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ABSTRACT
Algorithms based on simulating stochastic flows are a sim-
ple and natural solution for the problem of clustering graphs,
but their widespread use has been hampered by their lack of
scalability and fragmentation of output. In this article we
present a multi-level algorithm for graph clustering using
flows that delivers significant improvements in both quality
and speed. The graph is first successively coarsened to a
manageable size, and a small number of iterations of flow
simulation is performed on the coarse graph. The graph
is then successively refined, with flows from the previous
graph used as initializations for brief flow simulations on
each of the intermediate graphs. When we reach the final
refined graph, the algorithm is run to convergence and the
high-flow regions are clustered together, with regions with-
out any flow forming the natural boundaries of the clusters.
Extensive experimental results on several real and synthetic
datasets demonstrate the effectiveness of our approach when
compared to state-of-the-art algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; G.2.2 [Graph
Theory]: Graph Algorithms

General Terms
Algorithms,Performance

Keywords
Graphs, Clustering, Communities, Networks

1. INTRODUCTION
Clustering graphs or discovering communities within net-

works is an important problem with many applications in
a number of disciplines. Examples abound and range from
social network analysis[14] to image segmentation[17] and
from analyzing protein interaction networks[2] to the circuit
layout problem[6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

Given the importance of the problem numerous solutions
have been proposed in the literature. Spectral methods
that target weighted cuts [17] form an important class of
such algorithms and are shown to be very effective for prob-
lems such as image segmentation. Multi-level graph parti-
tioning algorithms such as Metis[9] are well known to scale
well,and have been used in studies of some of the biggest
graph datasets[11]. Graclus [4] is another multi-level par-
titioning algorithm that optimizes weighted cuts (includ-
ing normalized cuts) by optimizing an equivalent weighted
kernel K-means loss function. The avoidance of expensive
eigenvector computation gives Graclus a big boost in speed
while retaining or improving upon the quality of spectral
approaches. Divisive/agglomerative approaches have been
popular in network analysis[14], but they are expensive and
do not scale well[3]. Markov Clustering (MCL)[5], a graph
clustering algorithm based on (stochastic) flow simulation,
has proved to be highly effective at clustering biological net-
works [2, 13].

Here, we focus on the class of flow-based graph clustering
algorithms represented by MCL. MCL offers several advan-
tages in that it is an elegant approach based on the natural
phenomenon of flow, or transition probability, in graphs. It
has been shown to be robust to topological noise effects (a
desirable property for a number of domains)[2], and while
not completely non-parametric, varying a simple parameter
can result in clusterings of different granularities. However,
inspite of its popularity in the bioinformatics community for
the above reasons, MCL has drawn limited attention from
the data mining community primarily because it does not
scale very well even to moderate sized graphs[3]. Addition-
ally, the algorithm tends to fragment communities, a less
than desirable feature in many situations.

In this article we seek to develop an algorithm that re-
tains the strengths of MCL while redressing its weaknesses.
We first analyze the basic MCL algorithm carefully to un-
derstand the cause for these two limitations. We then iden-
tify a simple regularization step that can help alleviate the
fragmentation problem. We call this algorithm Regularized-
MCL (R-MCL). Subsequently we realize a scalable multi-
level variant of R-MCL. The basic idea of the multi-level
procedure is to coarsen the graph (in a manner reminiscent
of Metis), run R-MCL on the coarsened graph, and then re-
fine the graph in incremental steps. The central intuition
is that using flow values derived from simulation on coarser
graphs can lead to good initializations of flow in the refined
graphs. Key to the refinement operation is a novel way to
project flows such that the sanctity of the clustering algo-
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rithm is maintained. The multi-level approach also allows
us to obtain large gains in speed. We refer to this algorithm
as Multi-Level Regularized MCL (MLR-MCL).

In our empirical study we compare and contrast R-MCL
and MLR-MCL with the original MCL algorithm[5], Gra-
clus[4] and Metis[9] along the twin axes of scalability and
quality on several real and synthetic datasets. Key high-
lights of our study include:

• MLR-MCL vs R-MCL and MCL: MLR-MCL typ-
ically outperforms both R-MCL and MCL in terms of
quality and delivers performance that is roughly 2-3
orders of magnitude faster than MCL.

• MLR-MCL vs. Graclus and Metis : MLR-MCL
delivers significant (10-15%) improvements in N-Cut
values over Graclus in 4 of 6 datasets. We also typ-
ically outperform Graclus in terms of speed and are
competitive with Metis.

• MLR-MCL vs. Graclus and MCL on PPI net-
works: The top 8 clusters of proteins found by MLR-
MCL are rated better than the best cluster returned
by either Graclus and MCL.

