
Generating Semantic Annotations for Frequent Patterns
with Context Analysis

Qiaozhu Mei, Dong Xin, Hong Cheng, Jiawei Han, ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana Champaign
Urbana,IL 61801

{ qmei2, dongxin, hcheng3, hanj, czhai }@uiuc.edu

ABSTRACT
As a fundamental data mining task, frequent pattern mining
has widespread applications in many different domains. Re-
search in frequent pattern mining has so far mostly focused
on developing efficient algorithms to discover various kinds
of frequent patterns, but little attention has been paid to the
important next step – interpreting the discovered frequent
patterns. Although some recent work has studied the com-
pression and summarization of frequent patterns, the pro-
posed techniques can only annotate a frequent pattern with
non-semantical information (e.g. support), which provides
only limited help for a user to understand the patterns.

In this paper, we propose the novel problem of generat-
ing semantic annotations for frequent patterns. The goal is
to annotate a frequent pattern with in-depth, concise, and
structured information that can better indicate the hidden
meanings of the pattern. We propose a general approach to
generate such an annotation for a frequent pattern by con-
structing its context model, selecting informative context
indicators, and extracting representative transactions and
semantically similar patterns. This general approach has po-
tentially many applications such as generating a dictionary-
like description for a pattern, finding synonym patterns,
discovering semantic relations, and summarizing semantic
classes of a set of frequent patterns. Experiments on differ-
ent datasets show that our approach is effective in generating
semantic pattern annotations.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms

Keywords: frequent pattern, pattern annotation, pattern
context, pattern semantic analysis

1. INTRODUCTION
With its broad applications such as association rule min-

ing [2], correlation analysis [4], classification [6], and cluster-
ing [19], discovering frequent patterns from large databases
has been a central research topic in data mining for years.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

Various techniques have been developed for mining frequent
item sets [2, 8], sequential patterns [3], graph patterns [22],
etc. These techniques can usually output a large, complete
set of frequent patterns efficiently, and provide basic statis-
tic information such as support for each pattern. However,
the excessive volume of the output pattern set and the lack
of context information has made it difficult to interpret and
explore the patterns. In most cases, a user only wants to
explore a small set of most interesting patterns, and before
exploring them, to have a rough idea about their hidden
meanings or why they are interesting. This is analogous
to literature reviewing. Before deciding whether to read
through a paper, a reader often wants to first look at a
short summary of the main ideas of the paper. Similarly, it
is also highly desirable to have such a summary for a fre-
quent pattern to explain or indicate the potential meanings
of the pattern and to help a user decide whether and how
to explore the pattern. Therefore, a new major challenge
in frequent pattern mining has been raised by researchers,
which is how to present and interpret the patterns discov-
ered, in order to support the exploration and analysis of
individual patterns. To meet this challenge and facilitate
pattern interpretation, we need to annotate each frequent
pattern with semantically enriched, in-depth descriptions of
the pattern and its associated context.

Researchers have employed concepts like closed frequent
pattern [15], and maximum frequent pattern [16] to shrink
the size of output patterns and provide more information
beyond “support”. Recently, novel methods have been pro-
posed either to mine a compressed set of frequent patterns
[20] or to summarize a large set of patterns with the most
representative ones [21]. Both of them employ extra infor-
mation of frequent patterns beyond the simple information
of support, which is either transaction coverage [20] or pat-
tern profiles [21]. These methods can successfully reduce the
number of output patterns and present only the most inter-
esting ones to the user. However, the information that these
methods use to annotate a frequent patten is restricted to
the morphological information or simple statistics (e.g. sup-
port, transaction coverage, profile); from such an annota-
tion, users could not infer the semantics, or hidden meanings
of the pattern, thus still have to look through all the data
transactions in which a pattern occurs in order to figure out
whether it is worth exploring.

In this paper, we study the problem of automatically gen-
erating semantic annotations for frequent patterns, by which
we mean to extract and provide concise and in-depth infor-
mation for a frequent pattern, which indicates the semantics,



or hidden meanings, of the pattern.
What is an appropriate semantic annotation for a frequent

pattern? Generally, the hidden meaning of a pattern can
be inferred from the patterns with similar meanings, the
data objects co-occurring with it, and the transactions in
which the pattern appears. In principle, we expect such an
annotation to be compact, well structured, and indicative of
the meanings of the pattern. This criterion is analogous to
dictionary entries, which annotate each term with structured
semantic information.

Example 1: An example of a dictionary entry1

Dictionary Term: “pattern”
["pæt@n], noun, ...
definitions:

1) a form or model proposed for imitation
2) a natural or chance configuration
3) ...

example sentences:
1)... a dressmaker’s pattern...
2)... the pattern of events ...

synonym or thesaurus:
model, archetype, design, exemplar, motif, etc

In Example 1, we see that in a typical dictionary entry,
the annotation for a term is structured as follows. First,
some basic non-semantic information is presented. Second, a
group of definitions are given, which suggests the semantics
of the term, followed by several example sentences, which
show the usage of this term in context. Besides, a set of
synonyms, thesaurus or semantically similar terms are pre-
sented, which have similar definitions with this term.

Analogically, if we can extract similar types of semantic in-
formation for a frequent pattern and provide such structured
annotations to a user, it will be very helpful for him/her
to interpret the meanings of the pattern and further ex-
plore it. Given a frequent pattern, it is trivial to generate
non-semantic information such as basic statistics and mor-
phological information, so the main challenge is to generate
the semantic descriptions of a pattern, which is the goal of
our work. First, we should ideally provide precise semantic
definitions for a pattern like those in a dictionary. Unfortu-
nately, this is not practical without expertise of the domain.
Thus we opt to look for information that can indicate the
semantics of a frequent pattern, which presumably can help
a user infer the precise semantics. Our idea is inspired from
natural language processing, where the semantics of a word
can be inferred from its context, and words sharing similar
contexts tend to be semantically similar [13]. Specifically,
by defining and analyzing the context of a pattern, we can
find strong context indicators and use them to represent the
meanings of a pattern. Second, we also want to extract
the data transactions that best represent the meanings of
the pattern, which is analogical to the example sentences.
Finally, semantically similar patterns (SSPs) of the given
pattern, i.e., patterns with similar contexts as the original
pattern, can be extracted and presented. This is similar to
the synonyms or thesauri of a term in dictionary. There-
fore, an example of semantic pattern annotation (SPA) can
be shown as follows:

Example 2: An example of annotating a frequent pattern

1The example is selected from Merriam-Webster’s Collegiate
Dictionary & Thesaurus

Pattern: “frequent pattern”
sequential pattern; support = 0.1%; closed
context indicators:

“mining”, “constraint”, “Apriori”, “FP-growth”
“rakesh agrawal”, “jiawei han”, ...

example transactions:
1)mining frequent patterns without candidate...
2)... mining closed frequent graph patterns

semantically similar patterns:
“frequent sequential pattern”, “graph pattern”
“maximum pattern”, “frequent close pattern”, ...

