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Abstract

Location-based social networks have been gaining increasing

popularity in recent years. To increase users’ engagement

with location-based services, it is important to provide

attractive features, one of which is geo-targeted ads and

coupons. To make ads and coupon delivery more effective,

it is essential to predict the location that is most likely to

be visited by a user at the next step. However, an inherent

challenge in location prediction is a huge prediction space,

with millions of distinct check-in locations as prediction

target. In this paper we exploit the check-in category

information to model the underlying user movement pattern.

We propose a framework which uses a mixed hidden Markov

model to predict the category of user activity at the next step

and then predict the most likely location given the estimated

category distribution. The advantages of modeling the

category level include a significantly reduced prediction

space and a precise expression of the semantic meaning of

user activities. Extensive experimental results show that,

with the predicted category distribution, the number of

location candidates for prediction is 5.45 times smaller, while

the prediction accuracy is 13.21% higher.

1 Introduction

Location-based social networks (LBSNs) [21] have been
increasingly popular recently, in which millions of users
are sharing their locations or geo-tagged information
with friends through check-ins. LBSNs have largely in-
fluenced people’s life style – they can share their expe-
riences in a timely fashion; meanwhile, they also keep
informed of the most up-to-date trends. To offer bet-
ter service, it is very important for LBSN providers to
predict the most likely location to be visited by a user.
By knowing the next move of a user, LBSN providers
can make geo-targeted ads and coupon delivery more
effective. Hence, accurate location prediction can help
improve the user experience and increase users’ engage-
ment with LBSN consequently.

At first glance, existing location prediction methods
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on GPS trajectories [22, 16] can be directly applied
on the LBSN data, since the two data types exhibit
certain similarity. But after analyzing the check-in
records collected from a real online location-based social
network, Gowalla, we found the LBSN check-in data
exhibit some unique properties, which are different
from the extensively studied GPS trajectories: (1) data
sparseness. Only 10% users have more than 58 check-
in records in the whole 12-month period, which is the
average check-in times per user, showing a low check-in
frequency. In addition, the spatial gap between any
two consecutive check-ins is typically in the scale of
kilometer, while the spatial gap between consecutively
logged GPS points is typically 5−10 meters [22]; (2) the
semantic meaning. Each check-in record is labeled with
the name and category of the location in LBSN, while a
GPS point consists of only latitude, longitude and time
stamp. The check-in category information reflects the
user preference and the heterogeneity of user behavior.
With these differences, the existing techniques designed
on GPS trajectories are not suitable to be applied
directly to the LBSN data.

An inherent challenge in location prediction is that
the location prediction space is very huge – there may
be millions of distinct check-in locations in an LBSN. As
a result it is very hard to build a model by incorporating
user movement pattern, preference and temporal spatial
information to predict locations directly and achieve
satisfactory performance. Considering this challenge,
we propose to decompose the original problem into
two sub-problems: (1) predicting the category of user
activity at the next step; and then (2) predicting a
location given the estimated category distribution. For
example, an LBSN may predict a user’s next activity to
be entertainment, then it will likely predict the location
to be a cinema in the user’s vicinity. An obvious
advantage of this approach is a significantly reduced
prediction space, as there are only a small number of
categories such as food, shopping, entertainment, etc.
More importantly, by focusing on the category level
we can model the underlying movement pattern of a
user and capture the semantic meaning of the user’s
activities. Therefore, the problem we study in this work
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is: how do we predict a user’s activity category at the
next step and predict the most likely location, given a
sequence of his/her check-in records as observation?

In this work, we propose to use the hidden Markov
model (HMM) to model the user movement pattern and
the dependency between a user’s check-in activities at
the category level. The abstract states in HMM can well
model the sparse LBSN data where users only check-in
at points of interest (POIs) or certain places they deem
important or interesting, as the hidden states capture
the essential behavioral patterns of LBSN users, rather
than focusing on the finer granularity and consecutive
points as in GPS trajectories. As users’ activities
exhibit a strong temporal and spatial pattern, we train a
mixed HMM by incorporating the temporal and spatial
information, to further improve the model accuracy.
After predicting the category of a user for the next step,
we use some simple schemes to predict a location given
the category distribution. To the best of our knowledge,
our work is the first to model the user activity category
for location prediction.

