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Immunoassays 101



Plate of Fluorospot wells. Image provided by Mabtech AB, access at http://bit.ly/Fluoro_Plate
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Fluorospot image, provided by Mabtech AB
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Fluorescein Isothiocyanate (FITC) Cyanine 3 (Cy3) FITC+Cy3

FluoroSpot Multiplex Assay



Data Analysis and Labelling
(IFN�, or type II interferon, is a cytokine that is critical for innate and adaptive immunity against viral,

some bacterial and protozoal infections - Wikipedia)



Why is the Problem Challenging?
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Challenges for spot detection in immunoassays

I Spots vary in size, shape, and intensity

I Image noise adversely a↵ects performance

I Strong spots may partially occlude or mask weak spots

The proposed solution

I A model based source point localization algorithm
I Relying on a physically motivated observation model
I An inverse problem formulation for source localization
I Large scale numerical optimization



Spot Formation
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Spot characteristics

The shape of any particular spot depends on

I when and how many particles are released during incubation

I the di↵usivity of the liquid medium

I the capture a�nity of the antibodies

I the disassociation probability of the antibodies

I . . . and fluorescence strength, optics, camera exposure, etc.



Observation Modeling



A Physical Model for Biomedical Assays

Relevant quantities for the assay are

I the density of bound particles d(x , y , t) � 0, where the image will be
(proportional to) dobs(x , y) = d(x , y ,T ), which evolves coupled to

I the 3D density of free particles c(x , y , z , t) � 0 on z � 0, and to

I the source density rate of new particles s(x , y , t) � 0, that is spatially sparse and
reveals the cell locations and characterization.
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This physical model was presented before, also for ELISPOT and Fluorospot.



An Observation Model for Biomedical Assays

We consider the image observation dobs 2 D+, with D a weighted L2
�
R2

�
space and

prove that

dobs(x , y) =
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where '(⌧, t) expresses the probability density for time in free motion.



Theorem

The distribution of time in free motion '(⌧, t), is given by

'(⌧, t) = i[0,t)(⌧)
1X

j=1

�j⇤(⌧)p [j � 1;d(t � ⌧)] ,
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x
e�t2dt ,

and where p[j ;�] is the Possion distribution with intensity �.



An Observation Model for Biomedical Assays

The modeling result: The image dobs 2 D+ is

dobs =

Z �max

0

G�a�d�, with a(x , y ,�) =
�
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Z T
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How?

I Independence of Brownian motion in x , y and z .

I Adsorption (a) and desorption (d) only regulated by z-movement.

I x- and y -movements only depend on ⌧ , total time in Brownian motion. In
particular, according to Green function for 2D di↵usion, gp

2D⌧ (x , y).

I '(⌧, t) summarizes the e↵ect of adsorption and desorption onto the time in free
motion ⌧ for each time of final adsorption t.

I Change variables to those significative to x- and y -movement, � =
p
2D⌧ .



Crucial Observations

I The mapping s ! a given by

a(x , y ,�) =
�
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does not act on spatial coordinates r = (x , y).

I The non-negativity of s � 0 is retained by a � 0.

I While the mapping from s ! a depends on D, a, and d, the mapping from a to
dobs does not.

Proposed Methodology

Recover the post adsorption-desorption source density rate (PSDR) a in place of the
source density rate (SDR) s, obviating the need to explicitly obtain D, a, and d.



An Observation Model for Biomedical Assays

The modeling result: The image dobs 2 D+ is

dobs =

Z �max

0

G�a�d� = Aa .

Consequences

Real observation (section) Simulated observation (section)

I Ability to generate synthetic data

I A workable observation model for inverse problem



Discretization

supp (µ)

sensor’s grid
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nm
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I Spatial grid given by camera sensor

I �-grid with di↵erent levels of detail

I Inner approximation paradigm
(step-constant functions)

I Choice of normalization in restriction
and extension operators to ensure
norm equivalence

I The typical size of the variable a to
recover will be 9⇥ 20482 ⇡ 40⇥ 106

I Di↵erent kernel approximations are
considered



Continuous observation mode

dobs =

Z �max

0

G�a� d� = Aa

I dobs 2 D ⇢ L2
�
R2

�

I a 2 A+ 2 L2
�
R3

�
, a� 2 L2

�
R2

�

Discrete observation mode

dobs ⇡
KX

k=1

gk ~ ak = Aa

I dobs 2 D ⇢ RM⇥N

I a 2 A+ ⇢ RM⇥N⇥K , ak 2 RM⇥N



Algorithmic Solutions



Naive Inverse Problem Formulation (Discrete Case)

a? = argmin
a�0

kAa� dobsk22

A Problem with Observability

a?(d) : RM⇥N ! RM⇥N⇥K

The solution is regularization (group sparsity)!