The term “frequent pattern” in this example is itself a fre-
quent itemset, or a frequent sequential pattern in text. This
dictionary-like annotation provides semantic information re-
lated to “frequent pattern”, consisting of its strongest con-
text indicators, the most representative data transactions,
and the most semantically similar patterns.

Despite its importance, to the best of our knowledge, the
semantic annotation of frequent patterns has not been well
addressed in existing work. In this work, we define the
novel problem of generating semantic annotations for fre-
quent patterns. We propose a general approach to auto-
matically generate structured annotations as shown in Ex-
ample 2, by: 1) formally defining and modeling the context
of a pattern; 2) weighting context indicators based on their
strength to indicate pattern semantics; and 3) ranking trans-
actions and semantically similar patterns based on context
similarity analysis. Empirical experiments on three different
datasets show that our algorithm is effective for generating
semantic pattern annotations and can be applied to various
real world tasks.

The semantic annotations generated by our algorithm have
potentially many other applications, such as ranking pat-
terns, categorizing and clustering patterns with semantics,
and summarizing databases. Applications of the proposed
pattern context model and semantical analysis method are
also not limited to pattern annotation; other example appli-
cations include pattern compression, transaction clustering,
pattern relations discovery, and pattern synonym discovery.

The rest of the paper is organized as follows. In Section 2,
we formally define the problem of semantic pattern annota-
tion and a series of its associated problems. In Section 3, we
introduce how the pattern context is modeled and instanti-
ated. Pattern semantic analysis and annotation generation
is presented in Section 4. We discuss our experiments and
results in Section 5, the related work in Section 6, and our
conclusions in Section 7, respectively.

2. PROBLEM FORMULATION
In this section, we formally define the problem of semantic

pattern annotation (SPA).
Let D = {t1, t2, ..., tn} be a database containing a set of

transactions ti, which can be itemsets, sequences, or graphs,
etc. Let pα be a pattern (e.g., an itemset, a subsequence,
or a subgraph) in D and PD = {p1, ..., pl} be the set of all
such patterns. We denote the set of transactions in which
pα appears as Dα = {ti|pα ∈ ti, ti ∈ D}.

Definition 1 (Frequent Pattern): A pattern pα is fre-

quent in a dataset D, if |Dα|
|D| ≥ σ, where σ is a user-specified

threshold and |Dα|
|D| is called the support of pα, usually de-

noted as s(α).
Definition 2 (Context Unit): Given a dataset D and



the set of frequent patterns PD, a context unit is a basic ob-
ject in D which carries semantic information and co-occurs
with at least one pα ∈ PD in at least one transaction ti ∈ D.
The set of all such context units satisfying this definition is
denoted as UD.

With this general definition, a context unit can be an
item, a pattern, or a transaction in practice, depending on
the specific task and data.

Definition 3 (Pattern Context): Given a dataset D
and a frequent pattern pα ∈ PD, the context of pα, denoted
as c(α), is represented by a selected set of context units Uα ⊆
UD such that every u ∈ Uα co-occurs with pα. Each selected
context unit u is also called a context indicator of pα,
associated with a strength weight w(u, α), which measures
how well it indicates the semantics of pα.

The following is an example of the context for an item-
set pattern in a small dataset with only two transactions.
The possible context units for this dataset are single items,
itemsets and transactions, and the context indicators of the
itemset pattern are selected from the context units appear-
ing with it in the same transactions.

Example 3: An example of pattern context

Transactions:
t1 = {diaper, milk, baby carriage, baby lotion, ... }
t2 = {digital camera, memory disk, printer, ... }

Context Units:
1) items: diaper, milk, printer, ...
2) patterns: {diaper, baby lotion}, ...
3) transactions: t1, t2, ...

An exemplary frequent pattern (σ = 0.5)
p = {diaper, milk}

Context indicators of p:
diaper, baby carriage, {milk, baby lotion}, t1, ...

With the definitions above, we now define the concept of
semantic annotation for a frequent pattern and the related
3 subproblems.

Definition 4 (Semantic Annotation): Let pα be a
frequent pattern in a dataset D, Uα be the set of context
indicators of pα, and P be a set of patterns in D. A semantic
annotation of pα consists of: 1) a set of context indicators
of pα, Iα ⊆ Uα, s.t. ∀u ∈ Iα and ∀u′ ∈ Uα − Iα, w(u′, α) ≤
w(u, α); 2) a set of transactions Tα ⊆ Dα, s.t.∀t ∈ Tα and
∀t′ ∈ Dα − Tα, t is more similar to c(α) than t′ under some
similarity measure; and 3) a set of patterns P ′ ⊆ P s.t.
∀p ∈ P ′ and ∀p′ ∈ P − P ′, c(p) is closer to c(α) than c(p′).

Definition 5 (Context Modeling): Given a dataset
D and a set of possible context units U , the problem of
Context Modeling is to select a subset of context units U ,
define a strength measure w(·, α) for context indicators, and
construct a model of c(α) for each given pattern pα.

Definition 6 (Transaction Extraction): Given a dataset
D, the problem of Transaction Extraction is to define a sim-
ilarity measure sim(·, c(·)) between a transaction and a pat-
tern context, and to extract a set of k transactions Tα ⊆ Dα

for frequent pattern pα, s.t.∀t ∈ Tα and ∀t′ ∈ Dα − Tα,
sim(t′, c(α)) ≤ sim(t, c(α)).

Definition 7 (Semantically Similar Pattern (SSP)
Extraction): Given a dataset D and a set of candidate pat-
terns Pc, the problem of Semantically Similar Pattern (SSP)
Extraction is to define a similarity measure sim(c(·), c(·)) be-
tween the contexts of two patterns, and to extract a set of k
patterns P ′ ⊆ Pc for any frequent pattern pα, s.t. ∀p ∈ P ′

and ∀p′ ∈ Pc−P ′, sim(c(p′), c(α)) ≤ sim(c(p), c(α)), where
c(α) is the context of pα.

