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Cognitive agents: Autonomous and multi-agent systems

I Conceptually the components within each the agents are the same:
I A learning module, processing sensor information
I A decision module, optimizing objectives leveraging knowledge from the

environment to select an action

I The difference is that in multi-agent systems agents exchange messages to

improve learning and decisions performance
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Talk Objective

Basic questions:

How can we model swarm behavior in social networks?

Can we model disfunction in the social discourse and polarization?

Can we uncover who influences whom?

What comes next:

I Part 1: Analysis — Modeling consensus & polarization of opinions.

I Part 2: Identification — Can we infer the social system using these models

solving a system identification problem?
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Understanding social network systems

I Opinion dynamics model how individuals influence each others

I Early interest in them: Nicolas Marquis de Condorcet, Francis Galton famous

paper “Vox populi” [Galton, 1907] sought to prove mathematically that crowds

were wiser than each individual
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Learning under social pressure

I Galton experiment reported in

[Galton, 1907] averaged many answers

about the weight of an ox, noting the

average was very close to the true

value

I Modern opinion dynamics recognize

the critical difference between voting

by individuals who just express their

preference based on their individual

information and individuals who

observe the votes of others

I Agents are influenced by their

observation of other votes before

choosing their action
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Models for Opinion Diffusion
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Opinion Dynamics

The social systems equations:

Describe through a deterministic or a probabilistic dynamical model how a set of

agents combine their private beliefs with observations (direct or indirect) of the peers’

beliefs. The goal is understanding the emergent behavior of society.

The models are relatively simple:

I Agent i = 1, . . . , n holds an initial opinion xi (0) on a topic θ. For example, for

agent i it can be xi (0) = p(θ|si ) or xi (0) = E[θ|si ]
I There is a network process (social activities) through which these opinions are

shared and updated

agents beliefs at time t x(t) = (x1(t), . . . , xn(t))

continuous time 7→ ẋ(t) = f (x(t)), discrete time 7→ x(t + 1) = f (x(t))
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Social Network Model
I Associated to the social network is a directed weighted graph G = (V ,E ,A) that

is useful to model the interactions.

I The opinion of agent i on the kth topic θk after the t interactions is xi (t; k)

Aij

I V = {1, ..., n} — set of agents (or individuals).

I E ⊆ V × V — set of edges (or friendship), with |E | � n2.

I Each edge has a weight Ai j . A ∈ Rn×n
+ — weighted adjacency matrix, with

A1 = 1 (each row adds up to one).

I We study opinion dynamics where agents interact with each other, with focus on

analyzing steady-state opinions across different topics.
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Classes of Opinion Dynamics models

I Alignment of social behavior:
I Consensus models

F Herding behavior (Economics)
F Fad or trend behavior (Social

Psychology)
F Bandwagon effect (political science)

I Disagreement, polarization
I Social influence models for

“mavens” or “stubborn” agents
I Bounded confidence models
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“Vox populi” [Galton, 1907]

I The kth topic θk is Gaussian θk∼ N (0,σ2
o)

I The private signals signal are si = θk + wi

where wi ∼ N (0, σ2
i ). For simplicity σi = 1

I Each agent original opinion is xi (0) = si

I The communication occurs in a sequence

I The optimal weights to minimize the mean

squared error are:

Ai,j = t−1
t

for (i , j) = (t,t−1), else Ai,j = 0

I Update:

x(t; k) = (1− At,t−1)st + At,t−1x(t − 1; k).

I The opinion converges to the true value in the

mean square sense

x(t; k) ∼ N
(
θk ,

σ2
o

t

)

2700lb	
  
si = θ + wi

θ

Node 1 Node 2 Node 3 

p(s3|θ)p(s2|θ)p(s1|θ)

p(θ)
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DeGroot Opinion Dynamics, [DeGroot, 1974]

I Topics of discussions indexed by k = 1, ...,K . Let t ≥ 0 be the time index:

xi (t + 1; k) =
n∑

j=1

Aijxj(t; k)

xi (t; k) — opinion of agent i .

I Agents takes a weighted average of neighbors’ opinions (recall A1 = 1).

