

Intelligent Reflecting Surfaces for Free-space Optical Communications

One World Signal Processing Seminar Series 2021

Marzieh Najafi, Hedieh Ajam, Vahid Jamali, Bernhard Schmauss, and Robert Schober Friedrich-Alexander-University (FAU) of Erlangen-Nürnberg, Germany September 29, 2021

Outline

- 1. Introduction to FSO Systems
- 2. Optical IRSs
- 3. Modeling of IRS-assisted FSO Links
- 4. Impact of Building Sway
- 5. Multi-link FSO Systems
- 6. Conclusions and Future Work

FACULTY OF ENGINEERING

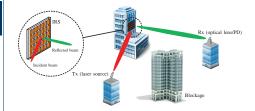
1. Introduction to FSO Systems

FSO Systems

Figure: Possible 6G architecture¹.

Applications

- Last-mile access
- Fiber backup
- Backhaul of wireless networks
- Satellite communications
- Drone communication


Advantages

- Directional narrow laser beams
- Cost-efficient transceivers
- Link coverage (> 1000 km)
- License-free bandwidth
- High data rates (up to 10 Gbps)

¹ M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, "6G wireless communication systems: Applications, requirements, technologies, challenges, and research Directions," in *IEEE Open J. Commun. Soc.*, vol. 1, 2020.

Limitations in FSO Systems

Limiting factors

- Atmospheric turbulence
- Adverse whether conditions
- Beam divergence
- Misalignment errors
- Line-of-sight (LOS) connection

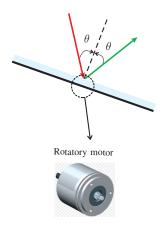
Countermeasures

- MIMO FSO systems
- Hybrid RF/FSO systems
- Serial and parallel FSO relays
- Optical IRSs

FACULTY OF ENGINEERING

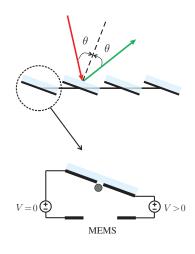
2. Optical IRSs

THE FRIDE
13 2 5 3 CO
ACC AND ACC AN
TIDIS HUNTHER

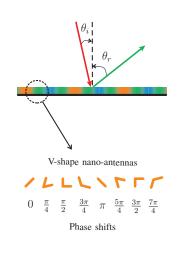

Optical Reflecting Surfaces

Possible realizations:

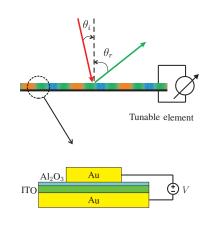
- Mirror-based IRSs:
 - Standard mirrors
 - Micro-mirrors
- Meta-surface-based IRSs:
 - Non-reconfigurable meta-surfaces
 - Reconfigurable meta-surfaces


Standard Mirrors

- Physical operating principle:
 - Specular reflection
 - Mechanical re-orientation
- Control resolution > 1 cm
- Low functional capability
- Low tunability
- Cheap and technologically mature


Micro-Mirrors

- Physical operating principle:
 - Specular reflection
 - Mechanical re-orientation via MEMS
- Control resolution > 1 mm
- Moderate functional capability
- Moderate tunability
- Technologically mature (not for the FSO applications in this talk)


Non-reconfigurable Meta-Surfaces

- Physical operating principle:
 - Nano-antennas (on the order of sub-wavelength)
 - Change of geometrical properties (size, orientation, etc.)
- Control resolution > 500 nm
- High functional capability
- No tunability
- Various proofs-of-concept available but technologically not mature

Reconfigurable Meta-Surfaces

- Physical operating principle (change of material properties):
 - Charge density (e.g., conductive oxide materials or graphene)
 - Structure (phase-transition materials)
 - Molecular alignment (liquid crystal)
- Control resolution $> 1 10 \ \mu m$
- High functional capability
- High tunability
- Various proofs-of-concept available but technologically not mature

Optical vs. RF IRSs

Various differences including:

- IRS electrical size
- Analysis methods
- Type of incident waves
- Channel impairments

