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Super-Resolution: Motivation and Applications

§ The goal of Super-resolution is to recover “lost” details (typically high

frequency components) from noisy, low-resolution (typically low-frequency)

measurements acquired by a physical system.

§ The problem has origins in optics. Features widely across many applications,

including radar, microscopy, medical imaging, radio astronomy, image

processing/computer vision...
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Super-Resolution: Classical Methods and Recent Advances

§ Harmonic Retrieval Problem:

ym “
K
ÿ

k“1

ejm!kck`nm, 1 § m § M

§ Classical Methods are algebraic, and

they utilize the structure of subspace

spanned by Vandermonde vectors.

§ Many impactful results spanning decades: [Schmidt’86],[Kailath’89],[Hua et.al’90],

[Kaveh’86], [Rao,Hari’89], [Stoica,Nehorai’89], [Vaccaro’93],[Krim’96]...

§ Guarantees are mostly asymptotic/perturbation-based.
§ Recent advances in non-asymptotic guarantees of classical methods: [Liao’14],

[Moitra’15,’20], [Li’19],[Qiao,Pal’19],[Hucumenoglu,Pal’20]..

§ Modern Convex algorithms for Super-resolution: Atomic norm/TV norm

minimization. Robusntess guarantees, minimax optimality:

[Candes,Fernandez-Granda’12-’20],[Tang et al.’12-20]...
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This Talk: Multiple (Temporal) Measurements and Correlation
Priors

§ In many applications (such as microscopy, radar target localization,

interferometry), we acquire several low-resolution measurements of a scene

of interest over time.

§ Incorporation of temporal measurements and correlation priors can

significantly enhance super-resolution capabilities.
4



Sparse Arrays and Aperture Synthesis

§ In many applications sources are assumed to be spatially incoherent (or

statistically uncorrelated).
§ By utilizing a sparse sensing geometry and computing spatial correlation between

sensor pairs, it is possible to generate the e↵ect of a virtual di↵erence co-array.

[Mo↵et’68],[Pillai’85],[Kassam’90],[Abramovich],[Pal,Vaidyanathan’10],[Amin’15],[Wang,Nehorai’17],

[Koochakzadeh,Pal’16],[Qiao,Pal’20]...

§ Asymptotic guarantees for resolving more sources than sensors, significantly

smaller Cramér-Rao Bounds.
§ Non-asymptotic Guarantees: Largely open.
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Open Questions of Interest

§ Classical Subspace based algorithms do not explicitly need separation

condition, but their guarantees are mostly asymptotic in the number of

snapshots.

§ Modern TV-norm and atomic norm based algorithms o↵er non-asymptotic

robustness guarantees, but require a minimum separation condition, even in

absence of noise (reminiscent of Rayleigh resolution limit).

Can correlation priors and aperture synthesis provably lead to improvements in

resolution? Can a strict separation condition be relaxed and noise amplification

be tamed by exploiting

§ Sensing geometry?

§ Temporal snapshots?

§ Inherent conic constraints?
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Super-Resolution, Sparsity and Correlation Priors



Discrete Setup of Super-Resolution Image Reconstruction

§ Discrete Super-resolution: The goal is to reconstruct a desired image on a

high-resolution grid, given low-resolution measurements collected by a sensor

array.

§ Widely used in optical super-resolution imaging

[Solomon,Eldar,Segev’18,Goodman et. al’17]
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Noise Amplification in Super-resolution: Discrete Setup

§ The discrete version of the super-resolution problem has been studied

extensively, following pioneering works by [Donoho’90]
§ Discrete version appears frequency in applications where the goal is to display a

super-resolved image on a desired high resolution grid [Solomon,Eldar et. al’18].

Measurement Model [Morgenshtern,Candes’16]

y “ Qx ` n

§
y P CN : Low-resolution measurements, contaminated with noise n.

§
Q P CNˆN : Discrete Convolution operator, representing a low-pass filter with

cut-o↵ fc † N :

Q “ W

H⇤W , rW sm,n “ 1?
N

e´j2⇡mn{N , ´N{2`1§m§N{2, 0§n§N´1

where ⇤ “ diagpp´N{2`1

, p
2

, ¨ ¨ ¨ , pN{2q with pn “ 0, |n| ° fc.