Fact: if G is strongly connected and A1 = 1, λ1(A) = 1, λ2(A) < 1

lim
t→∞

x(t; k) = c(k)?1 =⇒ consensus is reached. (1)
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DeGroot Opinion Dynamics, [DeGroot, 1974]

I Topics of discussions indexed by k = 1, ...,K . Let t ≥ 0 be the time index:

In matrix form:

x(t + 1; k) = Ax(t; k)

x(t; k) ∈ Rn — opinions of n agents.

I Agents takes a weighted average of neighbors’ opinions (recall A1 = 1).

Fact: if G is strongly connected and A1 = 1, λ1(A) = 1, λ2(A) < 1

lim
t→∞

x(t; k) = c(k)?1 =⇒ consensus is reached. (1)
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Evolution of the opinions

I The DeGroot model is identical to Average Consensus Gossiping (ACG) algorithm

studied extensively in computer science, communications, control, signal

processing.

I Its convergence is geometric (these are linear dynamics, λ1(A) = 1) and the rate

is the second largest eigenvalue λ2(A) < 1 - the more meshed the network is, the

lower is 0 ≤ λ2 ≤ 1. The algebraic connectivity of the graph is 1− λ2(A).

I A popular variant is randomized...
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Randomizing the opinion exchange

I Pairs of neighbors wake up at random, exchange and then update their opinions

to the average of their current ones, i.e.:

xi (t + 1; k) = xj(t + 1; k) = 0.5xi (t; k) + 0.5xj(t; k)

Note the trust matrix is switching randomly (I.e. A(t)1 = 1).

xi (t + 1; k) =

0.5xi (t; k) + 0.5xj(t; k)

xi (t; k) — opinion of agent i .
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Randomizing the opinion exchange

I Pairs of neighbors wake up at random, exchange and then update their opinions

to the average of their current ones, i.e.:

xi (t + 1; k) = xj(t + 1; k) = 0.5xi (t; k) + 0.5xj(t; k)

Note the trust matrix is switching randomly (I.e. A(t)1 = 1).

In matrix form:

x(t+1;k) = A(t)x(t;k)

x(t; k) ∈ Rn — opinions of n agents.
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Convergence of Randomized Interaction

I If the process A(t) is stationary (e.g. the pair choice is i.i.d. vs t) in expectation

the dynamics look exactly the same. Let x(t; k) = E[x(t; k)|θk ] and A = E[A(t)]

x(t + 1; k) = Ax(t; k)

I In this case if the graph is strongly connected and A1 = 1 we have almost sure

convergence to consensus
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Disagreement and polarization

I Consensus is more the exception than the rule (polarization)

Social network data / opinion:

I Polarization is common in social networks’ opinions (democrats vs. republicans)
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DeGroot Model with Stubborn Agents

I Expand G = (V ,E ,A) to include S stubborn agents with S � n.

I Stubborn agents are agents whose opinions do not change, e.g., the leaders,

guiding the rest towards different actions. Mathematically, we have:

xi (t + 1; k) = xi (t; k), ∀ t, if agent i is stubborn. (2)

I DeGroot Opinion Dynamics — let us partition x(t; k) = (z(t; k), y(t; k))(
z(t + 1; k)

y(t + 1; k)

)
=

(
I 0

B D

)
︸ ︷︷ ︸

weighted adjacency matrix A

(
z(t; k)

y(t; k)

)
(3)

Stubborn agents Normal agents

Stubborn to Normal net. B Normal net. D
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Steady-state with Stubborn Agents

At time t →∞

Opinions = zk Opinions = y k

Steady-state: if sub-graph G [V \ [S ]] is strongly connected (+other conditions):

y k = (I −D)−1Bzk . (S2)

I Stubborn agents are the opinion leaders (y k depends on zk).
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Evolution of the opinion

I The opinions y k is an output of the

linear transformation ‘(I −D)−1B’.

I The observations {y k , zk}Kk=1 is at

most rank min{S ,K} =⇒ rank of

data = S = no. of stubborn agents.

I In general there is no consensus. It

occurs if there is only one stubborn

agent, or all stubborn agents have the

same opinion.
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Bounded Confidence and Polarization

I Are stubborn agents necessary to

create social division?