With the definitions above, we may define the task of
Semantic Pattern Annotation (SPA) as to:
1) select context units and design a strength weight for each
unit to model the contexts of frequent patterns;
2) design similarity measures for the contexts of two pat-
terns, and for a transaction and a pattern context;
3) for a given frequent pattern, extract the most significant
context indicators, representative transactions and semanti-
cally similar patterns to construct a structured annotation.

This problem is challenging in various aspects. First, we
do not have prior knowledge on how to model the context
of a pattern or select context units when the complete set of
possible context units is huge. Second, it is not immediately
clear how to analyze pattern semantics, thus the design of
the strength weighting function and similarity measure is
nontrivial. Finally, since no training data is available, the
annotation must be generated in a completely unsupervised
way. These challenges, however, also indicate a great advan-
tage of the SPA techniques we will propose – they do not
depend on any domain knowledge about the dataset or the
patterns.

In the following two sections, we present our approaches
for modeling the context of a frequent pattern and annotat-
ing patterns through semantic context analysis.

3. MODELING PATTERN CONTEXTS
In this section, we discuss how to model pattern contexts

through selecting appropriate context units and defining ap-
propriate strength weights. Given a dataset D and a set of
frequent patterns PD, our goal is to select a set of context
units which carry semantic information and can discriminate
the meanings of the frequent patterns. The discriminating
power of each context unit will be captured by its strength
weights.

Vector Space Model (VSM) [17] is commonly used in nat-
ural language processing and information retrieval to model
the content of a text. For example, in information retrieval,
a document and a query are both represented as term vec-
tors, where each term is a basic concept (i.e., word, phrase),
and each element of the vector corresponds to a term weight
reflecting the importance of the term. The similarity be-
tween documents and queries can thus be measured by the
distance between the two vectors in the vector space. For
the purpose of semantic modeling, we represent a transac-
tion and the context of a frequent pattern both as vectors of
context units. We select VSM because it makes no assump-
tion on the vector dimensions and gives the most flexibility
to the selection of dimensions and weights. Formally, the
context of a frequent pattern is modeled as follows.

Context Modeling: Given a dataset D, a selected set of
context units {u1, ..., um}, we represent the context c(α) of a
frequent pattern pα as a vector 〈w1, w2, ..., wm〉, where wi =
w(ui, α) and w(·, α) is a weighting function. A transaction
t is represented as a vector 〈v1, v2, ..., vm〉, where vi = 1 iff
ui ∈ t, otherwise vi = 0.

The two key issues in a VSM are to select the vector
dimensions and to assign weights for each dimension [17].
Specifically, the effectiveness of context modeling is highly
dependent on how to select context units and design the
strength weights. Actually, due to the generality of VSM,
the proposed vector-space pattern context model is quite



general and covers different strategies for context unit selec-
tion and weighing functions. In the following subsections,
we first discuss the generality of the context model, and then
discuss specific solutions for the two issues respectively.

3.1 The Generality of Context Modeling
Some existing work has explored non-morphological infor-

mation of frequent patterns with some concepts related to
the “pattern context” defined above. We now show that the
notion of “pattern context” is more general and can cover
those concepts as special cases.

In [21], Yan et al. introduced the profile of an itemset
for summarizing itemset patterns, which is represented as a
Bernoulli Distribution Vector. In fact, this “profile” of a fre-
quent itemset α can be written as a vector 〈w(o1, α), w(o2, α),
..., w(od, α)〉 over all the single items {oi} in D. Here

w(oi, α) =

∑
tj∈Dα ti

j

|Dα| , where ti
j = 1 if oi ∈ tj and 0 oth-

erwise. This shows that this “profile” is actually a special
instance of the context model as we defined, where single
items are selected as context units.

Xin and others proposed a distance measure for mining
compressed frequent-pattern sets, which is computed based
on the transaction coverage of two patterns [20]. Inter-
estingly, the “transaction coverage” is also a specific in-
stance of “pattern context”. Given a frequent pattern pα,
the transaction coverage of pα can be written as a vector
〈w(t1, α), w(t2, α), ..., w(tk, α)〉 over all the transactions {ti}
in D, where each transaction is selected as a context unit,
and w(ti, α) = 1 if pα ∈ ti and 0 otherwise.

Covering the concepts in existing work as specific instances,
the pattern context model we proposed is general and has
quite a few benefits. First, it does not assume pattern types.
The pattern profile proposed in [21] assumes that both trans-
actions and patterns are itemsets, thus does not work for
other patterns such as sequential patterns and graph pat-
terns. Second, the pattern context modeling allows different
granularity of context units and different weighting strate-
gies. In many cases, single items are not informative in terms
of carrying semantic information (e.g., single nucleotides in
DNA sequences), and the semantic information carried by
a full transaction is too complex and noisy (e.g., a text
document). The context modeling we introduced bridges
this gap by allowing various granularity of semantic units,
and allows the user to explore the pattern semantics at the
level that corresponds to their beliefs. Furthermore, this
model is adaptive to different strength weighting strategies
for context units, where the user’s prior knowledge about
the dataset and patterns can be easily plugged in.

3.2 Context Unit Selection
With the general definition presented in Section 2, the

selection of context units is quite flexible. In principle, any
object in the database that carries semantic information or
serves to discriminate patterns semantically can be a context
unit, thus context units can be single items, transactions,
patterns, or any group of items/patterns, depending on the
characteristics of the task and data.

Without losing generality, in our work we assume a pat-
tern is the minimal units which carries semantic information
in a dataset, and thus select the context units as patterns.
All kinds of units can be considered as patterns with a spe-
cific granularity. For example, in a sequence database, every

single item can be viewed as a sequential pattern of length 1,
and every transaction can be viewed as a sequential pattern
which is identical to the transactional sequence. The choos-
ing of patterns as context units is task dependent, and can
usually be optimized with prior knowledge about the task
and the data. For example, we can use words as context
units in a text database, and in a graph database, we pre-
fer subgraph patterns to be context units, since single items
(i.e., vertices and edges) are noninformative.