Extensive experimental evaluation shows that, (1)
our mixed HMM with user clustering achieves 44.35%
category prediction accuracy, outperforming the base-
line methods by up to 14.85%; (2) when given the es-
timated category distribution, the number of location
candidates we need to consider is 5.45 times smaller
than without the predicted category, while the location
prediction accuracy is 13.21% higher, as many irrelevant
candidates are filtered out given the category; and (3)
our method outperforms PMM [5], a human mobility
model for location prediction by 31.89%.

The rest of this paper is organized as follows. Sec-
tion 2 describes data collection procedure and data
properties. Section 3 describes the HMM model for cat-
egory prediction. Section 4 introduces several schemes
for location prediction given the category distribution.
We present extensive experimental results in Section 5
and discuss related work in Section 6. Finally Section 7
concludes our paper.

2 Data Analysis

In this section we describe our data collection procedure
and analyze the data properties.

2.1 Data Collection Launched in 2009 as an online
LBSN, Gowalla (http://gowalla.com) allows users to
share their locations or geo-tagged information such
as comments and photos with friends through check-
ins. We have crawled 13 million check-in records of
over 230,000 users from Gowalla for 12 months, from
September 2009 to August 2010. For each check-in
record we obtain the following information: user id,

check-in time, latitude, longitude, name and category
of the check-in location. The average check-in times of
a user during the 12-month period is 58, thus we choose
the users with check-in times no less than 58 as active
users. After the data selection we get 23,040 users with a
total of 6,634,176 check-in records, accounting for half of
all the collected records. We treat the check-in records
by a user within one day as a check-in sequence and thus
obtain 1,054,689 sequences. Table 1 shows an example
dataset with user check-in sequences.

Table 1: Example of User Check-in Sequences
User Date Check-in Records

John 1/13

〈08:17, 41.89◦, −87.65◦, Starbucks, Food〉,
〈09:30, 41.88◦, −87.63◦, City Hall, Community〉,
〈12:35, 41.88◦, −87.62◦, Subway, Food〉,
〈17:22, 41.99◦, −87.73◦, Macy’s, Shopping〉

Andy 1/27
〈11:37, 37.42◦, −122.17◦, McDonald’s, Food〉,
〈18:01, 37.53◦, −122.07◦, Park, Outdoors〉,
〈19:30, 37.54◦, −122.06◦, Italian, Food〉
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Figure 1: Data Statistics

2.2 Dataset Properties Figure 1(a) shows the com-
plementary cumulative distribution function (CCDF) of
the check-in times per user. The check-in data is very
sparse; among all 230,000 users, only 23,040 (10%) users
have more than 58 check-in records during the whole 12-
month period, and only 1% have more than 760 check-in
records during this period.

Figure 1(b) shows the CCDF of the spatial gap
between any two consecutive check-ins within a day.
40% of all consecutive check-ins have a gap larger
than 1 kilometer, much longer than the spatial gap
between consecutive points in GPS trajectories, which
is typically 5 − 10 meters. This shows the sparseness
of the check-in data from a different perspective. Thus
the techniques for mining GPS trajectories [22] are not
suitable to be applied to the LBSN data.

Figure 2 shows the number of check-ins by category
and hour. In Gowalla there are 9 categories: Commu-
nity, Entertainment, Food, Night life, Outdoors, Shop-
ping, Travel, Events, and None. We can observe the fol-
lowing phenomena: (1) most categories exhibit a strong
temporal pattern – the check-in times start to decrease
since midnight and reach the minimum at 9 am. The
check-in activities start to rise at 10 am and peak in the
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Figure 2: Check-ins by Category and Hour

Figure 3: Category by Region in New York City.
Community (blue), Entertainment (green), Food (red),
Night life (cyan), Outdoors (magenta), Shopping (yel-
low), Travel (black), Events (white).

afternoon or evening; and (2) the check-in distribution
by category is quite imbalanced – Food and Shopping
are the two dominant categories, while Events and None
have very few check-in records. Thus if we simply pre-
dict based on popularity, Food will always be predicted.

Figure 3 shows the spatial pattern of the check-
in categories in New York City. We divide the whole
area into 0.01 longitude by 0.01 latitude square regions
and color a region with the dominant check-in category
within that region, if the check-in percentage of the
dominant category is 50% or above. We can observe
that: (1) many regions are dominated by a certain
category, exhibiting a strong correlation between the
location and the type of activities; and (2) user activity
categories are quite diverse across the spatial area.

3 User Activity Prediction

In this section we study how to predict the user activity
at the category level.