I R. Hegselmann and U. Krause in

[Hegselmann and Krause, 2002]

introduced a model that shows

polarization can emerge on its own

I dij(t; k) is the opinion distance of

agents i and j

I Agents “talk” iff dij(t; k) < τ →
update is non linear

I With u(x) the unit step:

xi (t + 1; k) =
n∑

j=1

Aiju(τ − dij(t; k))xj(t; k)

x(t + 1; k) = A(x(t; k))x(t; k)
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Alternative: Bounded Confidence Randomized
I The randomized variant is due to G. Deffuant [Deffuant et al., 2000]

xi (t + 1; k) = xi (t; k) + 0.5u(τ − dij(t; k))(xj(t; k)− xi (t; k))

xj(t + 1; k) = xj(t; k) + 0.5u(τ − dij(t; k))(xi (t; k)− xj(t; k))

Theorem [Li et al., 2013]: phase transition to consensus

Let Aij probability of the interaction and dij(t; k) = |xi (t; k)− xj(t; k)|. A necessary

condition for the system to converge almost surely to consensus:

τ > dk :=
∑
ij

Aijdij(0; k) (4)
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Bounded opinions: Voter model

I Agents have a prior belief xi (0; k) = p(θk |si ) on a topic θk

I Agents can only observe actions ai (t; k) (typically binary, i.e. ∈ {1, 0}) and

update their beliefs

I The fact that the observations are quantize makes a significant difference

Variants of the voter model

I Rational agents with bounded opinions - Bikhchandani, Hirshleifer and Welch

(BHW) [Bikhchandani et al., 1992]

I Binary opinion dynamics - Peter Clifford and Aidan Sudbury

[Clifford and Sudbury, 1973] is inspired by Ising model for spin alignment

Both of them lead to consensus or herding
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Herding of rational agents

I Bikhchandani, Hirshleifer and Welch

(BHW) [Bikhchandani et al., 1992]: θ is

randomly determined between the values

of 1 (”good state”) and 0 (”bad state”)

I The agents gain c if ai = θ = 1 they loose

c if ai = 1 and θ = 0 and ai = 0 yields no

gain or cost

I The updates are in sequence. The tth agent to update observed st and the

actions of the previous agents to decides

a(t; k) = argmaxθ∈{0,1}P(θ|st , a(t − 1; k), . . . , a(1; k)) → rational choice

Information cascade

The update rule (for cond. independent si ) for the likelihood ratio is a martingale. In

finite iterations the agents herd and make the same decision irrespective of their

private belief, which has finite probability of being wrong!
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Voter model

I Introduced by Peter Clifford and Aidan Sudbury [Clifford and Sudbury, 1973]

analyzed first by Richard A Holley and Thomas M Liggett

[Holley and Liggett, 1975]

I In interacting social agents copy at random the action of a neighbor

I Equivalent to having the next action ai (t; k) a Bernoulli random variable:

ai (t; k) ∼ B(xi (t; k)), xi (t + 1; k) =
1

|Ni |

n∑
j∈Ni

aj(t; k)

Voter model at t → ∞
Consensus: Reached over connected finite graphs and 1− 2D lattices. All actions are

almost surely the same, i.e. t →∞ a(t; k) = a∞ a.s..

The final collective action can be a∞ = 0 or a∞ = 1. Given xi (0; k):

P(a∞ = 1) =
1

n
11T x(0; k).
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Analysis of the voter model

I The key analysis methods is the dual approach: it tracks the origin of an opinion

at node i at time T back in time, by viewing it as a random walk

I The state of each agent i at time T can be traced back to an opinion jumping

from a neighbor to another

I If the origins of opinions of all agents at some in time point coalesce, the walks

will continue together

I The number of steps backward when each of the random walks coalesces is the

consensus convergence time
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Voter model with stubborn agents
I No consensus. The network continues to randomly change votes
I Mobilia in [Mobilia, 2003] mean field study came first.

Theorem – E. M. Yildiz in [Yildiz et al., 2011]

If every non-stubborn node in the network has at least one directed path to a stubborn

agent votes a(t; k) converges in distribution, i.e. for t → +∞ a(t; k) ∼ B(x(+∞)).

I Placement of stubborn nodes makes a huge difference on the variance

Optimal placement

The problem of maximizing social bias is a sub-modular problem [Yildiz et al., 2011]

→ near optimal solution is greedy

Social Networks Models and Inference Background 25 / 43



The Identification of Social Network Systems
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Graphical Model Identification

I The effect of the dynamics is to create a statistical dependency among the

different components of xk

I A popular non-parametric approach is to model the data {xk}Kk=1 with a graphical

model.