This general strategy gives much freedom to select context
units. However, selecting patterns of various granularity
may cause the redundancy of context because these patterns
are highly redundant. As discussed in previous sections, we
expect the context units not only to carry semantic informa-
tion but also to be as discriminative as possible to indicate
the meanings of a pattern. However, when various granu-
larity of patterns are selected as context units, some units
will become less discriminative, and more severely, some be-
comes redundant. For example, when the pattern “mining
subgraph” is added as a context unit, the discriminating
power of other units like “mining frequent subgraph” and
“subgraph” would be weakened. This is because the trans-
actions containing the pattern “mining subgraph” always
contain “subgraph”, and likely also contain “mining frequent
subgraph”, which means that these patterns are highly de-
pendent and not discriminative to indicate the semantics
of the frequent patterns co-occurring with them. This re-
dundancy also brings a lot of unnecessary dimensions into
the context vector space where the dimensionality is already
very high. This redundancy in dimensions will affect both
the efficiency and accuracy of distance computation between
two vectors, which is essential for SPA. In our work, we ex-
amine different techniques to remove the redundancy of con-
text units without losing the semantic discriminating power.

3.2.1 Redundancy Removal: Existing Techniques
One may first think of using existing techniques such as

pattern summarization and dimension reduction to remove
the redundancy of context units.

While the context units can be any patterns in principle,
we are practically not interested in those with very low fre-
quency in the databases. Therefore, the context units we
initially include are frequent patterns. There exist meth-
ods for summarizing frequent patterns with k representative
patterns [21], but they only work for itemset patterns and
are not general enough for our purpose.

Some techniques such as LSI [5] have been developed to
reduce the dimensionality in high dimensional spaces, espe-
cially for text data. However, these techniques aim to mit-
igate the sparseness of data vectors by reducing the dimen-
sionality, and are not tuned for removing the “redundant”
dimensions. This is because all these dimensionality reduc-
tion techniques consider that each dimension is “important”
and the information it carries will always be preserved, or
propagated into the new space. This is, however, different
from our goal of redundancy removal. For example, if d1

and d2 correspond to the patterns “AB” and “ABC” re-
spectively, and if we consider d2 to be redundant w.r.t d1,
we do not expect the information of d2 to be preserved after
the removal of d2.

3.2.2 Redundancy Removal: Closed Frequent Pat-
tern



Since neither the pattern summarization nor the dimen-
sionality reduction technique is directly applicable to our
problem, we examine alternative strategies. Noticing that
the redundancy of context units is likely to be caused by the
inclusion of both a frequent pattern and its sub patterns, we
explore closed frequent patterns [15] and maximum frequent
patterns [16] to solve this problem.

A maximal frequent pattern is a frequent pattern which
does not have a frequent super-pattern. It is easy to show
that maximum frequent pattern is not appropriate for this
problem since it may lose important discriminative units.
For example, the frequent pattern “data cube”, although not
a maximum frequent pattern, indicates different semantics
from the frequent pattern “prediction data cube”, and thus
should not be removed.

Definition 8 (Closed Frequent Pattern): A frequent
pattern pα is closed if and only if there exists no super-
pattern pβ of pα, s.t. Dα = Dβ .

We assume that a context unit is not redundant only if it
is a closed pattern. This assumption is reasonable because
∀pα ∈ PD, if pα is not closed, there is always another fre-
quent pattern pβ ∈ PD, where pα ⊆ pβ and ∀ti ∈ D, we
have pα ∈ ti ⇔ pβ ∈ ti. This indicates that we can use
pβ as a representative of pα and pβ without losing any se-
mantic discriminating power. Therefore, in our work we use
closed frequent patterns as our initial set of context units.
The algorithms for mining different kinds of closed frequent
patterns can be found in [15, 23].

3.2.3 Redundancy Removal: Microclustering
However, as stated in [21], a small disturbance within

the transactions may result in hundreds of subpatterns that
could have different supports, which cannot be pruned by
closed frequent pattern mining. Those subpatterns are usu-
ally with supports only slightly different from that of the
master pattern. Therefore, their discriminating power for
the semantics of the frequent patterns is very weak when
their master patterns are also included as a context unit. We
present clustering methods to further remove redundancy
from the closed frequent patterns.

Microclustering is usually employed as a preprocessing
step to group data points from presumably the same cluster
to reduce the number of data points. In our work, we first
introduce a distance measure between two frequent patterns
and then introduce two microclutering algorithms to further
group the close frequent patterns.

Definition 9 (Jaccard Distance): Let pα and pβ as
two frequent patterns. The Jaccard Distance between pα

and pβ is computed as:

D(pα, pβ) = 1− |Dα ∩Dβ |
|Dα ∪Dβ |

Jaccard Distance [10] is commonly applied to cluster data
based on their co-occurrence in transactions. Our need is to
group the patterns that tend to appear in the same transac-
tions, which is well captured by Jaccard Distance. Jaccard
Distance has also been applied to pattern clustering in [20].

With Jaccard Distance, we expect to extract clusters such
that the distances between inner-cluster units are bounded.
We present two microclustering algorithms as follows:

In the Hierarchical Microclustering method presented as
Algorithm 1, we iteratively group two clusters of patterns
with the smallest distance, where the distance between two

Algorithm 1 Hierarchical Microclustering

Input: Transaction dataset D,
A set of n closed frequent patterns, P = {p1, ..., pn}
Threshold of distance, γ

Output: A set of patterns, P ′ = {p′1, ..., p′k}

1: initialize n clusters Ci, each as a closed frequent pattern;
2: compute the Jaccard Distance dij among {p1, ..., pn};
3: set the current minimal distance d = min(dij);
4: while (d < γ)
5: select dst where (s, t) = argmini,jdij ;
6: merge clusters Cs and Ct into a new cluster Cu;
7: foreach Cv 6= Cu

8: compute duv = max(dαβ) where pα ∈ Cu, pβ ∈ Cv;
9: foreach Cu;
10: foreach pα ∈ Cu;
11: compute d̄α = avg(dαβ) where pβ ∈ Cu;
12: add pα into P ′, where α = argmini(d̄i);
13: return

Algorithm 2 One-pass Microclustering

Input: Transaction dataset D,
A set of n closed frequent patterns, P = {p1, ..., pn}
Threshold of distance, γ

Output: A set of patterns, P ′ = {p′1, ..., p′k}

1: initialize 0 clusters;
2: compute the Jaccard Distance dij among {p1, ..., pn};
3: foreach (pα ∈ P)
4: foreach cluster Cu