3.1 Definitions Consider a set of user check-in se-
quences L = {l1, l2, . . . , ln}, and each sequence li =
r1r2 . . . rmi consists of a series of mi ≥ 1 check-in
records. Each record r is a tuple in the form of
r = 〈uid, time, latitude, longitude, location, category〉,
where uid is the user id, time is the check-in time,
latitude and longitude specify the geographic position
of the check-in record. location is the name of the check-

in location, e.g., Starbucks, Walmart, etc., and category
is a label describing the type of location. In the collected
dataset, there are totally 817,683 distinct locations and
9 categories.

Our goal is to learn a prediction model from L.
Given a test sequence ltest = r1r2 . . . rt, we want to
predict the location of the next check-in record rt+1.

3.2 Category Prediction based on HMM As our
dataset contains 817,683 distinct locations, this forms a
huge prediction space for location prediction. In ad-
dition, as both the temporal and spatial gaps between
two check-in locations are quite large, compared with
the gaps between two logged points in GPS trajectory
data, it is more difficult to model the dependency be-
tween two check-in locations. Consequently it is very
challenging to predict the locations directly. But when
we abstract to the more generalized category level, the
dependency between categories reflects the dependency
between different user status, e.g., work, entertainment,
etc., with more statistical significance. Thus we decom-
pose the prediction problem into two sub-problems: (1)
predicting the category of user activity; and then (2)
predicting the location of user activity given the pre-
dicted category distribution. In the following we will
focus on the task of category prediction first.

We propose to use a hidden Markov model (HMM)
to model the dependency between categories. In our
category prediction problem, we define a set of hidden
states S={s1, s2, . . . , sM} which correspond to the
underlying status of a user, and a set of observations
C={c1, c2, . . . , cN} which correspond to the nine
categories in our problem, i.e., N = 9. The HMM has
the following three key parameter components, which
can fully describe the HMM: (1) initial state probability
πsi for each hidden state si ∈ S; (2) state transition
probability qsi,sj from the hidden state si to sj where
si, sj ∈ S; and (3) state-dependent output probability
P(cj|si), which determines the probability of the check-
in category cj ∈ C given the hidden state si ∈ S. The
graphical representation of the HMM with probabilistic
parameters is shown in Figure 4(a).

We abstract a user’s check-in activities within one
day as a sequence of categories of length T , i.e., l =
C1C2 . . . CT (abbreviated as l = C1:T ), and use such cat-
egory observation sequences to train the HMM. Ct ∈ C
is a random variable representing the observed category
at time t, 1 ≤ t ≤ T . Each Ct is uniquely associated
with a random variable St ∈ S, representing the un-
known hidden state at time t. Figure 4(b) shows an in-
stantiated HMM structure for the observation sequence
l = C1:T , illustrating the conditional dependencies be-
tween hidden states and observed categories. In the
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Figure 4: HMM Model for LBSN Prediction

following, we will discuss the parameter estimation in
HMM, as well as category prediction based on the learnt
HMM model.

3.2.1 Parameter Estimation for HMM Existing
methods on parameter estimation for HMM, such as the
Baum-Welch algorithm [4], use an EM approach which
aims at maximizing the likelihood of the observation
sequence. The overall likelihood of any observation
sequence should be summed over all possible routes
through the underlying hidden states and is expressed
in Equation 3.1. Since we assume the HMM is time-
homogeneous, the state transition probabilities and the
state-dependent output probabilities do not change with
time t.
(3.1)

P (C1:T ) =

sM∑

S1=s1

· · ·

sM∑

ST=s1

πS1

T∏

t=2

qSt−1,St

T∏

t=1

P (Ct|St)

As Equation 3.1 computes the summation over MT

components, it is computationally intractable. Accord-
ing to [23], we can reformulate Equation 3.1 as Equation
3.2, which is expressed by matrix multiplications and
can reduce the computational cost. Here π is a 1 ×M
initial state distribution vector, Q is an M ×M hidden
state transition matrix where Qij = qsi,sj , and PCt is
an M ×M diagonal matrix with P (Ct|si) (1 ≤ i ≤M)
on the diagonal and other entries as 0. Then we can use
the Baum-Welch algorithm to estimate the hidden state
transition probabilities and the state-dependent output
probabilities.