Observation:

The r.v.s [xk ]i and [xk ]j are conditionally independent if (i , j) /∈ E . Equivalently,

we have [C−1
X ]ij = 0 where CX = E[xk(xk)>].

I Graphical LASSO heuristic [Friedman et al., 2008] — first estimate the

covariance matrix:

ĈX = (1/K)
∑K

k=1 xk(xk)> . (5)

I then we solve the covariance selection problem:

min
A∈Rn×n

− log det A + Tr(ĈXA)︸ ︷︷ ︸
yields A ≈ Ĉ−1

X
.

+ ρ · ‖vec(A)‖1︸ ︷︷ ︸
enforce sparsity.

. (6)
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Related work

Graphical Model Identification: the main trend among statisticians

I [Hsieh et al., 2014, d’Aspremont et al., 2008, Scheinberg et al., 2010] develop

fast algorithm for large networks.

I [Banerjee et al., 2008] analyzes the sample complexity for G-LASSO.

I [Segarra et al., 2016] infer sparse graphs from spectral templates.

I [Bresler, 2015] considers binary observations (a.k.a. Ising model).

Other statistical methods: popular among bio-informaticists

I ANOVA [Küffner et al., 2012]; Feature selection with TIGRESS

[Haury et al., 2012] and GENIE3 [Huynh-Thu et al., 2010], mostly empirical

studies.

Big-Data Challenge?

I Graphical model (+other stat. models) requires BIG + High-Rank data, e.g.,

xk = C 1/2
X zk , E[zk(zk)>] = I ∈ Rn×n . (7)
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Social System Identification of Opinion Dynamics
I Alternative? [Timme, 2007, Wang et al., 2011] suggest using the DeGroot model

for social system id. 7→ linear equations x(t; k) = Ax(t − 1; k), not hard...

Data required : (est. of) x(t0; k), x(t0 + 1; k), x(t0 + 2; k), · · ·
I HARD to collect the data in the transient

1. Observability - ‘opinion updates’ are random and happen in humans’ brains
2. Stationarity - semantic analysis requires the latent opinions to be stationary

Opinions = zk Opinions = y k

Our idea: Social RADAR [Wai et al., 2016]

Steady-state: if sub-graph G [V \ [S ]] is strongly connected at steady state:

y k = (I −D)−1Bzk .

The signal from stubborn agents helps reveal the social system A.
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Network Identification Formulation

I Main idea: fitting the model (I −D)y k = Bzk , ∀ k. We define:

Ji (b̂i , d̂i ) :=
∑K

k=1 |(ei − d̂i )
>y k − b̂>i zk |2 , (8)

where b̂i , d̂i are estimate of the ith row of B,D and ei is the ith coordinate vector.

I We solve the following for each i ∈ [n] in parallel: (ρ > 0)

min
b̂i ,d̂i

Ji (b̂i , d̂i )︸ ︷︷ ︸
LS fitting

+ ρ ‖b̂i‖1︸ ︷︷ ︸
regularizer

s.t. b̂i , d̂i ≥ 0, b̂>i 1 + d̂>i 1 = 1, [d̂i ]i = 0︸ ︷︷ ︸
[B,D] is stochastic matrix.

.
(9)

I Identifiability? Eq. (9) solves an underdetermined system as S � n.

I Intuitively, we expect identifiability if the data’s rank S grows proportionally to

the sparseness of the network.
† ‘Identifiability’ refers to having a unique minimum at bi = b̂i and di = d̂i for all i .
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Identifiability Condition — ‘Active Sensing’ Setup

I To gain insight we studied a simplified problem: the ‘Active Sensing’ setting

where stubborn agents are implanted (∼ social experiment):

Placement of stubborn agents

Each normal agent is connected to exactly ` stubborn agents, chosen at random the

non-zero support ΩB of matrix B is known. These connections are known to the

network identification problem.

I Remark: This is an ideal condition to give guidelines in designing network

identification experiments.