5: d̃α,u = max(dαβ) where pβ ∈ Cu;

6: v = argminu(d̃α,u);

7: if(d̃α,v < γ)
8: assign pα to Cv

9: else
10: initialize a new cluster C = {pα}
11: foreach Cu;
12: foreach pα ∈ Cu;
13: compute d̄α = avg(dαβ) where pβ ∈ Cu;
14: add pα into P ′, where α = argmini(d̄i);
15: return

clusters are defined as the Jaccard distance between the far-
thest patterns in the two clusters. The algorithm termi-
nates when the minimal distance between clusters becomes
larger than a user-specified threshold γ. The second algo-
rithm, which we call One-Pass Microclustering, iteratively
assigns a closed frequent pattern pα to its nearest cluster
if the distance is below γ, where the distance between pα

and a cluster C is defined as the Jaccard distance between
pα and its farthest pattern in C. Both algorithms give us a
set of microclusters of closed frequent patterns. They both
guarantee that the distance between any pair of patterns
in the same cluster is below γ. Only the medoid of each
cluster is selected as a context unit. By varying γ, a user
can select context units with various levels of discriminating
power of pattern semantics. It is clear that Algorithm 2 only
passes the pattern set once and thus is more efficient than
the hierarchical algorithm, at the expense that the quality of
clusters depends on the order of patterns. The performance
of these two methods are compared in Section 5.



3.3 Strength Weighting for Context Units
Once the context units are selected, the remaining task is

to assign a weight to each dimension of the context model,
which represents how strong the context unit corresponding
to this dimension indicates the meaning of a given pattern.
Intuitively, the strongest context indicators for a pattern pα

should be those units that frequently co-occur with pα but
infrequently co-occur with others.

Practically, many types of weighting functions can be used
to measure the strength of a context indicator. For example,
we can assign the weight for a context indicator u for pα as
the number of transactions with both u and pα. However,
in principle, a good weighting function is expected to satisfy
several constraints:

Given a set of context indicator U and a frequent pattern
pα, a strength weighting function w(·, pα) is good if ∀ui ∈ U

1. w(ui, pα) ≤ w(pα, pα): the best semantic indicator of
pα is itself;

2. w(ui, pα) = w(pα, ui): two patterns are equally strong
to indicate the meanings of each other;

3. w(ui, pα) = 0 if the appearance of ui and pα is inde-
pendent: ui cannot indicate the semantics of pα.

An obvious choice is co-occurrences, which however, may
not be a good measure. One one hand, it does not satisfy
constraints 3. On the other hand, we want to penalize the
context units that are globally common patterns in the col-
lection. Which means, although they may co-occur many
times with pα, it may still not be a good context indica-
tor for pα because it also co-occurs frequently with others.
In general, the context units that are strongly correlated to
pα should be weighted higher. In our work, we introduce a
more principled measure.

Mutual Information (MI) is widely used to measure the
mutual independency of two random variables in informa-
tion theory, which intuitively measures how much informa-
tion a random variable tells about the other. The definition
of mutual information is given as

Definition 10: (Mutual Information). Given two fre-
quent patterns pα and pβ , let X = {0, 1} and Y = {0, 1}
be two random variables for the appearance of pα and pβ

respectively. Mutual information I(X; Y ) is computed as:

I(X; Y ) =
∑
x∈X

∑
y∈Y

P (x, y)log
P (x, y)

P (x)P (y)

where P (x = 1, y = 1) =
|Dα∩Dβ |
|D| , P (x = 0, y = 1) =

|Dβ |−|Dα∩Dβ |
|D| , P (x = 1, y = 0) =

|Dα|−|Dα∩Dβ |
|D| , and P (x =

0, y = 0) =
|D|−|Dα∪Dβ |

|D| . In our experiments, we use stan-

dard Laplace smoothing to avoid zero probability.
It can be easily proved that Mutual Information satisfies

all the three constraints and favors the strongly correlated
units. In our work, we use mutual information to model the
indicative strength of the context units selected.

Given a set of patterns as candidate context units, we ap-
ply closeness testing and microclustering to remove redun-
dant units from this initial set. We then use mutual infor-
mation as the weighting function for each indicator selected.
Given a frequent pattern, we apply semantic analysis with
its context model and generate annotations for this pattern,
as discussed in the following section.

4. SEMANTIC ANALYSIS AND PATTERN
ANNOTATION

Let U = {u1, u2, ..., uk} be a selected set of k context
units and w(·, pα) be the unit weighting function w.r.t. any
frequent pattern pα, i.e. I(·; pα). The context model, or con-
text vector c(α) for pα is 〈w(u1, pα), w(u2, pα), ..., w(uk, pα)〉.

As introduced in Section 1, we make the assumption that
the frequent patterns are semantically similar if their con-
texts are similar to each other. In our work, we analyze the
semantics of frequent patterns by comparing their context
models. Formally,

Definition 11 (Semantical Similarity): Let pα, pβ , pδ

be three frequent patterns in P and c(α), c(β), c(δ) ∈ Vk be
their context models. Let sim(c(·), c(·)) : Vk×Vk −→ R+ be
a similarity function of two context vectors. If sim(c(α), c(β))
> sim(c(α), c(δ)), we say that pβ is semantically more sim-
ilar to pα than pδ w.r.t. sim(c(·), c(·)).

Cosine is widely used to compute the similarity between
two vectors, and is well explored in information retrieval to
measure the relevance between a document and a query if
both are represented with a vector space model [17]. In our
work, we use cosine similarity of two context vectors to mea-
sure the semantic similarity of two corresponding frequent
patterns. Formally, the cosine similarity of two context vec-
tors is computed as

sim(c(α), c(β)) =

∑k
i=1 ai ∗ bi√∑k

i=1 a2
i ∗

√∑k
i=1 b2

i

where c(α) = 〈a1, a2, ..., ak〉 and c(β) = 〈b1, b2, ..., bk〉.
With the context model and the semantical similarity

measure, we now discuss how to generate semantic anno-
tations for frequent patterns.

4.1 Extracting Strongest Context Indicators
Let pα be a frequent pattern and c(α) be its context

model, which is defined in this work as a context vector
〈w1, w2, ..., wk〉 over a set of context units U = {u1, u2, ..., uk}.
As defined in Section 2, wi is a weight for ui which tells how
well ui indicates the semantics of pα. Therefore, the goal of
extracting strongest context indicators is to extract a sub-
set of k′ context units Uα ⊆ U such that ∀ui ∈ Uα and
∀uj ∈ U − Uα, we have wi ≥ wj .