2. PRELIMINARIES
Let G = (V, E) be our input graph with V and E denoting

the node set and edge set respectively. Let A be the |V|×|V|
adjacency matrix corresponding to the graph, with A(i, j)
denoting the weight of the edge between the vertex vi and
the vertex vj . This weight can represent the strength of
the interaction in the original network - e.g. in an author
collaboration network, the edge weight between two authors
could be the frequency of their collaboration. If the graph is
unweighted, then the weight on each edge is fixed to 1. As
many interaction networks are undirected, we also assume
that G is undirected, although our method is easy to extend
to directed graphs. Therefore A will be a symmetric matrix.

2.1 Stochastic matrices and flows
A column-stochastic matrix is simply a matrix where each

column sums to 1. A column stochastic (square) matrix
M with as many columns as vertices in a graph G can be
interpreted as the matrix of the transition probabilities of a
random walk (or a Markov chain) defined on the graph. The
ith column of M represents the transition probabilities out
of the vi; therefore M(j, i) represents the probability of a
transition from vertex vi to vj . We use the terms stochastic
matrix and column-stochastic matrix interchangeably.

We also refer to the transition probability from vi to vj

as the stochastic flow or simply the flow from vi to vj . Cor-
respondingly, a column-stochastic transition matrix of the
graph G is also referred to as a flow matrix of G or simply a
flow of G. Given a flow matrix M , the ith column contains
the flows out of node vi, or its out-flows; correspondingly
the ith row contains the in-flows. Note that while all the
columns (or out-flows) sum to 1, the rows (or in-flows) are
not required to do so.

The most common way of deriving a column-stochastic
transition matrix M for a graph is to simply normalize the
columns of the adjacency matrix to sum to 1

M(i, j) =
A(i, j)Pn

k=1 A(k, j)

In matrix notation, M := AD−1, where D is the diagonal
degree matrix of G with D(i, i) =

Pn
j=1 A(j, i). We will re-

fer to this particular transition matrix for the graph as the
canonical transition matrix MG. However, it is worth keep-
ing in mind that one can associate other stochastic matrices
with the graph G.

Both MCL and our methods introduced in Section 3 can
be thought of as simulating stochastic flows (or simulating
random walks) on graphs according to certain rules. For this
reason, we refer to these processes as flow simulations.

2.2 Markov Clustering (MCL) Algorithm
We next describe the Markov Clustering (MCL) algorithm

for clustering graphs, proposed by Stijn van Dongen [5],
in some detail as it is relevant to understanding our own
method.

The MCL algorithm is an iterative process of applying two
operators - expansion and inflation - on an initial stochastic
matrix M , in alternation, until convergence. Both expansion
and inflation are operators that map the space of column-
stochastic matrices onto itself. Additionally, a prune step is
performed at the end of each inflation step in order to save
memory. Each of these steps is defined below:

Expand: Input M , output Mexp.

Mexp = Expand(M)
def
= M ∗ M

The ith column of Mexp can be interpreted as the final distri-
bution of a random walk of length 2 starting from vertex vi,
with the transition probabilities of the random walk given
by M . One can take higher powers of M instead of a square
(corresponding to longer random walks), but this gets com-
putationally prohibitive very quickly.

Inflate: Input M and inflation parameter r, output Minf .

Minf (i, j)
def
=

M(i, j)r

Pn
k=1 M(k, j)r

Minf corresponds to raising each entry in the matrix M to
the power r and then normalizing the columns to sum to 1.
By default r = 2. Because the entries in the matrix are all
guaranteed to be less than or equal to 1, this operator has
the effect of exaggerating the inhomogeneity in each column
(as long as r > 1). In other words, flow is strengthened
where it is already strong and weakened where it is weak.

Prune: In each column, we remove those entries which have
very small values (where “small” is defined in relation to the
rest of the entries in the column), and the retained entries
are rescaled to have the column sum to 1. This step is pri-
marily meant to reduce the number of non-zero entries in the
matrix and hence save memory.We use the threshold prun-
ing heuristic, where we compute a threshold based on the
average and maximum values within a column, and prune
entries below the threshold. [5]

Pseudo-code for MCL is presented in Algorithm 1. The
addition of self-loops to the input graph avoids dependence
of the flow distribution on the length of the random walk
simulated so far, besides ensuring at least one non-zero entry
per column.

Intuitively, the MCL process may be understood as ex-
panding and contracting the flow in the graph alternately.
The expansion step spreads the flow out of a vertex to po-
tentially new vertices and also enhances the flow to those
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Algorithm 1 MCL