§
x P CN : Desired high-resolution signal.
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Stable Super-resolution

Representation in Frequency Domain:

y “ Qx ` n ñ Wy “ ⇤Wx ` Wn

§ If ⇤ has a flat spectrum, then we need to recover x P C

N from

M “ 2fc ` 1 ! N low frequency components (DFT coe�cients), corrupted with

noise.
§ Unambiguous and stable recovery of x from y is not possible unless we exploit

priors on x.

Let C denote a class of signals that the desired x belongs to (captures apriori

information).

Stable Recovery

We say that an estimate x̂ leads to stable recovery of x (using the apriori

information in C), if
}x ´ x̂} § NApC, n,Nq . }n}

NApC, n,Nq : Noise Amplification Factor
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Non-negative Super-Resolution and Noise Amplification

§ Suppose we have the apriori information that x • 0, i.e. x is non-negative.

§ Can this prior information enable stable recovery?

Non negative Super-resolution [Morgenshtern,Candes 2016]

min

z

}y ´ Qz}
1

subjet to z • 0

No explicit regularizer (such as sparsity enforcing l
1

norm, or TV norm) utilized,

other than non-negative constraint on x.

Stable recovery is still possible if the ground truth x is non-negative and satisfies

Rayleigh-Regularity.
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Stability of Non-negative Super-resolution

Rayleigh Regularity [Morgenshtern,Candes’16]: Informally, a signal obeys

Rayleigh regularity with parameters pd, rq if it contains no more than r spikes in

any d consecutive intervals, each of length 1

fc
.

Theorem (Stable Non-negative Super-resolution [Morgenshtern,Candes’16])

Suppose x satisfies Rayleigh regularity condition with parameters p3.724r, rq, and
the filter Q has a flat or triangular spectrum. Then the solution x̂ to (CVX) obeys

}x̂ ´ x}
1

§ C

ˆ

N

M ´ 1

˙

2r

}n}
1

When the sparsity pattern of x obeys the conventional separation condition

� ° c
M´1

(with r “ 1q, noise amplifies by a factor of
´

N
M´1

¯

2

=SRF2.

11



Stability of Non-negative Super-resolution

Rayleigh Regularity [Morgenshtern,Candes’16]: Informally, a signal obeys

Rayleigh regularity with parameters pd, rq if it contains no more than r spikes in

any d consecutive intervals, each of length 1

fc
.

Theorem (Stable Non-negative Super-resolution [Morgenshtern,Candes’16])

Suppose x satisfies Rayleigh regularity condition with parameters p3.724r, rq, and
the filter Q has a flat or triangular spectrum. Then the solution x̂ to (CVX) obeys

}x̂ ´ x}
1

§ C

ˆ

N

M ´ 1

˙

2r

}n}
1

When the sparsity pattern of x obeys the conventional separation condition

� ° c
M´1

(with r “ 1q, noise amplifies by a factor of
´

N
M´1

¯

2

=SRF2.

11



Stability of Non-negative Super-resolution

Rayleigh Regularity [Morgenshtern,Candes’16]: Informally, a signal obeys

Rayleigh regularity with parameters pd, rq if it contains no more than r spikes in

any d consecutive intervals, each of length 1

fc
.

Theorem (Stable Non-negative Super-resolution [Morgenshtern,Candes’16])

Suppose x satisfies Rayleigh regularity condition with parameters p3.724r, rq, and
the filter Q has a flat or triangular spectrum. Then the solution x̂ to (CVX) obeys

}x̂ ´ x}
1

§ C

ˆ

N

M ´ 1

˙

2r

}n}
1

When the sparsity pattern of x obeys the conventional separation condition

� ° c
M´1

(with r “ 1q, noise amplifies by a factor of
´

N
M´1

¯

2

=SRF2.

11



Our Goal: Super-Resolution with Spatiotemporal Measure-
ments

Suppose we collect a set of L temporal measurement vectors yl P CM

yl “ Axl ` nl, 1 § l § L

§
A P CMˆN (M † N) is an undersampled (fat) DFT matrix:

Am,n “ ej2⇡dmn{N , 1§m§M, 0§n§N´1

where dm denotes the (normalized) location of the mth sensing element.

§ Common Support: Supp pxlq “ S, l “ 1, 2, ¨ ¨ ¨ , L
§ Special Case: When tdmuMm“1

is a set of consecutive integers, each

measurement vector follows the same model as [Morghenstern,Candes16].