I We were able to show that a class of random graphs has guaranteed identifiability

at S = Ω(‖di‖0) =⇒ network identification is possible with low-rank data.
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Sufficient condition for identifiability

Theorem 1 – [Wai et al., 2016]

Let β := S/n and α := 2dmax/n be the density of the number of stubborn agents and
maximum in-degree of the normal network. Suppose (β, α, `) satisfies

`− 1 ≥ max
{

4,
H(α) + β′H(α/β′)

α log(β′/α)

}
, ( min

ij∈ΩB

Bij )(2`− 3) > 1 + 2( max
ij∈ΩB

Bij ) , (10)

where β′ := β − `/n and H(x) = −x log x − (1− x) log(1− x), probability of exact recovery:

Pr
(

(b̂i , d̂i ) 6= (bi , di )
1, ∀ i ∈ [n]

)
≤ max

i∈[n]

(
`

β

)4 `− 1

n2
+O(n2−(`−1)(`−3)) .

(11)

The network is identifiable if the data’s rank satisfies S = Ω(dmax),

where dmax is the max. in-degree =⇒ favors sparse & regular graphs.

1subject to a diagonal scaling ambiguity.
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Performance Benchmark

Topology Recovery Performance:

I Area under ROC curve (AUROC): area under the

curve of Pdetection vs. Pfalse alarm.

I Area under Precision-Recall (AUPR): area under

the curve of Precall vs. Pprecision.

Identification Performance:

I NMSE = ‖[B,D]− [B̂, D̂]‖2
F/‖[B,D]‖2

F AUROC and AUPR =1 → ideal
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Synthetic Networks + Data – Topology Recovery

I Focus: area under Precision-Recall (= 1 for perfect recover.).

I Setting: B ∼ each row of B has ` = 5 non-zeros at rand. pos..

I Green — don’t know the support of B, ΩB .

Red — know the support of B, ΩB . (w/ ‘active sensing’)

Stub.-normal net. B Normal net. D
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† (Right plot) G-LASSO is numerically unstable as the covariance CX is extremely low-rank.
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Synthetic Networks + Data – Topology Recovery

I Focus: area under ROC (= 1 for perfect topology recover.).

I Setting: B ∼ each row of B has ` = 5 non-zeros at rand. pos..

I Green — don’t know the support of B, ΩB .

Red — know the support of B, ΩB . (w/ ‘active sensing’)

Stub.-normal net. B Normal net. D
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† (Right plot) G-LASSO is numerically unstable as the covariance CX is extremely low-rank.
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Synthetic Networks + Data – Identification performance

I To verify the identification performance from Theorem 1.

I Settings: D ∼ ER graph with n = 100, connectivity
p = 0.08.

I Opt. — each row of B has ` = 5 non-zeros at rand. pos.

Random — element of B is non-zero with prob. p = 0.08.

Stub.-normal net. B Normal net. D
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I S ≈ 53 gives perfect recovery under ‘active sensing’ setting (w/ knowledge of ΩB).
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Real Data from the US Senate
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The US Senate

I We consider data from the 114th Congress, including the year 2015 and the

portion of 2016 until now.

I Basic facts:
I There are Republican Senators (red dots), Democratic Senators (blue dots) and

Independent Senators (gray dots)
I The bills are sponsored by a group of congress members, and put forward to the

Senate by the Committees
I The Senators vote for the approval or disapproval of the bill
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Data Partition

I Stubborn Senators: whose ideologies are far left or far right, and do not change

their own opinions and always try to influence other nodes’ opinion.

I We partition the states vector as:

x(t; k) =

(
z(t; k)

y(t; k)

)
, z(t; k) =

(
sR(t; k)

sD(t; k)

)
, y(t; k) =

 rR(t; k)

rD(t; k)

i (t; k)

 ,

I We partition the transition matrix as:

W =

Rs Ds Rn Dn F

Rs

Ds

Rn

Dn

F


I 0 0 0 0

0 I 0 0 0

B1 B4 D1 D4 F1

B2 B5 D2 D5 F2

B3 B6 D3 D6 F3


(12)

E.g., B4 is the normal Republicans’ trust on stubborn Democrats.
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Step 1: Clustering - Step 2: Bernoulli sampling

I We cluster bills by the committee and the ideology of the first sponsor of the bill,

e.g., (Judiciary, Republican).

I If some of the votes are not specific for a bill or the bill has no committee id (e.g.,

it is a nomination), we cluster the votes by its vote’s category, e.g., ‘amendment’,

‘cloture’, ‘nomination’.