A := A + I // Add self-loops to the graph
M := AD−1 // Initialize M as the canonical transition matrix

repeat
M := Mexp := Expand(M)
M := Minf := Inflate(M, r)
M := Prune(M)

until M converges

Interpret M as a clustering

vertices which are reachable by multiple paths. This has
the effect of enhancing within-cluster flows as there are more
paths between two nodes that are in the same cluster than
between those in different clusters. However, just applying
the expansion step repeatedly will result in all the columns of
M becoming equal to the principal eigenvector of the canon-
ical transition matrix MG. The inflation step is meant to
prevent this from happening by introducing a non-linearity
into the process, while also having the effect of strengthen-
ing intra-cluster flow and weakening inter-cluster flow. At
the start of the process, the distribution of flows out of a
node is relatively smooth and uniform; as more iterations are
executed, the distribution becomes more and more peaked.
Crucially, all the nodes within a tightly-linked group of nodes
will start to flow to one node within the group towards the
end of the process. This allows us to identify all the vertices
that flow to the same “attractor” node as belonging to one
cluster.
Interpretation of M as a clustering: As just mentioned,
after some number of iterations, most of the nodes will find
one “attractor” node to which all of their flow is directed i.e.
there will be only one non-zero entry per column in the flow
matrix M. We declare convergence at this stage, and assign
nodes which flow into the same node as belonging to one
cluster.

2.3 Limitations of MCL
The MCL algorithm is a simple and intuitive algorithm

for clustering graphs that takes an approach that is dif-
ferent from that of the majority of other approaches to
graph clustering such as spectral clustering [17, 4], divi-
sive/agglomerative clustering [14], heuristic methods [10]
and so on. Further more, it does not require a specifica-
tion of the number of clusters to be returned; the coarseness
of the clustering can instead be indirectly affected by vary-
ing the inflation parameter r, with lower values of r (up
to 1) leading to coarser clusterings of the graph. MCL has
received a lot of attention in the bioinformatics field, with
multiple researchers finding it to be very effective at cluster-
ing biological interaction networks ([2, 13]).

However, there are two major limitations to MCL:
Lack of scalability: That MCL is slow has been noted by
data mining researchers before ([7, 3]). The Expand step,
which involves matrix multiplication, is very time consuming
in the first few iterations when many entries in the flow ma-
trix have not been pruned out and is the main component of
the overall running time. The Expand step in the very first

iteration of the algorithm in particular takes O(
P|V|

i=1 d2
i )

operations, where di is the degree of vertex vi, which is un-
acceptably slow for large graphs. Expansion steps in subse-
quent iterations take O(|V|k2) time, where k is the average

number of non-zero entries per column. In the first few iter-
ations before the flow matrix becomes sparse, k is typically
in the range of hundreds or thousands for large graphs, still
leading to an unacceptable time complexity.
Fragmentation of output: MCL tends to produce too
many clusters. For example, on the yeast protein-protein
interaction network of 4741 nodes, MCL outputs 1416 clus-
ters. (We obtained similar results on other datasets, as well
as with varying values of the inflation parameter r.) While it
still manages to find some significant clusters (as evidenced
by its success in bioinformatics [2]), clearly such high frag-
mentation is undesirable.

3. OUR ALGORITHMS
We seek to develop an algorithm for graph clustering that

retains the strengths of MCL while alleviating the weak-
nesses. We do this by first making a modification to the
basic MCL process, resulting in an algorithm we call Regu-
larized MCL, and then we embed this latter algorithm in a
multi-level framework that further improves both the quality
of the output and the speed of the algorithm.
A weight transformation step: Before discussing the al-
gorithm, we first describe a weight transformation step that
we apply to the input graphs. This step was suggested by
Dhillon et al. [4], who use it as part of the coarsening pro-
cess in their multi-level framework. Given the input adja-
cency matrix A and the degree diagonal matrix D, define
the transformed adjacency matrix A∗ as:

A∗(i, j) =
A(i, j)

D(i, i)
+

A(i, j)

D(j, j)

The purpose of the above step is to downweight the edges
involving high-degree (or hub) nodes, as they can have an
undue influence on the clustering process.

3.1 Regularized MCL (R-MCL)
Why does MCL output so many clusters? One way of

looking at the issue is to understand it as MCL allowing the
columns of many pairs of neighboring nodes in the flow ma-
trix M to diverge significantly. This happens because the
MCL algorithm uses the adjacency structure of the input
graph only at the start, to initialize the flow matrix to the
canonical transition matrix MG. After that, the algorithm
works only with the current flow matrix M , and there is
nothing in the algorithm that prevents the columns of neigh-
boring nodes to differ widely without any penalty. This is
what allows MCL to “overfit” the graph by outputting too
many clusters.

We seek to address this issue by regularizing or smoothing
the flow distributions out of a node w.r.t. its neighbors. Let
qi, i=1:k, be the flow distributions of the k neighbors of
a given node in the graph. (Each qi is basically a column
from the current flow matrix M .) Let wi, i=1:k, be the

respective normalized edge weights, i.e.
Pk

i=1 wi = 1. Note
that since we add self-loops, each node is also one of its
own neighbors. We ask the following question: how do we
update the flow distribution out of a given node (call it q∗)
so that it is, in some sense, the least divergent from the
flow distributions of its neighbors? Following [19], we can
formalize this requirement for q∗ as:

q∗ = arg minq

kX

i=1

wiKL(qi||q)
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where KL(p||q) is the KL divergence between two proba-
bility distributions p and q - a commonly used divergence
measure for probability distributions - defined as:

KL(p||q) =
X

x

p(x) log
p(x)

q(x)

There exists a closed form solution for q∗ [19, 15], and
can be shown to be:

q∗(j) =
kX

i=1

wiqi(j) (1)

Hence, we replace the Expand operator in the MCL pro-
cess with a new operator which updates the flow distribution
of each node according as Equation 1. We call this the Reg-
ularize operator, and it can be conveniently expressed in
matrix notation as right multiplication with the canonical
transition matrix MG of the graph.