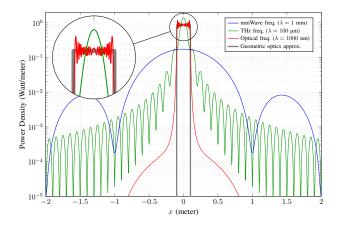
IRS Electrical Size

IRS electrical size L_e:

$$L_e = \frac{L}{\lambda}$$

- L: IRS size in meter
- λ : Wavelength in meter

• Example:

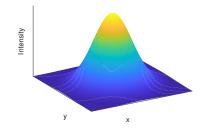

- 10 cm at 3 GHz (sub-6 GHz), 30 GHz (mmWave), 3 THz (THz), and 300 THz (optical) correspond to 1, 10, 1000, 100000 wavelengths, respectively

Important consequences (from a theoretical point-of-view):

- High flexibility in terms of beam shaping
- Analysis techniques based on geometric-optics may become accurate

Analysis Methods: Scattering Theory vs. Geometric Optics

Power density of the reflected wave at *x* and y = 200 m. An IRS located at origin on the *x*-axis with size 20 cm anomalously reflects an oblique plane wave impinged from angle 30° into perpendicular direction [R1].



Incident Wave Models

- Wave models
 - RF: Plane or spherical waves
 - FSO: Concentrated wave models such as the Gaussian beam

Consequence

- E.g.: Saturated performance gain in terms of IRS size

Channel Impairments

- RF systems
 - Free-space path-loss
 - Multi-path fading
 - Random shadowing
 - Atmospheric loss (e.g., in mmWave)
 - X
 - X

FSO systems

- Geometric loss (divergence of the beam)
- X
- X
- Atmospheric loss (dominant factor in low-visibility conditions (e.g., fog))
- Atmospheric turbulence-induced fading
- Pointing errors and misalignment losses

Design Goals

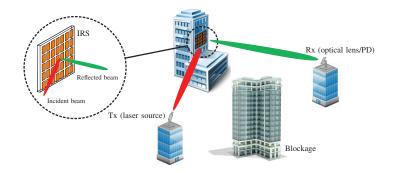
Goals:

- Relaxing LoS requirement
- Supporting multiple links
- Re-adjusting beamwidth
- · Correcting distorted wavefront
- Maximizing Rx's received power
- ..

Considerations:

. . .

- Gaussian beam
- Building sway


FACULTY OF ENGINEERING

3. Modeling of IRS-assisted FSO Links

IRS-assisted FSO Link

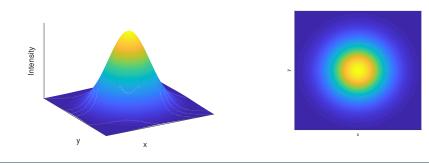
Question: How much of the transmitted optical power in an IRS-assisted FSO link can be collected at the receiver lens?

Transmitter

Gaussian beam (emitted from the origin and propagating along the *z*-axis):

$$E(a,z) = E_0 \left(\frac{w_0}{w(z,w_0)}\right)^{\frac{n-1}{2}} \exp\left(-\frac{a^2}{w^2(z,w_0)}\right)$$
$$\times \exp\left(-j\left(kz + k\frac{a^2}{2R(z,w_0)} - \psi(z,w_0)\right)\right), \quad n \in \{2,3\}$$

- $n \in \{2,3\}$: Dimension of the space (i.e., 2D or 3D)
- *a*: Distance to the center of beam footprint (2D: a = x, 3D: $a = \sqrt{x^2 + y^2}$)
- E₀: Electric field at the origin
- w₀: Beam waist radius
- $w(z, w_0)$: Beamwidth at distance z
- k: Wave number
- $R(z, w_0)$: Curvature radius of the beam's wavefront at distance z
- $\psi(z, w_0)$: Near-field Gouy phase (becomes constant for large z)