(3.2) LT = P (C1:T ) = πPC1
QPC2

· · · QPCT 1
⊤

Since we consider a time-homogeneous transition matrix
Q, the initial state distribution π for a hidden Markov
chain is defined as the stationary distribution of the
transition matrix Q, which satisfies π = πQ. Therefore,
π can be estimated when Q is available.

To decide the right number of hidden states M
in learning an HMM, we use Bayesian Information
Criterion (BIC) [15] to evaluate the HMM with different
state numbers, and a smaller BIC value always leads to
better model fitness.

3.2.2 Check-in Category Prediction When given
a length-t test category sequence ltest = C1:t, we can
predict the category Ct+1 at time t+ 1 with the learnt
HMM. This prediction is divided into two steps:

St+1 = arg max
si∈S

P (St+1 = si|C1:t)

Ct+1 = arg max
cj∈C

P (cj |St+1)

where we compute the most likely hidden state St+1

first, and then predict the most likely category Ct+1

given St+1.
Prediction of the next state St+1 given the observa-

tion C1:t can be computed from qSt,St+1
and P (St|C1:t),

according to the law of total probability:

(3.3) P (St+1 = sj |C1:t) =

M∑

i=1

qsi,sjP (St = si|C1:t)

where P (St = si|C1:t) can be computed using the
“filtering” approach. Specifically, we compute P (St =
si|C1:t) from Equation 3.4 where Qi is the ith column
of transition matrix Q, and Lt is the likelihood of C1:t

computed from Equation 3.2.
(3.4)
P (St = si|C1:t) = (πPC1

QPC2
Q · · ·PCt−1

QiP (Ct|St))/Lt

After getting the most likely hidden state St+1, we
obtain the category distribution P (cj |St+1), 1 ≤ j ≤
N , and predict the most likely category as Ct+1 =
argmaxcj∈C P (cj |St+1).

3.3 Mixed HMM with Temporal and Spatial

Covariates The HMM described above only models
the dependencies (or transitions) between the check-in
categories. Given the same observation sequence C1:t,
the HMM always generates the same prediction regard-
less of the specific temporal and spatial information of
the observed check-ins. However, in reality, the LBSN
users’ check-in behaviors are influenced by their sur-
roundings. For example, the HMM may predict the
most likely category as Outdoors after observing Food.
However, if given the current time as midnight, the most
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likely next category will be Night life instead; or if given
the current user location as a shopping mall, then the
most likely next category will be Shopping instead. Fig-
ures 2 and 3 also show how the category strength is
affected by temporal and spatial factors. Therefore,
we propose to build a more general prediction model,
known as mixed HMM [1], by incorporating both tem-
poral and spatial covariates to improve the model ac-
curacy. Such a mixed HMM is “context aware”, i.e.,
exploits the knowledge of user time and geographic po-
sition. Figure 4(c) shows the graphical representation
of the mixed HMM, where the check-in category Ct is
determined by both the hidden states and the temporal

spatial covariates. We use
−→
Xt to represent the temporal

spatial covariates at time t.
To formulate the state-dependent probability when

incorporating the temporal spatial covariates
−→
Xt, we

follow the multivariate logit model, which has been
studied extensively to model parametric probability
function [7].
(3.5)

P (Ct = cj |St = si,
−→
Xt) =

exp(α
cj
si +

−→
β
cj
si ·
−→
Xt)

∑N
k=1 exp(αcksi +

−→
βcksi ·

−→
Xt)

where αcksi is a state si-specific coefficient for the ob-
served check-in category ck (also known as “intercept”),

1 ≤ k ≤ N , and
−→
βcksi is a vector of state si-specific re-

sponse coefficients for category ck under the temporal

spatial covariates
−→
Xt.

We use a numerical vector to represent the check-
in time information in terms of days of the week,
i.e., Sunday to Saturday, and hours of a day. To
represent the spatial information, a straightforward way
is to use the latitude and longitude of the check-in
records. However, the latitude and longitude do not
reflect the property of a location related to category
prediction. Thus we use the following representation of
spatial information: we collect all check-in records for a
location and compute a probability distribution of the
check-in categories. The category distribution vector of
a location is used as the spatial covariate. The temporal
and spatial information of a check-in record at time t

jointly forms the covariates
−→
Xt.