With a strength weighting function w(·, pα), e.g., mutual
information as introduced in Section 3, we compute wi =
w(ui, pα), rank ui ∈ U with wi in descending order and
select the top k′ ui’s.

4.2 Extracting Representative Transactions
Let pα be a frequent pattern, c(α) be its context model,

and D = {t1, ...tl} be a set of transactions, our goal is to
select kt transactions Tα ⊆ D with a similarity function
s(·, pα), s.t. ∀t ∈ Tα and ∀t′ ∈ D − Tα, s(t, pα) ≥ s(t′, pα).

To achieve this, we first represent a transaction as a vec-
tor in the same vector space as the context model of the
frequent pattern pα, i.e., over {u1, u2, ..., uk}. Then, we
use the cosine similarity presented in Section 3 to compute
the similarity between a transaction t and the context of
pα. The rest is again a ranking problem. Formally, let
c(t) = 〈w′1, w′2, ..., w′k〉 where w′i = 1 if ui ∈ t and w′i = 0
otherwise. We compute sim(c(t), c(α)) for each t ∈ Tα, rank
them in descending order and select the top kt t’s.



4.3 Extracting Semantically Similar Patterns
Let pα be a frequent pattern, c(α) be its context model,

and Pc = {p1, ..., pc} be a set of frequent patterns which
are believed to be good candidates for annotating the se-
mantics of pα, i.e., as synonyms, thesauri, or more generally
as SSPs. Our goal is to extract a subset of kc patterns
P ′c ⊆ Pc whose contexts are most similar to pα. Formally,
let {c(p1), ..., c(pc)} be the context vectors for {p1, ..., pc}.
We compute sim(c(pi), c(α)) for each pi ∈ Pc, rank them in
descending order, and select the top kc pi’s.

Note that the candidate SSP set for annotation is quite
flexible. It can be the whole set of frequent patterns in D, or
a user-specified set of patterns based on his prior knowledge.
It can be a set of homogenous patterns with pα, or a set of
heterogenous patterns. For example, it can be a set of pat-
terns or terminology from the domain that a user is familiar
with, and is used to annotate patterns from an unfamiliar
domain. This brings great flexibility to apply the general
SPA techniques to different tasks. By exploring different
types of candidate SSPs, we can find quite a few interest-
ing applications of semantic pattern annotation, which are
discussed in Section 5.

5. EXPERIMENTS AND RESULTS
In this section, we present experiment results on three

different datasets to show the effectiveness of the semantic
pattern annotation technique for various real-world tasks.

5.1 DBLP Dataset
The first dataset we use is a subset of the DBLP dataset2.

It contains papers from the proceedings of 12 major con-
ferences in Database and Data Mining. Each transaction
consists of two parts, the authors and the title of the cor-
responding paper. We consider two types of patterns: (1)
frequent co-authorship, each of which is a frequent itemset
of authors and (2) frequent title terms, each of which is a
frequent sequential pattern of the title words. The goal of
experiments on this dataset is to show the effectiveness of
the SPA to generate a dictionary-like annotation for frequent
patterns. Our experiments are designed as follows:

1) Given a set of authors/co-authors, annotate each of
them with their strongest context indicators, the most repre-
sentative titles from their publications, and the co-authors or
title patterns which are most semantically similar to them.
Note that the most representative titles do not necessarily
mean their most influential work, but rather the titles which
best distinguish their work from others’ work.

2) Given a set of title terms (sequential patterns), anno-
tate each of them with their strongest context indicators,
the most representative titles, the most similar terms, and
the most representative author/co-authors. Note again that
the most representative author/co-authors are not necessar-
ily the most well-known ones, but rather the authors who
are most strongly correlated to the topics (terms).

In both experiments, we use the tools FP-Close [7] and
CloSpan [23] to generate closed frequent itemsets of co-
authors and closed sequential patterns of title terms respec-
tively. The title words are stemmed by Krovertz stemmer
[12], which converts the morphological variations of each
English word to its root form. We set the minimum sup-
port for frequent itemset as 10 and sequential patterns as 4,

2http://www.informatik.uni-trier.de/∼ley/db/

which outputs 9926 closed sequential patterns. We use the
One-Pass microclustering algorithm discussed in Section 3
to remove redundancy from those sequential patterns and
get a smaller set of 3443 patterns, with γ = 0.9 (the average
Jaccard distance between these patterns is > 0.95).

Medoids Cluster Members
mine data, mine, data mine

mine associate rule, associate, associate rule, mine rule
rule mine associate, mine associate rule

mine stream mine data, mine stream, data stream,
mine data stream

Table 1: Effectiveness of Microclustering

Table 1 shows the medoids and cluster members of three
microclusters generated by the One-Pass microclustering al-
gorithm discussed in Section 3, all of which begin with the
term “mine”. We see that different variations of the same
concept are grouped into the same cluster, although all of
them are closed patterns. This successfully reduces the pat-
tern redundancy. It is interesting to see that the pattern
“data mine” and “mine data” are assigned to different clus-
ters, which cannot be achieved by the existing pattern sum-
marization techniques such as [21]. The results generated
by hierarchical microclustering are similar.

In Table 2, we selectively show the results of semantic
pattern annotations. We see that the SPA system can auto-
matically generate dictionary-like annotations for different
kinds of frequent patterns. For frequent itemsets like co-
authorship or single authors, the strongest context indica-
tors are usually their other co-authors and discriminative ti-
tle terms that appear in their work. The semantically similar
patterns extracted also reflect the authors and terms related
to their work. However, these SSPs may not even co-occur
with the given pattern in a paper. For example, the pattern
“jiayong wang”, “jiong yang&philip s yu&wei wang” actu-
ally do not co-occur with the pattern “xifeng yan&jiawei han”,
but are extracted because their contexts are similar. For a
single author, whose context is usually more diverse, the
SSPs are more likely to be title terms instead of authors.

We also present the annotations generated for title terms,
which are frequent sequential patterns. Their strongest con-
text indicators are usually the authors who tend to write
them in the titles of their papers, or the terms that tend
to co-appear with them. Their SSPs usually provide inter-
esting concepts or descriptive terms which are close to their
meanings, e.g. “information retrieval → information filter”,
“xquery → complex language, function query language”.