§ Appears widely in Mulitple Measurement Vector (MMV) models.

12



Super-resolution Correlation-Imaging

§ In many problems, the sources are assumed to be spatially incoherent

E
`

xix
˚
j

˘

“ pi�ri ´ js, 1 § i, j § K

§ Such assumptions are heavily exploited in correlation microscopy (e.g. SOFI,

SPARCOM) to exploit the independent statistical fluctuation of fluoresecent

emitters to aid super-resolution in the discrete setting.

Goal of Correlation-Driven Super-resolution

Obtain a super-resolved image p P RN , where each pixel represents the source

power, i.e. pi “ E
`

|xi|2
˘

§ Utilization of correlation priors can lead to significant improvement in

super-resolution performance [Solomon,Eldar,Mutzafi,Segev’18].
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Mathematical Theory of Correlation-Driven Super-resolution

Key Questions of Interest

§ Can the separation condition be relaxed in correlation-driven Super-resolution?

§ Can we tame the noise amplification (typically SRF 2) using correlation Priors?

§ What roles will the geometry of spatial sampling (choice of d
1

, d
2

, ¨ ¨ ¨ dM ) and

positivity play?

§ What is the underlying trade-o↵ between Spatial and Temporal Measurements?

14



Key Ingredient I: Khatri-Rao Product and Di↵erence Set

R

yy

“ APA

H ` �2

I ñ vec pR
yy

q “ pA˚ d Aqp ` �2vecpIq

Fact: Desired correlation image p is mapped to the data covariance R

yy

via

the Khatri-Rao product of A:

A

˚ d A “ ra˚
1

b a

1

,a˚
2

b a

2

, ¨ ¨ ¨ ,a˚
N b aN s

Di↵erence Set

S “ td
1

, d
2

, ¨ ¨ ¨ , dMu
DS “ tdm ´ dn, dm.dn P Su
2Mdi↵ ` 1 “ cardinality of largest

subset of consecutive integers in DS

§ The quantity Mdi↵ will be used to relax the separation condition, and reduce

noise amplification in correlation-driven super-resolution.
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Key Ingredient II: Role of Positive Constraints—Warm-Up

Solving an ill-posed system of equations (in p,�) :

R

yy

“ APA

H ` �2

I (1)

Asymptotic Unique Recovery without sparsity Constraints [Qiao,Pal2019]

As long as }S}
0

§ Mdi↵, there is a unique non negative pair pp,�q that satisfies (1)

§ No need for separation (asymptotically in number of snapshots L).
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Non Asymptotic Guarantees

§ In practice we have access to an estimate R̂L of the covariance matrix R

yy

computed using finite snapshots L.

ˆ

RL “ APA

H ` �2

I ` EL
loooomoooon

�L

§ Key Questions of Interest:
§ Noise + Finite snapshot error both can potentially degrade the ability to

super-resolve.
§ Can (i) positivity of the desired correlation-image and (ii) geometry of sensing still

lead to stable super-resolution with relaxed separation, and reduction in noise

amplification?
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Geometry of Conic Constraints

Feasible Set

F�L “
!

z • 0,
›

›

›

vecpR̂Lq ´ pA˚ d Aqz
›

›

›

2

§ }�L}F
)

§ Feasible set F�L characterized by snapshots, and contains the true source power

p.

§ Is it possible to bound the distance between any two points z
1

, z
2

P F�L in

terms of }�L}F , despite A

˚ d A being a fat matrix?

§ Such a bound can lead us to universal stability guarantees for correlation-driven

super-resolution.

§ Main challenge: A˚ d A has a non-trivial null-space.
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Positivity to the Rescue

F�L “
!

z • 0,
›

›

›

vecpR̂Lq ´ pA˚ d Aqz
›

›

›

2

§ }�L}F
)

How does the conic constraint help?

§ Without non-negative constraint

B✏“tzPRN ,}vecpRyyq´pA˚dAqz}
2

§}�L}F u

§ Let p P B and let z
1

“ p ` ↵v, where

v P N pA˚ d Aq. Then z

1

P B but

}p ´ z

1

} diverges with ↵.