3.3.1 Parameter Estimation for Mixed HMM

In the mixed HMM, for each hidden state and observed
check-in category pair (si, cj), where si ∈ S and cj ∈ C,
we need to estimate the intercept parameter α

cj
si and

the response parameter vector
−→
β
cj
si . As there are totally

M × N state-category pairs, the number of estimated
parameters in the mixed HMM is much larger than
in the basic HMM. EM algorithm is very slow when

handling a large number of parameters. Moreover, it
is very complicated to maximize the state-dependent
probability in Equation 3.5 through derivation. To
overcome these problems, we consider another way
in HMM parameter estimation, Markov chain Monte
Carlo (MCMC) Bayes Estimation, an iterative sampling
approach.

The estimation of qsi,sj in Section 3.2.1 is subject

to the constraint
∑M

j=1 qsi,sj = 1, which rarely happens
during sampling. In order to satisfy this constraint and
facilitate MCMC Bayes Estimation, we specify the state
transition probability qsi,sj from the hidden state si to
sj as follows:

qsi,s1 =
exp(µsi,s1)

1 + exp(µsi,s1)

qsi,sj =
exp(µsi,sj )

1 + exp(µsi,sj )
−

exp(µsi,sj−1
)

1 + exp(µsi,sj−1
)

qsi,sM = 1−
exp(µsi,sM−1

)

1 + exp(µsi,sM−1
)

i ∈ {1, 2, . . . ,M}, j ∈ {2, . . . ,M − 1},

µsi,s1 ≤ µsi,s2 ≤ · · · ≤ µsi,sM−1

(3.6)

The above formulation converts the original problem
of estimating qsi,sj to estimating a newly introduced
variable µsi,sj . In Equation 3.6 we impose a constraint
on µi,j to be non-decreasing with j when given a specific
i, to make sure the estimated qsi,sj ≥ 0.

From Equations 3.5 and 3.6, we need to estimate

the parameter vector
−→
ψ={µi,j, α

m
k ,
−→
βmk } (i, j, k ∈ S,

m ∈ C) in the mixed HMM with the temporal spatial
covariates. MCMC Bayes Estimation aims at sampling
properly to simulate the original parameter according
to its posterior distribution. Since normal distribution
is always introduced to simulate parameter prior, we
employ multivariate normal distribution to describe the

prior distribution of
−→
ψ . According to Bayes’ Theorem,

the conditional posterior distribution of
−→
ψ can be

defined with multivariate normal priors as

{
−→
ψ |
−→
X1,
−→
X2, . . . ,

−→
XT , C1, C2, . . . , CT }

∝ L−→
ψ

(X,L)N(
−→
ψ )−→

ψ0,Vψ0

∝ L−→
ψ
|Vψ0

|−1/2 exp[−
1

2
(
−→
ψ −

−→
ψ0)

′|Vψ0
|−1(
−→
ψ −

−→
ψ0)]

(3.7)

where
−→
ψ0 and Vψ0

are properly assumed as diffuse priors

of estimated parameters
−→
ψ , L−→

ψ
is computed according

to Equation 3.2 when given parameters
−→
ψ , L is the

set of observed sequences and X is the corresponding
temporal spatial covariates. Since Equation 3.7 does
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Algorithm 1 Metroplis-Hastings Bayes Sampling

Input: K(iterations), L(sequences), X(covariates)

Output:
−→
ψ1,
−→
ψ2, . . . ,

−→
ψK(sampled parameters)

1:
−→
ψ0 ← initial assignment of

−→
ψ ;

2: for j = 1 : K do

3: generate
−→
∆θ ∼ N(0, σ2Θ),

−→
θ ←

−−→
ψj−1 +

−→
∆θ;

4: generate γ ∼ U(0, 1);

5: if γ ≤ min{
L−→

θ
(X,L)·N(

−→
θ )−→
ψ0,Vψ0

L−−−→
ψj−1

(X,L)·N(
−−−→
ψj−1)−→

ψ0,Vψ0

, 1} then

6:
−→
ψj ←

−→
θ ;

7: else

8:
−→
ψj ←

−−→
ψj−1;

not have a closed form, the Metropolis-Hastings (M-
H) algorithm is used to draw from the conditional

distribution of
−→
ψ . The complete estimation procedure

is shown in Algorithm 1.
−→
∆θ is also a random draw from

multivariate normal distribution N(0, σ2Θ); to reduce
the autocorrelation among the MCMC draws, σ and Θ
are chosen adaptively according to [2]. After collecting

all the {
−→
ψ1, . . . ,

−→
ψK} from M-H sampling, it is trivial

to estimate values of each respective parameter in
−→
ψ .