Non-negative Group Sparsity Regularized Inverse Problem

We have dobs 2 D+ and want to recover a 2 A+. We propose the (non-smooth,
constrained) convex problem

min
a�0

(
kAa� dobsk22 + �

X

m,n

kam,nk2

)

am,n , {a(m, n, k)}k 2 RK



Functional Non-negative Group Sparsity Regularized Inverse Problem

We have dobs 2 D+ and want to recover a 2 A+. We propose the (non-smooth,
constrained) convex problem

min
a2A
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Non-negative Group Sparsity Regularized Inverse Problem

min
a�0

(
kAa� dobsk22 + �

X

m,n

kam,nk2

)

I Still an optimization problem over 40⇥ 106 variables. . .
I Active research on first order (matrix free) methods

I operator view instead of matrix vector multiplication
I decoupled and closed form proximal operators

I We have considered
I accelerated proximal gradient methods, and
I multiplicative update rules



Proximal Gradient Methods



Nesterov Accelerated Proximal Gradient Algorithm (Fluorospot)

Require: Initial a(0) 2 A+, image observation dobs 2 D+

1: b(0)  a(0), i  0
2: for i = 1 to I do

3: d (i)  
KX
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gk ~ b(i�1)

k , r (i) = d (i) � dobs
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7: end for
8: aopt  a(i)



Proximal Gradient Algorithm (Simplified)

Require: Initial a(0) 2 A+, image observation dobs 2 D+

1: for i = 1 to I do
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Model prediction d = Aa

1: b(0)  a(0), i  0
2: for i = 1 to I do
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Residual calculation r = Aa � dobs
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Gradient calculation rf = A⇤r = A⇤(Aa � dobs)
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Projected gradient step a [a � ⌘rf ]+
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2: for i = 1 to I do

3: d (i)  
KX

k=1

gk ~ a(i�1)

k , r (i) = d (i) � dobs

4: a(i)k  
h
a(i�1)

k � ⌘ gk ~ r (i)
i

+

, k = 1, . . . ,K

5: p  

0

@1� ⌘
2
�

"r
PK

k=1

⇣
a(i)k

⌘2

#�1
1

A

+

, a(i)k  p � a(i)k , k = 1, . . . ,K

6: end for
7: aopt  a(i)



Shrinkage factor due to �kam,nk2
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Variable update of a
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Complexity bottlenecks (2K convolutions)
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Convexity guarantees convergence of the algorithm. . .



Results and Performance



Evaluation framework and metrics

I Pseudo-likelhood for source localization given by p =
qPK

k=1
a2k

I candidate cell locations obtained by local maxima of p
I candidates pruned based on an optimized pseudo-likelihood threshold

I Detection considered correct within 3 pixels

I Evaluation metrics

pre = TP
TP+FP , rec = TP

TP+FN , and F1 = 2pre·rec
pre+rec



Example Results for Real Data (F1-Score of 0.9)

Detection results (yellow circles) and human expert labeling (orange squares).



Example Results for Synthetic Data (Nc = 1250)

Detection results (yellow circles) and true positions (orange squares).



Results on Synthetic Data (F1 vs. Regularization �)
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Results on Synthetic Data (F1 vs. Noise Level)
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Results on Synthetic Data (F1 vs. Spot Density)
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Epilogue



La Jolla Institute for Immunology - Coronavirus Update, May 14, 2020 (YouTube)



Peptide pool based on – Ahmed, Syed Faraz, Ahmed A. Quadeer, and Matthew R. McKay.

”Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2)

based on SARS-CoV immunological studies.” Viruses (2020)



Summary



I We have solved an image processing problem in immunology
I ELISPOT and FluoroSpot

I How:
I formulation of an over parameterized linear observation model
I spatial group sparsity regularization
I GPU accelerated first order (matrix free) optimization methods

I What:
I state of the art analysis of said assays
I capable of breaking clusters of spots
I unparalleled positioning of spot centers
I individual relative spot volume estimates (RSV) – even in clusters
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