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AI for Wireless
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AI for Wireless

1. Go where conventional math models can’t go

2. Leveraging large measurement data sets

3. Leveraging GPUs

4. Dealing with uncertainties

 PHY applications

 Auto-encoding

 H/W impairment compensation (1 bit ADC etc.)

 Modulation detection

 LINK/Network level applications

 Fault detection

 (Predictive) resource allocation

 SDN optimization

 Decentralized Edge Cooperation 
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Decentralized Edge Cooperation
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sharing/caching of 
user s data symbols

x2=w2(H(2))s

x3=w3(H(3))s

x1=w1(H(1))s

 Edge Cooperation
 Pilot allocation

 Interference management

 beam alignment

 resource allocation

 Caching

 Robotic cooperation
 Self-driving cars

 Factory robots

 Decentralized decision under 

uncertainties

 Local observations are noisy, exchanged 

information are quickly outdated

 Need to predict decisions of other 

devices – but other’s decisions also 

based on noisy predictions 

AI territory!
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Building up intuition for team decision:

The car crossing example
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High-end car (high quality sensors)
Low-end car (low quality sensors)

Problem: Optimize brake/acceleration policy at each car

Maximize traffic flow under given crash probability 

threshold

Account for sensor uncertainties
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Formalizing the team decision problem

Environment

DM

s
UtilityActions

Local Info
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Team decision problem: the goal
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Conventional strategies



^

1
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Team Deep Neural Networks
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Team Deep Neural Networks

Use Deep Neural Networks (DNNs) to recast the TD problem into a 
parametric optimization problem, where parameters are DNNs 
weights.

Environment

DM

s
UtilityActions

Local Info
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Team DNN
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Team DNN
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CENTRALIZED TRAINING: 

Links and variables in green are available only during the training process

Environment

DM

s
UtilityActions

Local Info

DNNs can then be jointly trained using back-propagation
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Centralized Training\Decentralized Testing
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Intuitive Example: Distributed Power 

Control

Two user SISO interference channel with fixed CSI 

quality

 DMs: transmitters

 Environment: channel gain matrix

 Local info: CSI estimates 
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An Example: Distributed Power Control

 Action policies: power control algorithm

 Utility Function: Sum-rate

 Goal: 
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An Example: Distributed Power Control
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T-DNNs drawback
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Proposed solution



htpp://www.eurecom.fr/


Interference channel with noise statistics

The noise statistics are assumed to be estimated separately 

CGI

Noisy CGI

Estimate of information 

noise statistic
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Interference channel with noise statistics
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Mixture of Experts model

Mixture of experts (MoE):

 Ensemble learning model based on the “dividi et impera” principle

 Combines different experts (simple learning models) specialized in 

different parts of the input space.

 A gating network is used to properly assign experts to different input space 

regions.

Benefits:

 Simpler models converge faster and are less prone to over-fitting

 Local experts can approximate different power control policies
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Team Mixture of Experts

Concurrent training:

• Each expert maximizes the sum-

rate optimizing its power policy 

on a specific region of the input 

space

• The gating network assigns the 

best expert to each noise 

configuration

Use a Mixture of Experts (MoE) to realize the power control algorithm 

at DMs  in order to capture the heterogeneity of the optimal power 

control policies 
Gating 

Network

Experts
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Experiments Setup
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Experiments Setup



Information Quality Trajectory
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Terms of comparison

Classical power control:

• Perfect CGI: optimal control scheme with perfect CSI.

• Naïve WMSEE: WMSEE algorithm ran with local noisy info.

• TDMA: One TX active.

Data-driven power control:

• Team-MoE: policies at DMs are realized with MoEs and are jointly trained 

during a single centralized phase over a multitude of noise scenarios.

• Team-DNN: Multi-layer perceptrons are used to represent policies at DMs 

and are re-trained when the noise scenario changes.
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Training Phase 

Team-MoE

 Single training

 Data-set size: 100k data 

samples for various noise 

setting

 Batch size: 1k

 8k gradient updates 
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The retrained T-DNN converges 

to the T-DMoE performance in 

most of the cases.

T-DMoE is learning the optimal 

power control policy
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Noisy estimates

Imperfect estimates

Graceful degradation of sum-rate as 

estimates get worse
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Conclusions

 Team-DNN can learn optimally robust  decentralized policies under 

arbitrary uncertainties^[1,2]

 Team-DNN need to estimate the amount and structure of uncertainty

 Centralized Training/Decentralized Retraining requires burdensome and 

frequent retraining if noise statistics info are not employed

 By exploiting noise statistics estimates, an “universal” model can be 

trained using Mixture of Experts^[3]

 Extension: finite-rate message making DNNs to exchange relevant info 

among agents before decision^[4]
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Experts

 3 hidden layers

 10 neurons/layer

 ReLu activation
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Gating Network

 Input: uncertainty estimates

 Structure: Fully connected with 2 hidden layers, 10 neurons and ReLu 

activations

 Output: Softmax activation to obtain a weighting vector for experts 

selection
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