With the estimated parameters in the mixed HMM,
prediction of hidden state St+1 and check-in category
Ct+1 can be done similarly as in Section 3.2.

3.4 User Preference Modeling Besides temporal
and spatial information, the LBSN users’ check-in be-
haviors will also be influenced by their preferences or
interests. Intuitively, if users have similar preferences,
they will likely have similar check-in patterns; similarly,
if users have quite different preferences, they will likely
have quite different check-in patterns. It is less accurate
to use a single HMM to model all users’ behaviors who
may have diverse interests. Thus we consider modeling
user preference to further improve the model accuracy.

In this work, we propose to model user prefer-
ence with his/her check-in activities. Specifically, let
cij be the total number of check-in records of user i
on category j. The preference of user i is defined as

the distribution of his/her check-in categories,
−→
pi =

(pi1, p
i
2, . . . , p

i
N), where pij =

cij∑
N
k=1

ci
k

. With this pref-

erence feature vector, we can group users with similar
preferences into clusters using k-means. For each clus-
ter, we will train an HMM using the check-in records
belonging to that cluster.

When given a test sequence ltest = C1:t by a user
u, if u is a returning user, we can find the cluster which
u belongs to, and then use the corresponding HMM to

make the prediction Ct+1. But if u is a new user with
no past check-in activities, we need to determine which
cluster u should belong to. A possible solution is to

compute the preference vector
−→
pu from the only available

observation sequence C1:t of u and then find the closest

cluster to
−→
pu. But if the observation C1:t is too sparse

to estimate the user preference, we can resort to the
original non-clustered HMM.

4 Location Prediction

Given the category distribution generated by HMM, we
predict the most likely location to be visited. In this
paper, we simply use a ranking approach on the train-
ing check-in records to predict a user’s location. The
ranking score of a location is treated as an indicator
of the predicted probability of that location. Given a
user’s current physical position, i.e., latitude and lon-
gitude, we draw a d × d square region centered at the
user’s position, where d is the region range parameter.
We consider all locations falling into the region as can-
didates for prediction. Given the most likely category,
we rank the candidate locations belonging to this cate-
gory and return top-1, or more generally, top-k (k ≥ 1)
locations as our prediction. Note that in our scenario
it is reasonable to predict more than one location (i.e.,
k > 1), as in reality an LBSN provider always delivers
coupons of multiple retailers or brands. If there is no
location belonging to the first category in the square
region, we will rank locations belonging to the second
most likely category and so on.

We propose four location ranking schemes:

• Check-in count : rank a location based on the total
check-in times on the location.

• User count : rank a location based on the total
number of users who have ever checked in on the
location.

• User count × Check-in count : rank a location
based on the product of User count and Check-in
count.

• Max check-in count by user : rank a location based
on the maximum check-in times by a user on the
location.

5 Experimental Evaluation

We present extensive experimental evaluation of our
methods for category and location prediction.

5.1 Data Preparation As introduced in Section
2.1, we have collected 1,054,689 check-in sequences.
We randomly select 900,000 check-in sequences as the
training set to learn the HMM and use the remaining
sequences as the test set. In the category prediction
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phase, for each test sequence ltest = r1r2 . . . rt, we
randomly choose a time stamp 1 < t′ ≤ t, and use
all check-in categories C1C2 . . . Ct′−1 prior to t′ as well
as the check-in temporal and spatial information till t′

as the observation to predict Ct′ . Then we compare
the predicted Ct′ with the ground truth to calculate
the category prediction accuracy. In the second stage,
we predict the most likely location at time t′ given the
predicted category distribution, then compare it with
the ground truth and report the prediction accuracy.

5.2 Category Prediction First, we learn the HMM
from the training set for category prediction. According
to BIC [15], we define 8 states in basic HMM (BHMM)
and 5 states in mixed HMM (MHMM). We compare
the category prediction accuracy of our HMM based
approaches with the following baseline schemes.

• Global Frequency (Freq): Use the most frequent
check-in category within a cluster as prediction.

• Order-n Markov: Predict the next category from
its preceding length-n sequence of categories. Here
we consider n = 1 and n = 2. It has been utilized
widely in GPS trajectories or WiFi network [16].

• HITS Ordering (HITS): Predict the most likely
category Ct′ using HITS algorithm when given
category Ct′−1. This method was designed for
location recommendation in GPS trajectories [22].