In both scenarios, the representative transactions extracted
give us the titles of papers that well capture the meaning of
the given patterns. We only show the title words in Table 2
for each transaction.

These experiments show that the SPA can generate dic-
tionary like annotations for frequent patterns effectively. In
the following two experiments, we quantitatively evaluate
the performance of SPA, by applying it to two interesting
tasks.

5.2 Matching Motifs and GO Terms
A challenging and promising research topic in computa-

tional biology is to predict the functions for newly discovered
protein motifs, which are conserved amino acid sequence
patterns characterizing the function of proteins. To solve
this problem, researchers have studied how to match Gene



Pattern Type Annotations
xifeng yan I graph; philip s yu; mine close; mine close frequent; index approach; graph pattern; sequential pattern
jiawei han T gspan graph-base substructure pattern mine

T mine close relational graph connect constraint
(SSP set = T clospan mine close sequential pattern large database
co-author patterns) S jiawei han&philip s yu; jian pei&jiawei han; jianyong wang; jiong yang&philip s yu&wei wang

I spiros papadimitriou; fast; use fractal; graph; use correlate;
christos faloutso T multiattribute hash use gray code
(SSP set = T recovere latent time-sery their observe sum network tomography particle filter
title term patterns) T index multimedia database tutorial

S use fractal; fast data mine; data graph; efficient time sequence; spatial access method; discovery correlate
information I w bruce croft; web information; monika rauch henzinger; james p callan; full-text;
retrieval T web information retrieval

T language model information retrieval
S information use; web information; probabilist information; information filter; text information
I xquery stream; murali mani; jens teubner; tree efficient

xquery T implement xquery
T xquery query language xml
S xquery stream; stream xml; complex language; function query language; estimate xml;

Table 2: Annotations Generated for Frequent Patterns in DBLP Dataset
Note: “I” means context indicators; “T” means representative transactions; “S” means semantically similar patterns.

We exclude 12 most frequent and non-informative English words from the collection when extracting frequent patterns.

Ontology(GO) terms with motifs [18]. Usually, each protein
sequence, which contains a number of motifs, is assigned a
set of GO terms that annotate its functions. The goal of
the problem is to automatically match each individual mo-
tif with GO terms which best represent its functions. In
this experiment, we formalize the problem as: Given a set
of transactions D (protein sequences with motifs tagged and
GO terms assigned), a set P of frequent patterns in D to be
annotated (motifs), and a set of candidate patterns Pc with
explicit semantics (GO terms), our goal is for ∀pα ∈ P , find
P ′c ⊆ Pc which best indicate the semantics of pα.

We used the same data set and judgments (i.e., gold stan-
dard) as used in [18]. The data has 12181 sequences, 1097
motifs, and 3761 GO terms. We also use the same perfor-
mance measure as in [18] (i.e., a variant of Mean recip-
rocal rank (MRR) [11], notated as MRR in the following
sections for convenience) to evaluate the effectiveness of the
SPA technique on the Motif - GO term matching problem.

Let G = {g1, g2, ..., gc} be a set of GO terms. Given a
motif pattern pα, G′ = {g′1, g′2, ..., g′k} ⊆ G is a set of “cor-
rect” GO terms for pα in our judgement data. We rank G
with the SPA system and pick the top ranked terms, where
G is treated as either context units or semantically similar
patterns to pα. This will give us a rank for each gi ∈ G, say
r(gi). MRR (w.r.t. pα) is then computed as

MRRα =
1

k

k∑
i=1

1

r(g′i)

where r(g′i) is the ith correct GO term for pα. If g′i is not
in the top ranked list, we set 1/r(g′i) = 0. We take the
average over all the motifs, MRR = 1/m

∑
Pα∈P MRRα to

measure the overall performance, where m is the number
of motifs in our judgement file. Clearly, 0 ≤ MRR ≤ 1.
A higher MRR value indicates a higher precision, and the
top-ranked GO terms have the highest influence on MRR,
which is intuitively desirable.

If we are ranking the full candidate GO set for annotation,
a “lazy” system may either just give them the same rank or
rank them randomly. It is easy to show that the expected
MRR score for these two cases are the same, which is

E[MRR] =
1

|G|
|G|∑
i=1

1

r(gi)

where |G| is the number of GO terms in G. E[MRR] drops
monotonously when |G| increases, which indicates the larger

the candidate set is, the more difficult is the ranking task.
We use this value as the baseline to compare our results.

We employ all the motifs and GO terms as context units.
Since these patterns are not overlapping with each other, we
do not use microclustering to preprocess the context units.
We compare the ranking of GO terms either as context in-
dicators or as SSPs. We also compare the use of Mutual
Information and co-occurrence as strength weight for con-
text units. These strategies are compared in Table 3:

MRR Use MI Use Co-occurrence
Context Strength 0.5877 0.6064

Semantical Similarity 0.4017 0.4681
Random (|G| = 3761) 0.0023

Table 3: MRR of SPA on Motif-GO matching

We see that SPA is quite effective in matching motifs with
GO terms, consistently outperforming the baseline. Rank-
ing GO terms as context units achieves better results than
ranking them as SSPs, which is reasonable because a GO
term usually describes only one aspect of a motif’s function
and is shared by a number of motifs, thus its context is likely
quite different from that of a motif.

Interestingly, we notice that although Mutual Information
is a better measure for the strength weight in principle, in
this specific problem, using MI as strength weight for con-
text units is not as good as using simple co-occurrence. This
may be because there are hardly many Go terms that are
globally very common in this dataset, and therefore MI over
penalizes the frequent patterns. A detailed discussion on
why co-occurrence measure outperforms MI on Motif-GO
matching problem is given in [18].

5.3 Matching Gene Synonyms
As discussed in Section 4.3, the algorithm for extracting

semantically similar patterns aims at finding patterns whose
meaning is very close to the pattern to be annotated. Ideally,
they would be synonyms, or thesauri of the given pattern.
These patterns may not ever co-occur with the given pattern
but tend to have similar contexts, thus cannot be extracted
as strong context indicators. We do another experiment to
test the performance of SPA on extracting SSPs.

In biomedical literature, it is common that different terms
or aliases are used in different studies to denote the same
gene, which are known as gene synonyms (see e.g., Table 4).
These synonyms generally do not appear together but are
“replaceable” with each other. Detecting them can help
many literature mining tasks. In this experiment, we test



the application of SPA to matching gene synonyms.