I We assume that (node n’s vote on cluster k) ∼ B(1, p). Then, the node n’s

likelihood on event k can be estimated as
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Data analysis results for the US senate

We can

determine

according to our

model who trusts

whom more, and

help devise

political

strategies

Figure 1: Trust matrix [B,D] with diag(D) = 0.
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Impact Factor and Influence Factor

Impact Factor

I State Impact Factor: the number of non-zeros entries in each column of the trust

matrix W̃ = [B,D]:

Impact Factori = ‖w̃i‖0, where w̃i is the ith column of W̃ .

I It represents the number of Senators one Senator has an influence on.

Influence Factor

I State Influence Factor: we sum up all the non-zeros entries in each column in the

trust matrix W̃ = [B,D]:

Influence Factori = ‖w̃i‖1, where w̃i is the ith column of W̃ .
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Top 10 in Impact Factor and Influence Factor

Table 1: Impact Factor Top 10

Senator Total Number

David Perdue (GA/R) 13

Dianne Feinstein (CA/D) 10

Bernie Sanders (VT/I) 10

Mike Enzi (WY/R) 9

Rand Paul (KY/R) 9

Ron Johnson (WI/R) 8

John Hoeven (ND/R) 8

Christopher Murphy (CT/D) 8

Patty Murray (WA/D) 7

Richard Shelby (AL/R) 7

Table 2: Influence Factor Top 10

Senator Total Trust

Timothy Kaine (VA/D) 1.984

Ron Johnson (WI/R) 1.843

Patty Murray (WA/D) 1.603

Bill Cassidy (LA/R) 1.534

Jefferson Sessions (AL/R) 1.469

John Hoeven (ND/R) 1.440

Gary Peters (MI/D) 1.380

Mike Enzi (WY/R) 1.379

Richard Shelby (AL/R) 1.356

Kelly Ayotte (NH/R) 1.350

I Jefferson Sessions (AL/R): Donald Trump’s first Attorney General.

I Bernie Sanders (VT/I): former presidential candidate competing with Hillary

Clinton

I Tim Kaine (VA/D): Clinton running mate.
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Conclusions

I There are a lot of interesting models and results that can be derived looking at

social networks as interacting systems governed by a set of system’s equations

I Can we move from qualitative to quantitative analysis and confirm these models

from data?

I Controlled experiments are often contrived even if useful, for the DeGroot model

we showed an approach to attack real data. Can we generalize it?

I Goal: being able to analyze data that are available on the web going beyond

latent semantic analysis that is model free and assuming certain social dynamics
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[Küffner et al., 2012] Küffner, R., Petri, T., Tavakkolkhah,

P., Windhager, L., and Zimmer, R. (2012).

Inferring gene regulatory networks by anova.

Bioinformatics, 28(10):1376–1382.

[Li et al., 2013] Li, L., Scaglione, A., Swami, A., and Zhao,

Q. (2013).

Consensus, polarization and clustering of opinions in

social networks.

IEEE J. Sel. Areas Commun., 31(6):1072–1083.

[Mobilia, 2003] Mobilia, M. (2003).

Does a single zealot affect an infinite group of voters?

Physical review letters, 91(2):028701.

[Scheinberg et al., 2010] Scheinberg, K., Ma, S., and

Goldfarb, D. (2010).

Sparse inverse covariance selection via alternating

linearization methods.

In Advances in neural information processing systems,

pages 2101–2109.

[Segarra et al., 2016] Segarra, S., Marques, A. G., Mateos,

G., and Ribeiro, A. (2016).

Network topology inference from spectral templates.

arXiv preprint arXiv:1608.03008.

[Timme, 2007] Timme, M. (2007).

Revealing network connectivity from response dynamics.

Physical Review Letters, 98(22):1–4.

[Wai et al., 2016] Wai, H.-T., Scaglione, A., and Leshem,

A. (2016).

Active sensing of social networks.

2(3):406–419.

[Wang et al., 2011] Wang, W.-X., Lai, Y.-C., Grebogi, C.,

and Ye, J. (2011).

Network Reconstruction Based on Evolutionary-Game

Data via Compressive Sensing.

Physical Review X, 1(2):1–7.

[Yildiz et al., 2011] Yildiz, E., Acemoglu, D., Ozdaglar, A.,

Saberi, A., and Scaglione, A. (2011).

Discrete opinion dynamics with stubborn agents.

SSRN eLibrary.

Social Networks Models and Inference References 43 / 43


	Background
	Network Identification
	

	References