Regularize(M) = Mreg
def
= M ∗ MG

Pseudo-code for Regularized MCL is given in Algorithm 2.
The Inflate and Prune steps are the same as for MCL, and
the interpretation of M as a clustering is also the same as
has been described in Section 2.2.

Algorithm 2 Regularized MCL

A := A + I // Add self loops and transform weights
M := MG := AD−1 //Initialize M as the canonical transition
matrix

repeat
M := Mreg := M ∗ MG

M := Minf := Inflation(M, r)
M := Prune(M)

until M converges

Interpret M as a clustering as described in Section 2.2

While, as we shall see in Section 4, Regularized MCL does
produce fewer clusters of better quality, it still suffers from
the scalability issues of the original MCL. We address this
issue next and also discuss how the qualitative performance
of Regularized MCL can be further improved.

3.2 Multi-level Regularized MCL (MLR-MCL)
We next explain a multi-level version of Regularized MCL,

which we call Multi-level Regularized MCL, or MLR-MCL.
The main intuition behind using a multi-level framework in
our context is that the flow values resulting from simulation
on the coarser graphs can be effectively used to initialize the
flows for simulation on the bigger graphs. The algorithm also
runs much faster because the initial few iterations, which are
also the most time taking, are run on the smallest graphs
first. 1

A schematic providing a high-level overview of our multi-
level algorithm is given in Figure 1. The pseudo-code is
given in Algorithm 3. MLR-MCL operates in three phases:

1. Coarsening: The input graph G is coarsened succes-
sively into a series of smaller graphs G1,G2, . . . until
we are left with a graph Gl of manageable size (a few

1We discuss why it is hard to similarly embed MCL as well
in a multi-level framework in the extended version of this
paper [15].

Figure 1: A high-level overview of Multi-level Reg-
ularized MCL.

hundred nodes typically). Each coarsening step con-
sists of first constructing a matching on the graph,
where a matching is defined as a set of edges no two of
which are incident on the same vertex. The two ver-
tices that are incident on each edge in the matching
are collapsed to form a super-node, and the edges of
the super-node are the union of the edges of its con-
stituent nodes. We use two arrays in each coarse graph,
NodeMap1 and NodeMap2, to keep track of the coars-
ening. NodeMap1 maps a node in the coarse graph to
its first constituent node; similarly NodeMap2 maps a
node to its second constituent node (at most two nodes
can be collapsed to one super node). We use a partic-
ular kind of matching known as heavy edge matching ;
both heavy edge matching and efficient randomized
algorithms for constructing it are described elsewhere
[9].

2. Curtailed R-MCL along with refinement: Be-
ginning with the coarsest graph, R-MCL is run for a
few iterations (typically 4 to 5). We refer to this ab-
breviated version of R-MCL as Curtailed R-MCL. The
flow values at the end of this Curtailed R-MCL run are
then projected on to the refined graph of the current
graph as per Algorithm 4, and R-MCL is run again
for a few iterations on the refined graph, and this is
repeated until we reach the original graph.

3. R-MCL on original graph: With flow values ini-
tialized from the previous phase, R-MCL is run on the
final graph until convergence. The flow matrix at the
end is converted into a clustering in the usual way,
with all the nodes that flow into the same “attractor”
node being assigned into one cluster.

What is the intuition behind running R-MCL for only a
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few iterations on the coarse graphs from Gl down to G1? We
do this as we do not want the flows in a coarse graph to
converge; if we run R-MCL until convergence on one of the
intermediate graphs, then the same cluster assignments will
likely carry over till the original graph, thus not utilizing
the additional adjacency information present in the bigger
graphs. At the same time we want the flow values to cap-
ture some of the high-level cluster structure of the coarser
graphs, and also want the flow matrix to be sparse enough
to make running R-MCL on the bigger graph computation-
ally tractable. So we strike a balance and run R-MCL for
a small number of iterations. In practice, we have observed
that running R-MCL for 4 to 5 iterations on the intermedi-
ate graphs gives good results.