§ Geometry of conic constraint crucial to

make F�L bounded.
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Stability of Convex Feasibility Test

Definition

Define the set of sparse signals obeying relaxed Di↵erence-Set Separation

(DS-SEP) condition as

PDS-SEP fi tp P CN | �p k

N
,
l

N
q • 2

Mdi↵
,@k ‰ l P Suppppqu

Theorem (Qiao,Pal.19)

Suppose the ground truth p satisfies the relaxed di↵erence-set separation

condition, i.e. p P PDS-SEP. Further suppose Mdi↵ • 128 and

N • 3.03p2Mdi↵ ` 1q. Then, for any p# P F�L , we have

}p# ´ p}
1

“ O

ˆ

1 ´ ⇢

⇢
}�L}F

˙

(4)

where ⇢ “ c
1

`

Mdi↵
N

˘

2

, c
1

being a universal constant.

H. Qiao and P. Pal, ”Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector

Models Using Di↵erence Co-Arrays,” in IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, 15 Nov.15, 2019.

20



Stability of Convex Feasibility Test

Definition

Define the set of sparse signals obeying relaxed Di↵erence-Set Separation

(DS-SEP) condition as

PDS-SEP fi tp P CN | �p k

N
,
l

N
q • 2

Mdi↵
,@k ‰ l P Suppppqu

Theorem (Qiao,Pal.19)

Suppose the ground truth p satisfies the relaxed di↵erence-set separation

condition, i.e. p P PDS-SEP. Further suppose Mdi↵ • 128 and

N • 3.03p2Mdi↵ ` 1q. Then, for any p# P F�L , we have

}p# ´ p}
1

“ O

ˆ

1 ´ ⇢

⇢
}�L}F

˙

(4)

where ⇢ “ c
1

`

Mdi↵
N

˘

2

, c
1

being a universal constant.

H. Qiao and P. Pal, ”Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector

Models Using Di↵erence Co-Arrays,” in IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, 15 Nov.15, 2019.
20



Significance Of the Bound: Universal Stability in Correlation-
driven super-resolution

Consider the Feasibility Problem

find z

subject to }vecpR
yy

q ´ pA˚ d Aqz}
2

§ }�L}F ,
z © 0.

(FEAS)

§ Any solution z

˚ to (FEAS) will satisfy }z˚ ´ p}
1

“ O
´

1´⇢
⇢ }�L}F

¯

§ Captures how correlation estimation error }�L}F controls the (worst-case)

reconstruction error.

§ Algorithm-independent upper bound on the reconstruction error, depending

only on the geometry of the Feasible set F�L . Universal benchmakr to

determine objective functions can do better than picking arbitrary point from

Feasible set.
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Error Amplification Can be Reduced

}p# ´ p}
1

“ O

ˆ

1 ´ ⇢

⇢
}�L}F

˙

⇢ “ c
1

ˆ

Mdi↵

N

˙

2

(5)

§ Covariance estimation error gets scaled by a factor of

1

⇢
“ c1

1

ˆ

N

Mdi↵

˙

2

§ Role of Sensing Geometry:
§

Mdi↵ “ ⇥pMq, corresponds to ULA: }�L}F amplifies by SRF2 “ `

N
M

˘2
.

Similar to existing analysis.
§

Mdi↵ “ ⇥pM2q, corresponds to sparse arrays: Covariance error scales by N2

M4 .
§ Covariance error can be potentially compensated in the final correlation image,

thanks to the large di↵erence set of sparse arrays, as long as N “ opM2q.
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Tightness of the Amplification Factor

Amplification is quadratic in N : 1

⇢ „ N2

M2
di↵
.

Is the quadratic scaling tight?

Theorem (Qiao,Pal19)

There exist p

1

,p
2

P F�L (with p

1

also obeying separation condition) such that

whenever Mdi↵ • 128 and N • 3.03p2Mdi↵ ` 1q, we have

}p
1

´ p

2

}
1

§ C
1

pMqN2}�L}F

and

}p
1

´ p

2

}
1

• C
2

pMqN2}�L}F

where C
1

pMq and C
2

pMq are only functions of M .