Gene id Gene Synonyms
FBgn0000028 abnormal chemosensory jump 6; acj 6; ipou;

i pou; cg 9151; ti pou; twin of i pou;
FBgn0001000 female sterile 2 tekele; fs 2 sz 10; tek;

fs 2 tek; tekele;

Table 4: Examples of gene synonym patterns

We construct the synonym list for 100 fly genes, which
are randomly selected from the data provided by BioCre-
AtIvE Task 1B3. Ling et al. collected 22092 abstracts from
MEDLINE4 which contain the keyword “Drosophila” [14].
We extract the sentences from those abstracts which con-
tain at least one synonym in the synonym list. Only the
synonyms with support ≥ 3 are kept, which gives us a small
set of 41 synonyms. We then mix those synonyms which
belong to different genes and use the algorithm of extract-
ing SSPs to recover the matching of synonyms. Specifically,
given a synonym from the mixed list, we rank all synonyms
with the SSP extraction algorithm. The performance of the
system is evaluated by comparing the ranked list with the
correct synonyms for the same gene. We also use MRR as
the evaluation measure. The results are shown as follows.

Context min No Micro- One-pass Hierarchical
Units sup Clustering γ = 0.9 γ = 0.9
Closed 0.15% 0.5108 0.5161 0.5199

Sequential 0.18% 0.5140 0.5191 0.5225
Patterns 0.24% 0.5220 0.5245 0.5301

0.3% 0.5281 0.5292 0.5281
Single Words 0.4774

Random 0.1049 (|G| = 41)

Table 5: MRR of SPA on gene synonym matching
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Figure 1: Effect of microclustering algorithms

HIER: hierarchical microclustering; ONEP: one-pass microclus-
tering; minsup = 0.3% Avg. γ = 0.96;

From Table 5, we see that the SPA algorithm is also ef-
fective for matching gene synonyms, which significantly out-
performs the random baseline. When using closed sequential
patterns as context units, we always achieve better results
than using single words (items) as context units, where a
higher minimum support (minsup) usually yields better re-
sults. When closed sequential patterns are used, further
microclustering indeed improves the performance of the sys-
tem. However, when the minsup is higher, this improvement
3http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html
4http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

is decaying. This is reasonable because when the minsup is
higher, there is less redundancy among the output closed
patterns. Using hierarchical microclustering is slightly bet-
ter than using the one-pass algorithm, but not always.

Finally, we discuss the performance of microclustering in
removing redundant context units. The effectiveness and ef-
ficiency are shown in Figure 1. Both microclustering meth-
ods improve the precision (MRR score) when more redun-
dant patterns are grouped into clusters. However, when γ
is set too large, the precision decreases. This indicates that
we may have over penalized the redundancy and lost useful
context units. A good γ for this task is around 0.8.

Although the cluster quality may not be optimized, the
performance of one-pass microclustering is comparable to hi-
erarchical microclustering on this task. While in principle,
the hierarchical clustering is not efficient, the early termi-
nation by using a small γ saves a lot of time. The one-pass
algorithm is more efficient than the hierarchical clustering,
and is not affected by γ. The overhead that both algorithms
suffer is the computation of Jaccard distances for all pairs
of patterns, i.e., O(n2) where n is the number of patterns.
However, this computation can be coupled in frequent pat-
tern mining, as discussed in [20].

6. RELATED WORK
To the best of our knowledge, the problem of semantic pat-

tern annotation has not been well studied in existing work.
Most frequent pattern mining work [2, 8, 3, 22] focuses on

discovering frequent patterns efficiently from the database,
and does not address the problem of pattern postprocess-
ing. To solve the problem of high redundancy in patterns
discovered, closed frequent pattern [15], maximum frequent
pattern [16] and top-k closed pattern [9] are proposed to
shrink the size of output patterns while keeping the impor-
tant ones. However, none of this work provides additional
information other than simple statistics to help users inter-
pret the frequent patterns. The context information for a
pattern tends to be ignored.

Recently, researchers develop new techniques to approx-
imate, summarize a frequent pattern set [1, 21], or mine
compressed frequent pattern sets [20]. Although they ex-
plored some kind of context information, none of the work
can provide in-depth semantic annotations for frequent pat-
terns as we do in our work. The context model proposed in
our work covers both the pattern profile in [21] and trans-
action coverage in [20] as special cases.

Context and semantic analysis are quite common in natu-
ral language and text processing (see e.g., [17, 5, 13]). Most
work, however, deals with non-redundant word-based con-
texts, which are quite different from pattern contexts.

In specific domains, people have explored the context of
specific data patterns to solve specific problems [18, 14].
Although not optimally tuned, the general techniques pro-
posed in our work can be well applied to those tasks.

7. CONCLUSIONS
Existing frequent pattern mining work usually generates a

huge amount of frequent patterns without providing enough
information to interpret the meanings of the patterns. Some
recent work introduced postprocessing techniques to sum-
marize and compress the pattern set, which shrinks the size
of the output set of frequent patterns but does not provide
semantic information for patterns.



We propose the novel problem of semantic pattern an-
notation (SPA) – generating semantic annotations for fre-
quent patterns. A semantic annotation consists of a set of
strongest context indicators, a set of representative transac-
tions, and a set of semantically similar patterns (SSPs) to
a given frequent pattern. We define a general vector-space
context for a frequent pattern. We propose algorithms to
exploit context modeling and semantic analysis to generate
semantic annotations automatically. The context modeling
and semantic analysis method we presented is quite gen-
eral and can deal with any types of frequent patterns with
context information. The method can be coupled with any
frequent pattern mining techniques as a postprocessing step
to facilitate interpretation of the discovered patterns.

We evaluated our approach on three different dataset and
tasks. The results show that our methods can generate se-
mantic pattern annotations effectively. As shown in our ex-
periments, our method can be potentially applied to many
interesting real world tasks through selecting different con-
text units and focusing on candidate patterns for SSPs.

Although the proposed SPA framework is quite general,
in this paper, we only studied some specific instantiation of
the framework based on mutual information weighting and
cosine similarity measure. A major goal for future research
is to fully develop the potential of the proposed framework
by studying alternative instantiations. For example, we may
explore other options for context unit weighting and seman-
tic similarity measurement, the two key components in our
framework.
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