Algorithm 3 Multi-level Regularized MCL

Input: Original graph G, Inflation parameter r, Size of coars-
est graph c

// Phase 1: Coarsening
// Coarsen graph successively down to at most c nodes.
{G0,G1, . . . ,Gl} = CoarsenGraph(G, c)
// G0 is the original graph and Gl is the coarsest graph

// Phase 2: Curtailed R-MCL along with refinement
// Initialize M to canonical flow matrix of the coarsest graph
Gl

M := MG := AlD
−1
l

// Starting with the coarsest graph, iterate through succes-
sively refined graphs.
for i = l down to 1 do

// Run R-MCL for a small number of iterations.
for small number of iterations do

M := Regularize(M) = M ∗ MG

M := Inflate(M , r)
M := Prune(M)

end for

// Project flow from the coarse graph Gi onto the refined
graph Gi−1

M := ProjectFlow(Gi, M)
// Canonical transition matrix of the refined graph Gi−1,
for the next round of Curtailed R-MCL
MG := Ai−1D−1

i−1
end for

// Phase 3: Run R-MCL on original graph until convergence
repeat

M := Regularize(M) = M ∗ MG

M := Inflate(M)
M := Prune(M)

until M converges

Interpret M as a clustering as described in Section 2.2

Algorithm 4 ProjectFlow

Inputs: Coarse graph Gc, Flow on the coarse graph Mc.
Output: Projected flow matrix on the refined graph Mr

NodeMap1 := Gc.NodeMap1
NodeMap2 := Gc.NodeMap2

for each non-zero entry (i,j) in Mc do
Mr(NodeMap1(i),NodeMap1(j)) :=Mc(i,j)
Mr(NodeMap1(i),NodeMap2(j)) :=Mc(i,j)
Mr(NodeMap2(i),NodeMap1(j)) :=0
Mr(NodeMap2(i),NodeMap2(j)) :=0

end for

return Mr

The problem of flow projection: The remaining part of
MLR-MCL is the algorithm for projecting flow from a coarse
(smaller) graph to a refined (bigger) graph. Projection of
flow is concerned with using the flow values of a smaller
graph to provide a good initialization of the flow values in
the bigger graph. It is not obvious at first sight how this
should be done - since there are two nodes in the bigger
graph corresponding to each node in the smaller graph, a
flow value between two nodes in the smaller graph must be
used to derive the flow values between four pairs of nodes in
the bigger graph. To look at it another way, if nc is the size
of the coarse graph, then the n2

c entries of the flow matrix
of the coarse graph must be used to derive the 4 ∗n2

c entries
of the refined graph. How to do this?
Our solution: The naive strategy here is to assign the flow
between two nodes in the refined graph as the flow between
their respective parents in the coarse graph. However, this
doubles the number of nodes that any node in the refined
graph flows out to. This, combined with the fact that the
out-flows of each node sum to 1, results in excessive smooth-
ing of the out-flows of each node. (Recall that as the MCL
process converges, the out-flow distribution of the nodes gets
more and more peaked.) Hence, we instead choose only one
child node for each parent node and project all the flow into
the parent node to the chosen child node.

However, this raises the question: which child node do
we pick in order to assign all the flow into? It turns out
that it doesn’t matter which child node we pick, as long as
for each parent, the choice is consistent. We state this in
Theorem 1; the proof is provided in the extended version of
this paper [15].

Theorem 1. The MLR-MCL algorithm produces the same
final clustering regardless of which child node is picked at
each parent node to be assigned all its in-flows.

For this reason, for each node vi in the coarse graph, we
arbitrarily pick the first child node NodeMap1(i) and assign
all the flow that was going into vi to NodeMap1(i).

While we treat the two child nodes asymmetrically when
we are assigning the flows into them, the flows out of the two
child nodes are assigned the same values. This being the
case, can the algorithm treat these two nodes differently?
Recall that the Regularize step utilizes the adjacency infor-
mation in the graph by assigning a linear combination of the
flows of a node’s neighbors as the flows of a node. Hence,
even if NodeMap1(i) and NodeMap2(i) start out with the
same flows out of them , they will have different flows out of
them after the Regularize step if they have different neigh-
bors. This ensures that the additional adjacency information
that is present in the refined graph is used to re-adjust the
flows of the nodes.

3.3 Discussion of MLR-MCL
We now discuss the time-complexity of MLR-MCL and

the quality of its output.
Scalability and time-complexity: The main component
of the running time of R-MCL is the Regularize step which
involves matrix multiplication. The time complexity of the

Regularize step in the first iteration is O(
P|V|

i=1 d2
i ), similar

to that for MCL. The subsequent iterations require O(k|E|),
where k is the average number of non-zero entries per column
in the flow matrix. This rules out the direct use of R-MCL
on large graphs.
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The analysis is similar with MLR-MCL, but with a cru-
cial difference. The Regularize step of the first iteration is
carried out on the coarsest graph, so the time complexity of