1
H. Qiao and P. Pal, ”Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector Models Using

Di↵erence Co-Arrays,” in IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, 15 Nov.15, 2019.
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Numerical Results 1

Phase Transition and Sample Complexity

(a) (b)
Figure 1: Phase transition of success rate as function of sparsity s and number of

measurements M : (a) pP1Co-denq, (b) MMV-BP. White pixels indicate perfect recovery

and black pixels denote total failure. Here L “ 2000, N “ 600 and the results are

averaged over 50 runs. The overlaid red curve represents s “ 0.18M2 in (a) and s “ M

in (b) and (c).
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Numerical Results 2

Empirical Support Recovery versus Sparsity

(a) (b)

Figure 2: (a) Probability of successful support recovery as a function of sparsity s. (b)

Success rate of M-SBL, M-FOCUSS and SPICE as a function of sparsity s. For both

cases, M “ 24, N “ 300, L “ 100.
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Super-Resolution via Parameter Estimation: Going

O↵ the Grid



Super-Resolution and Line Spectrum Estimation

Measurement Model:

yl “
K
ÿ

k“1

ap!kqck,l ` nl, l “ 1, 2, ¨ ¨ ¨L

§
yl P CM — lth temporal snapshot of measurements collected by an array of M

sensors.

§
ap!q P CM — steering vector of the array corresponding to spatial frequency !.

§ ck,l — (Time varying) amplitude of the kth source

§
nl— Additive noise at the sensor array.

§ Model is widely adopted for the problem of point source localization.

Goal: Recover t!kuKk“1

from measurements yl

26



Atomic Norm Minimization: Basics

§ Point source model: xptq “ ∞K
k“1

ck�pt ´ tkq, ⌧k P r0, 1q

§ Bandlimited Measurement Model: 2

ym “
ª

1

0

ej2⇡mtxptq ` nm “
K
ÿ

k“1

cke
j2⇡mtk ` nm, |m| § M{2

§ Atomic Set: A “ tej2⇡�r1, ej2⇡⌧ , ej2⇡2⌧ , ¨ ¨ ¨ , ej2⇡pM´1q⌧ s,�, ⌧ P r0, 1qu
§ Atomic Norm: }x}A :“ inftt • 0,x P t . convpAqu

TV or atomic norm minimization rely on a “separation condition” between

spikes/sources for developing theoretical guarantees.

2For an arbitrary point-spread function gptq bandlimited to |f | § B{2, the Fourier-domain measurement

model has been typically modified as [Chi ’16,’20]

ym “
ª

e
j2⇡!mtpg ˚ xqptqdt ` nm “

K
ÿ

k“1

cke
j2⇡!m⌧k ĝ! ` nm, !m P r´B{2, ¨ ¨ ¨ , B{2s

However, as argued in [Batenkov,Bhandari,Blu’19],[Chen,Moitra’20], bandwidth selection is an issue, and the

frequency domain model may not be fully representative of the actual physical measurements.
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Atomic Norm Denoising and Separation Condition

min

x

1

2

}y ´ x}2
Z

` �}x}A

§ Separation Condition: �

:“ min

i‰j
�p⌧i, ⌧jq ° c

M
(wrap-around distance)

Recovery Guarantee [Li,Tang 2020]

Assume that the noise n is zero mean Gaussian with independent entries and

variance �. If Separation condition holds, the complex amplitudes ck have

approximately the same magnitude, and Z,� are suitably chosen, then

|ck||⌧k ´ ⌧̂K | “ O

ˆ

�

?
logM

M3{2

˙

, |ck ´ ĉk| “ O

˜

�

c

logM

M

¸

§ Separation condition is needed even in noiseless setting and is shown to be

necessary for success of atomic and TV norm minimization [Da

Costa,Dai’18],[Fernandez-Granda’18,’20].
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§ Separation condition is needed even in noiseless setting and is shown to be
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Atomic Norm Denoising and Separation Condition
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Revisiting Separation Condition

§ Role of additional Measurements available due to temporal dimension.

§ Role of correlation priors (or sources being statistically independent)?

§ Can correlation priors lead us to fundamentally relax the separation

condition, and re-parameterize it by bringing out the integrated e↵ect of

number of temporal measurements, noise power in addition to spatial

measurements?
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Correlation Priors and Sparse Arrays

Sources are statistically uncorrelated: Epcjc˚
kq “ pk�rj ´ ks

Physical Array

§ Measurement Covariance Matrix:

R

yy

“ STdi↵S
T

§
R

yy

P CMˆM is Toeplitz for a

ULA, not Toeplitz for sparse arrays.

Di↵erence Co-Array

§ Di↵erence-set Covariance Matrix

Tdi↵ P CMdi↵ˆMdi↵ is Toeplitz, and

Tdi↵ © 0.