We clustered the training sequences into k clusters
based on user preference and tested k = 3, 5, 7, 9.
For comparison, we also tested the category prediction
accuracy without clustering, i.e., k = 1. The category
prediction accuracy is shown in Figure 5.
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Figure 5: Category Prediction Accuracy

From Figure 5, we can observe that, (1) mixed
HMM achieves the highest accuracy for all k values,
outperforming all other methods by a large margin. The
prediction accuracy of mixed HMM is 5.56% – 6.44%
higher than that of basic HMM, by incorporating the
temporal spatial covariates; and (2) when we model
user preference through clustering according to their
historical check-ins, and make category prediction using

cluster-specific HMM, the prediction accuracy increases
with the increase of k. The accuracy is the highest when
k = 7, e.g., 44.35% for mixed HMM. This shows the
effectiveness of user preference modeling and confirms
that user preference indeed affects his/her check-in
behaviors. The accuracy decreases when we further
increase k to 9. In the following location prediction
experiment, we use mixed HMM with 7 clusters.

5.3 Location Prediction In this experiment, we
evaluate the location prediction accuracy under different
ranking schemes, given the predicted category distribu-
tion from HMM (denoted as “w/ categ.”). For com-
parison we report the accuracy under different ranking
schemes when category information is not given (de-
noted as “w/o categ.”). In this case, all locations falling
into the square region are considered as candidates. We
also test the location ranking schemes with user clus-
tering versus without user clustering. Table 2 shows
the location prediction accuracy when we return top-1,
top-2 and top-3 locations as prediction. The accuracy
is measured through comparing the predicted location
with the true location in the check-in data. We treat
a prediction as correct, as long as the true location is
among the top-k (k = 1, 2, 3) returned locations. In this
experiment, we set the region range d = 400 meters.

From Table 2 we observe that: (1) the location pre-
diction accuracy when given the category is consistently
higher than that without the category. The accuracy
improvement is up to 13.21%. This shows that, loca-
tion prediction is more accurate by modeling user move-
ment pattern and check-in dependency at the category
level. If without category, the ranking schemes Check-in
count and User count are simply based on global popu-
larity without modeling user behavior, thus they have a
low accuracy of 26.57% and 27.07%. The average num-
ber of location candidates we consider for prediction
is 9.64 when given the predicted category distribution,
and is 52.55 when the category distribution is not given.
Therefore, the candidate space is reduced by 5.45 times
with our approach; (2) among the four location rank-
ing schemes, Max check-in count by user consistently
achieves the highest accuracy when combined with user
clustering. It shows that if a location is repeatedly
checked in many times by the same user, it could be an
interesting location to be visited by users; (3) the accu-
racy with user clustering is consistently higher than that
without user clustering. This demonstrates that consid-
ering user preference for prediction is more accurate, as
users tend to visit the same location if they have simi-
lar preferences; and finally (4) the prediction accuracy
increases as we return more locations, i.e., from top-1
to top-3. This is very intuitive. The accuracy difference
between w/ categ. and w/o categ. gradually decreases
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Table 2: Location Prediction Accuracy under Different Ranking Schemes

Ranking Scheme
Top-1 Top-2 Top-3

w/o Categ. w/ Categ. w/o Categ. w/ Categ. w/o Categ. w/ Categ.
Check-in count 26.57 39.54 41.48 53.04 50.81 60.71

without User count 27.07 40.00 41.20 51.25 50.20 56.72
clustering User count × Check-in count 26.03 39.24 40.38 50.56 49.58 55.77

Max check-in count by user 28.46 39.80 42.51 51.22 51.68 56.40

Check-in count 33.59 43.99 48.68 57.55 57.79 61.87
with User count 36.05 45.23 50.29 58.04 58.79 61.99
clustering User count × Check-in count 32.33 43.22 47.11 56.93 56.30 61.37