O(
P|V|

i=1 d2
i ) for the first Regularize step now applies to the

coarsest graph. As the coarsest graph is small, this is an
affordable step. As the algorithm proceeds,we simulate flow
on bigger graphs, but at the same time the flow matrix also
becomes sparser,enabling the algorithm to scale easily. Em-
pirically we observe that after the first Curtailed R-MCL run
on the coarsest graph, there are rarely more than a few tens
of non-zero entries per column. The overall time complexity

of the algorithm is well approximated as O(k|E|+P|Vc|
i=1 d2

i ),
where the dis are the degrees of the nodes in the coarsest
graph, and k is a small constant, typically in the tens.
Quality: Embedding R-MCL in a multi-level framework
leads to improvements in quality as well, as we show in Sec-
tion 4.2. Coarsening the graph allows the algorithm to uti-
lize the global topology of the graph to provide an effective
initialization of the flow values for the simulations on the
bigger graphs. At the same time because iterations are run
on the final graph as well, the algorithm is able to adjust
suitably to the local topology. All of this translates into
clusters that are of higher quality than those that are pro-
duced by either MCL or R-MCL.

4. EXPERIMENTS
We describe extensive evaluation for the methods pro-

posed in the paper. We performed experiments on 7 real
world datasets; four of these were author collaboration net-
works - three from the Physics community (Astro, HepPh
and HepTh), and one from the Computer Science commu-
nity (DBLP) -, one is a who-trusts-whom network from
Epinions.com (Epinions)2, one is a paper citation network
(Cora) 3 and the last is the Protein-Protein Interaction net-
work of yeast (Yeast-PPI)4. Details are given in Table 1. We
also synthetically generated 5 datasets of increasing size for
evaluating scalability, details given in Table 2.

The experiments were performed on a dual core machine
(Dual 250 Opteron) with 2.4GHz of processor speed and
8GB of main memory. The software for each of our base-
lines was downloaded from the respective author’s webpages.
Our implementation was in C/C++, as were the implemen-
tations of all of our baselines. The matrices were stored
using a sparse matrix representation in our implementation.

4.1 Evaluation criteria
Except for the Yeast PPI network where we use a domain-

specific evaluation, we will use normalized cut or conduc-
tance as our measure of cluster quality.

The normalized cut of a cluster C in the graph G is defined
as (where A is the adjacency matrix of the graph)

Ncut(C) =

P
vi∈C,vj /∈C A(i, j)

P
vi∈C degree(vi)

The normalized cut of a cluster then, is simply the number of

2Astro, HepPh, HepTh and Epin-
ions were obtained from http://cs-
www.cs.yale.edu/homes/mmahoney/NetworkData/
3Obtained from Andrew McCallum’s web page:
http://www.cs.umass.edu/ mccallum/code-data.html
4Obtained from the Database of Interacting Proteins:
http://dip.doe-mbi.ucla.edu/dip/Main.cgi

Name |V| |E| Avg. degree
Cora 17604 74180 8.42
Dblp 16196 45031 5.56

Astro-Ph 17903 196972 22.00
Hep-Ph 11204 117619 21.00
Hep-Th 8638 24806 5.78
Epinions 75877 405739 10.69
Yeast-PPI 4741 15148 6.39

Table 1: Details of real datasets

Name |V| |E| No. of clusters
synth 1M 1000, 000 58, 256, 766 10000

synth 500K 500, 000 22, 682, 795 5000
synth 100K 100, 000 3, 447, 123 1000
synth 50K 50, 000 2, 272, 534 500
synth 10K 10, 000 319, 383 100

Table 2: Details of synthetic datasets

edges that are “cut”when dividing this cluster from the rest
of the graph, normalized by the total degree of the cluster.

The normalized cut of a clustering {C1, C2, . . . , Ck} is the
sum of the normalized cuts of the individual clusters.

Ncut({C1, C2, . . . , Ck}) =
kX

i=1

Ncut(Ci)

The average normalized cut of a clustering is the average
of the normalized cuts of each of the constituent clusters, and
lies between 0 and 1. Averaging the N-Cut score allows us
to compare clustering arrangements with different numbers
of clusters.

The Normalized Cut criterion has been commonly noted
as capturing very well the intuitive notion of the “goodness”
of a particular clustering [12, 8, 17]. An additional reason for
choosing this criterion is that one of our baselines, Graclus
[4] is one of the state-of-the-art algorithms for optimizing
precisely this criterion.

4.2 Comparison with MCL
In our first set of experiments we compare the performance

of R-MCL and MLR-MCL with the baseline MCL algorithm.
Table 3 documents results obtained on 6 real datasets. The
key trends one can glean from this study are as follows. 5

First, MLR-MCL clearly dominates both R-MCL and MCL
in terms of scalability. It is about 2 orders of magnitude
faster than MCL and about one order of magnitude faster
than R-MCL for most of the datasets. Second, in all cases
both MLR-MCL and R-MCL report far fewer clusters than
MCL. This trend again serves to highlight the fragmentation
problem of MCL. Third, in terms of average normalized cut
scores MLR-MCL dominates MCL and also usually outper-
forms R-MCL. On two datasets, namely Astro and Hep-Th,
we find that R-MCL achieves a marginally better average
N-Cut score.