§
Tdi↵ “ AToeplitzpRyy

q

§ Di↵erence-set based super-resolution methods utilize the subspace-structure of

Tdi↵ (and the large di↵erence set of sparse arrays) to recover t!iuKi“1

§ Can correlation priors and temporal measurements help overcome the need for a

strict separation condition (� ° c
M ) which is dictated only by the number M of

spatial measurements ?
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Analyzing Co-array Super-resolution with Spatiotemporal Mea-
surements

Theorem [Hucumenoglu,P.20]

Suppose �2

KpA˚ d Aq ° �2

pmin
. Given any ✏ ° 0, and 0 † � † 1, the matching

distance error in frequency estimation by co-array ESPRIT satisfies mdp!, ˆ!q § ✏

with probability at least 1 ´ � if

T • max

ˆ

T
0

,
�pMdi↵,�,Kq

✏2 log �

˙

§ The condition �2

KpA˚ d Aq ° �2

pmin
can be simplified to produce a minimum

separation condition that depends on both Mdi↵ and SNR.

§ The number of snapshots needs to be larger than a threshold T
0

that depends

on the minimum separation �, number of sources K, Mdi↵ and SNR.
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Numerical Results: Frequency Error and Separation

(a) (b)
Figure 3: Comparison of DoA Estimation error of Nested Array and ULA as a function of

L for (a) � “ 0.3 and (b) � “ 0.01
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Numerical Results: Frequency Error and Separation

(a) (b)
Figure 4: Comparison of DoA Estimation error of Nested Array and ULA as a function of

M for (a) � “ 0.3 and (b) � “ 0.01
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Numerical Results: MUSIC Spectrum as a function of Separa-
tion
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Figure 5: MUSIC Spectrum of ULA (red) and a Nested array (blue). The SNR varies

row-wise with values t´1,´0.5, 0u dB. Source separation varies column-wise with values
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A note on Covariance Estimation and Frequency Estimation
Error with Sparse Arrays

Let S denote the set of sensor locations. Let T̂di↵,S be an estimate of the co-array

covariance matrix, obtained by spatially averaging entries of ˆ

RL.

§ Nested Geometry with M Sensors: }T̂di↵,nest ´ Tdi↵,nest}2 § ✏}Tdi↵,nest}2 with

probability at least 1 ´ � if L • c
1

Mdi↵,nest logpMdi↵,nest{✏�q
✏2

§ Uniform Geometry with M Sensors: }T̂di↵,ULA ´ Tdi↵,ULA}
2

§ ✏}Tdi↵,ULA}
2

with probability at least 1 ´ � if L • c
1

logMdi↵,ULA logpMdi↵,ULA{✏�q
✏2

Estimating the co-array covariance matrix (by simple sample averaging) entails

higher error for sparse arrays for a given budget of spatial (M) and temporal (L)

measurements.

Is this true for frequency estimation error as well?
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Covariance versus Frequency Estimation: A reversal of Trend

§ Study the Cramér-Rao Bound for covariance versus frequency estimation from

measurements

yl “
K
ÿ

k“1

ap!kqck,l ` nl

Covariance Estimation

yl „ CN
`

0, STdi↵S
T

˘

Parameter: ✓ “ rTdi↵s

Frequency Estimation

yl „ CN
`

0,Ap!qPA

Hp!q ` �2

I

˘

Parameter: ✓ “ rt!k, pkuKk“1

,�s

rJ
✓

sm,n “ vecH
ˆBR

yy

p✓q
B✓m

˙

F p✓qvec
ˆBR

yy

p✓q
B n

˙

,F p✓q “ Rp✓q´T b Rp✓q´1
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Cramér-Rao Bound of Covariance versus Frequency Estimation

§ Number of antennas M “ 10

§ Number of sources K “ 4

§ Number of snapshots L “ 1000
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(a) (b)
Figure 6: CRB for (a) Estimating Tdi↵ (b) AOA Estimation
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Conclusion



Conclusions

§ Noisy super-resolution is a challenging task. Utilization of appropriate priors

can make a significant di↵erence.

§ Sensing geometry and algorithms can work hand-in-hand to overcome

limitations of existing techniques.

§ “Resolvability” of point sources depends on both spatial and temporal

measurements. Judicious use of temporal measurements can significantly

improve achievable resolution.

§ These results can be generalized to incorporate di↵erent types of PSFs.
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