Max check-in count by user 36.93 45.63 52.25 58.80 61.54 62.81

when more locations are returned as prediction.
It is noteworthy that the accuracy of top-1 location

prediction with category (e.g., 45.63% in Table 2) may
be even higher than the accuracy of category prediction
(44.35% in Figure 5). As described in Section 4,
our location prediction is done based on the predicted
category distribution. Within a bounded square region,
we rank candidate locations belonging to the most likely
category. But if there is no location belonging to the
first category, we will consider locations belonging to
the second most likely category and so on. Thus it is
possible that in some cases the top-1 predicted category
is wrong, but the top-1 location can still be correct,
leading to a higher location prediction accuracy.
Comparison with State-of-the-art Methods. Cho
et al. [5] developed a model, called PMM, of human
mobility which can predict the locations and dynamics
of future human movement. We compare our location
prediction method (max check-in count by user) with
PMM and report the prediction accuracy in Table 3.
Our method outperforms PMM by 28.50% – 31.89%.
A possible explanation is that PMM can indeed predict
the mean geographic point of a specific state (“home” or
“work”) of a user effectively. However, there are many
locations that are very close to the mean point in our
dataset, causing the probabilities of these locations to
be very close. Thus it can be very difficult to rank the
right location on the top. In addition, as pointed out in
their paper [5], PMM does not perform very well on the
weekends when the periodic movement is less obvious.
On the contrary, our method can model the dependency
between the user’s activities well and consider more
features of locations, such as check-in count and user
count, besides the geographic features. Therefore, it
achieves a much higher prediction accuracy.

Table 3: Location Predication Accuracy Comparison
Top-1 Top-2 Top-3

PMM [5] with two states 16.82 26.91 34.31
Max check-in by user 45.63 58.80 62.81

Order-n Markov model can also be applied to the
check-in sequences directly on the location level, just
like its application on WiFi mobility data [16]. However,

we observe order-2 Markov model achieves a location
prediction accuracy of 2.85% only in our dataset, due
to the large number of distinct locations in LBSN.

6 Related work

Due to the increasing availability of GPS-enabled de-
vices, research on mining GPS data [6, 9, 10, 19] has at-
tracted a lot of attention during past several years. [22]
by Zheng et al. aims to mine interesting locations and
travel sequences from GPS trajectories. They model
multiple individuals’ location histories with a tree-based
hierarchical graph and propose a HITS based inference
model to infer the interest of a location. Some works
study location recommendation based on GPS data.
[20] aims to discover interesting locations and possi-
ble activities for recommendations. [17] proposes an
item-based collaborative filtering algorithm to recom-
mend shops based on users’ past location history. Some
studies [8, 3] consider user preference or friendship to en-
hance the recommendation or prediction accuracy. [19]
studies mining individual life pattern from GPS data,
which can be used for location prediction.

The soaring popularity of location-based services,
e.g., Foursquare, Gowalla, etc., brings a new research
area to us and only few studies have been done on
LBSNs till now. LBSN data distinguishes from GPS
data mainly in two aspects: (1) check-in sparseness,
and (2) semantic tags with which we can model the
underlying user movement pattern and infer the user
preference. Scellato et al. [14] study the link prediction
problem in LBSNs by exploiting place features, which
are defined based on the properties of the places visited
by users. But they do not consider the semantic tags
of locations. There are some studies [12, 18] sharing
a similar angle with us by exploiting the semantic
tags in check-in data. [12] studies to cluster user and
geographic region based on the check-in distribution of
category within two cities and analyze the coherence
and difference between them. The recent work by Ye
et al. [18] develops a semantic annotation technique for
LBSNs to automatically annotate places with category
tags. [5] by Cho et al. studies user movement pattern
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by exploiting the strong periodic behavior in LBSNs
and develops a model of human mobility that combines
periodic short range movements with travel due to the
social network structure.

Research on hidden Markov model has developed
rapidly during the last two decades. In the pioneer-
ing work [13], Rabiner provided a comprehensive view
of employing HMM and demonstrated its effectiveness,
especially in speech recognition. Recently, Altman [1]
and Maruotti [11] have studied the extension from ba-
sic HMM to mixed HMM under a dynamic longitudinal
data setting. The mixed HMM performs well under
some standard data distributions, such as Poisson and
Gaussian distributions; however, these models require
choosing specific canonical link functions according to
specific distribution requirements, which rarely happen
in the LBSN domain. In our scenario, we consider tem-
poral and spatial covariates in HMM to fully describe
check-in behaviors with a more general form in express-
ing state-dependent observation probability.

7 Conclusion

In this paper we study location prediction in LBSNs
through modeling user movement pattern and user pref-
erence at the category level. A mixed HMM is learnt
through MCMC Bayes Estimation to predict the cate-
gory of a user’s next activity, and then predict a location
given the category. To the best of our knowledge, our
work is the first to model the category level for location
prediction. Our approach can effectively reduce the lo-
cation candidate number by 5.45 times, while improving
the location prediction accuracy by 13.21%, according
to our experiments on Gowalla data.
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