4.3 Weak Scaling Behavior
In this experimental study we examine the weak scaling

behavior of MLR-MCL and compare it with the state of

5In [15], we describe a further experiment where we vary
the inflation parameter for MCL and note that the trends
do not significantly change.
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Dataset
MLR-MCL R-MCL MCL

Clusters N-Cut Avg. N-Cut Time Clusters N-Cut Avg. N-Cut Time Clusters N-Cut Avg. N-Cut Time
Hep-Ph 264 76.77 0.29 0.91 458 190.03 0.41 5.41 1464 827.31 0.56 85
Cora 670 238.19 0.35 1.26 880 367.62 0.41 3.58 2991 1888.6 0.63 82
Astro 411 153.43 0.37 2.62 343 124.40 0.36 8.84 1940 1301.5 0.67 515
Dblp 723 152.24 0.21 0.51 1750 575.19 0.32 1.57 1943 648.48 0.33 12.0

Epinions 1632 735.87 0.45 26.86 4025 1863 0.46 32.3 15663 10041 0.64 4383
Hep-Th 795 293 0.37 0.37 735 266.4 0.36 1.05 1655 855 0.51 12

Table 3: Comparison of MLR-MCL, R-MCL and MCL on 6 real datasets. The same inflation parameter
value of r = 2 was used for all 3 methods. The times are in seconds. Best results are in bold.
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Figure 2: Weak scaling

the art Metis algorithm. This experiment evaluates the per-
formance of these algorithms as the size and complexity of
the dataset is increased. For this experiment we used the
synthetic datasets described earlier, ranging from a 10,000
node graph to a 1 million node graph. From Figure 2, we
observe that both MLR-MCL and Metis show good scalabil-
ity trends. While MLR-MCL is competitive, Metis clearly
demonstrates superior performance (by a factor of two typ-
ically) on this synthetic dataset. As a counterpoint we also
present results on R-MCL which is about 2 orders of mag-
nitude slower across the board than MLR-MCL. We do not
include results for MCL here since it was found to be ex-
tremely slow even on the smaller datasets. Graclus also is
not included here since the algorithm was found to suffer
from severe memory thrashing effects when attempting to
run on the the 500,000 vertex and 1 million vertex datasets.

4.4 Comparison with Graclus and Metis
In the next set of experiments we compare the qualitative

performance of MLR-MCL with Graclus and Metis. We de-
tail the results here on 6 real datasets. In all experiments
MLR-MCL is run with the inflation parameter r = 2.0. For
MLR-MCL we vary the coarseness of the clustering by vary-
ing the size of the coarsest graph; we subsequently run Gr-
aclus and Metis to output the same number of clusters as
has been found by MLR-MCL. We plot the average normal-
ized cut of each algorithm as a function of the number of
clusters. (It must be kept in mind that with more num-
ber of clusters, seemingly small differences in average N-Cut
can translate into significant differences in the total N-Cut.)
From Figure 4a-f one can easily observe that MLR-MCL is
either competitive with Graclus(DBLP and Hep-Ph) or bet-
ter (Astro-Ph, Cora, Epinions and Hep-Th) in terms of the
normalized cut objective. The improvement in Avg Ncut

over Graclus for these latter four datasets is in the range of
10-15%, if we consider the median number of clusters, which
is quite significant. Another obvious trend is that both these
algorithms outperform Metis, often significantly. Drilling
deeper into the data we find that this can be explained by
the fact that both Graclus and MLR-MCL admit a more
skewed (actually the skew for both is quite similar) cluster-
ing arrangement whereas Metis tends to force a more bal-
anced partitioning. Another interesting observation is that
when the number of clusters discovered is more, MLR-MCL
typically performs better. A third point of note is that the
two datasets where Graclus is competitive with MLR-MCL
- Dblp and Hep-Th - are the two datasets with the lowest
average degree of the 6 datasets (5.56 and 5.78 respectively).
Scalability Evaluation: In the next set of experiments
we compare and contrast the scalability of MLR-MCL with
Metis and Graclus on three of the real datasets, while vary-
ing the number of clusters. From Figure 5a for the Epinions
dataset we find that MLR-MCL is competitive with Metis,
and that both algorithms are faster than Graclus.The trends
in Figures 5b and c are consistent in that Metis outperforms
MLR-MCL, which in turn outperforms Graclus, especially
with increasing number of clusters.

4.5 Clustering PPI networks: A Case Study
The goal of analyzing protein-protein interaction (PPI)

networks is to extract groups of proteins that either take
part in the same biological process (induction of cell death
is an example) or perform similar molecular functions (e.g.
RNA binding). This is a challenging problem; it is estimated
that the protein function of about one-fourth of the proteins
is unknown even for the most well-studied organisms such
as yeast.[16].

