sets. TKDE, 17:652–664, 2005.

[20] J. Wang, J. Han, and J. Pei. Closet+: Searching for the
best strategies for mining frequent closed itemsets. In
KDD’03, pages 236–245.

[21] D. Xin, J. Han, X. Yan, and H. Cheng. Mining com-
pressed frequent-pattern sets. In VLDB’05, pages
709–720.

[22] M. Zaki and C. Hsiao. CHARM: An efficient algo-
rithm for closed itemset mining. In SDM’02, pages
457–473.