We use as our dataset the PPI network of S. cervisiae or
yeast, which contains 4741 proteins with 15148 known inter-
actions. We perform a domain-specific evaluation using The
Gene Ontology database [18], which provides three vocab-
ularies (or annotations) of known associations – Molecular
Function, Biological Process and Cellular Component. The
first two have functional significance while the last one refers
to the localization of proteins within a cell. Researchers
have used this ontology in the past to validate the biological
significance of clusters. Merely counting the number of pro-
teins that share an annotation within each extracted cluster
is misleading since the underlying frequency of the annota-
tions is not uniform - more proteins are characterized by
an annotation at the top of the hierarchy than at the bot-
tom. For this reason, p-values are often used to calculate
the statistical significance of such clusters [1]. Intuitively
these values capture the probability of seeing a particular
grouping, or better, by random chance using a background
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distribution (typically hyper-geometric). Let the total num-
ber of proteins be N with a total of M proteins sharing a
particular annotation. The p-value of observing m or more
proteins that share the same annotation in a cluster of n
proteins, using the Hyper-geometric Distribution is:

p − value =
nX

i=m

`
M
i

´`
N−M
n−i

´
`

N
n

´

Smaller p-values imply that the grouping is less likely to be
random. 6

It is worth remarking before we discuss the results that
earlier research has shown that MCL typically outperforms
MCODE and several other domain specific community dis-
covery algorithms for such biological networks[2]. In our
study we compared the performance of MCL, MLR-MCL
and Graclus on this domain specific qualitative metric. Metis
was found to perform poorly on this metric, primarily be-
cause of its tendency to favor balanced clusters.

We set the inflation parameter r to 1.6 for both MCL
and MLR-MCL. The size of the coarsest graph was set to
1000 nodes for MLR-MCL. MLR-MCL returned 427 clusters
where as MCL returned 1615 clusters. We then ran Graclus
to output 427 clusters to keep the comparison fair. Each
cluster is associated with the annotation that minimizes the
p-value for that cluster, and the corresponding p-value was
retained as the p-value to represent that cluster.

Figures 3a and b compare the p-values of the top 100 clus-
ters returned by each algorithm, under the Biological Pro-
cess (P) and Molecular Function (F) vocabularies respec-
tively. The Y-axis represents negative log p-values while
the X-axis is simply an ordered list of the top-scoring clus-
ters produced by the different graph clustering algorithms.
Since better clusters have lower p-values, higher values on
the graph represent a higher quality of clustering. As we
see from the charts, MLR-MCL clearly outperforms Graclus
and MCL among the top set of clusters and is clearly com-
petitive or better than either across the board for both the
Molecular Function and Biological Process ontologies.

Under the evaluation using Biological Process annotations,
the top-scoring cluster returned by MLR-MCL obtained a p-
value of 1.8e−80, which is significantly better than 2.4e−30
and 1.6e−28, the top scoring p-values for Graclus and MCL
respectively. In fact MLR-MCL returns 8 clusters which
score better p-values than the best p-value scored by Gra-
clus. The p-value of 1.8e − 80 was scored by a cluster of 88
proteins returned by MLR-MCL, out of which 55 are pro-
teins currently known to be involved in the process of nuclear
mRNA splicing via spliceosome. It is very interesting that
the top scoring cluster for MCL was also in fact matched
with the same annotation, but MCL managed to retrieve
only 25 of the proteins known to be involved in this process.
This clearly illustrates that MLR-MCL overcomes the main
qualitative limitation of MCL - fragmentation of output.

5. CONCLUSION
In this work we have presented Regularized MCL and

Multi-Level Regularized MCL, two flow based algorithms
for graph clustering. Results on several real and synthetic
datasets highlight the utility of the approach when compared

6We used a publicly available package called GO-
TermFinder for calculating the p-values. The url is
http://search.cpan.org/dist/GO-TermFinder/

with MCL, Metis and Graclus, three state-of-the-art graph
clustering algorithms. Specifically, we find that the new al-
gorithms are 2-3 orders of magnitude faster than MCL, and
improve significantly on the quality of the output clusters.
Similarly we find that our approaches outperform Metis and
Graclus in terms of quality and are competitive in terms of
scalability.

As part of ongoing and future research, we will investi-
gate the utility of this approach for analyzing the temporal
evolution of networks. Another line of inquiry is to extend
it to directed graphs and bipartite graphs. We also believe
that this algorithm is amenable to effective parallelization
and worth studying.
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Figure 3: Comparison of (sorted) -log p-values on (a) Biological Process(P) annotations and (b) Molecular
Function (F). Higher is better.
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Figure 4: Comparison of Average Normalized Cut scores for varying number of clusters across 6 real world
datasets. (a) Astro-Ph (b) Cora (c) Dblp (d) Epinions (e) Hep-Ph (f) Hep-Th. Lower is better.
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Figure 5: Comparison of timing for varying number of clusters across 3 real world datasets. (a) Epinions (b)
Dblp (c) Hep-Th
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