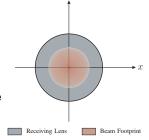

15/43

Transmitter

Gaussian beam (emitted from the origin and propagating along the *z*-axis):

$$E(a,z) = E_0 \left(\frac{w_0}{w(z,w_0)}\right)^{\frac{n-1}{2}} \exp\left(-\frac{a^2}{w^2(z,w_0)}\right)$$
$$\times \exp\left(-j\left(kz + k\frac{a^2}{2R(z,w_0)} - \psi(z,w_0)\right)\right), \quad n \in \{2,3\}$$

Receiver


Direct detection:

$$h_g = \iint_{(x,y)\in\mathscr{A}} l(x,y) \mathrm{d}x \mathrm{d}y$$

- A: Receiving lens area
- I(x, y): Power intensity on the Rx lens plane

$$I(x,y) = \frac{|E^{\text{lens}}(x,y)|^2}{2\eta}$$

- $E^{\text{lens}}(x, y)$: Electric field on the lens
- η: Free-space impedance

Analysis Methods

- Scattering theory
 - IRS as a collection of discrete phase-shifting unit-cells
- Huygens-Fresnel principle
 - IRS as a continuous phase-shifting surface
- Geometric optics
 - Approximating the reflection of waves from the IRS based on ray optics

Scattering theory

Reflected electrical field:

$$\mathsf{E}^{\mathrm{lens}}(\mathbf{r}) = \sum_{m} \sqrt{\mathbf{s}^{\mathrm{irs}}(\mathsf{E}_{m}^{\mathrm{irs}})} \frac{\exp(jk|\mathbf{r}-\mathbf{p}_{m}|)}{|\mathbf{r}-\mathbf{p}_{m}|^{\frac{n-1}{2}}} \exp(j\phi_{m}),$$

- E^{lens}(r): Electric field at the Rx lens at position r
- E_m^{irs} : Incident field on the *m*-th unit cell
- $s^{irs}(\cdot)$: Power of the reflected wave
- **p**_m: Position of the *m*-th unit cell
- ϕ_m : Phase of the reflected wave from the *m*-th unit cell
- *n* ∈ {2,3}: Dimension of the space (i.e., 2D or 3D)
- k: Wave number

18/43

Huygens-Fresnel principle

Reflected electrical field:

$$\mathsf{E}^{\text{lens}}(\mathbf{r}) = \frac{\varsigma}{j\lambda^{\frac{n-1}{2}}} \int_{\mathbf{p} \in \mathscr{A}^{\text{irs}}} \mathsf{E}^{\text{irs}}(\mathbf{p}) \frac{\exp(jk|\mathbf{r}-\mathbf{p}|)}{|\mathbf{r}-\mathbf{p}|^{\frac{n-1}{2}}} \exp(j\Delta\phi(\mathbf{p})) d\mathbf{p},$$

- E^{lens}(r): Electric field at the Rx lens at position r
- E^{irs}(p): Incident field at position p on the IRS
- *ς*: A factor to ensure IRS passivity
- A^{irs}: Set of points on the IRS
- $\Delta \phi_m$: Phase-shift of the *m*-th unit cell
- *n* ∈ {2,3}: Dimension of the space (i.e., 2D or 3D)
- k: Wave number

Geometric Optics

Basic idea: Approximating wave propagation by ray tracing

What is a ray?

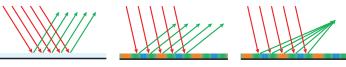
- Ideal: Wave propagation in a certain direction with zero beamwidth
- **Pragmatic:** Wave propagation in a certain direction with a beamwidth smaller than the largest dimension of interest

The beamwidth is inversely proportional to the electric dimension of the EM radiator (e.g., IRS)

 \Longrightarrow beamwidth can be (made) quite small at optical frequencies because of large electric dimension of the EM radiator

Unlike scattering theory, in geometric optics:

- A point in space receives power from a ray only if it lies along the propagation line of the ray
- · Image theory significantly simplifies the analysis

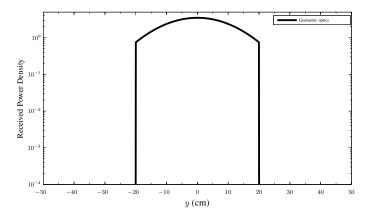


Geometric Optics

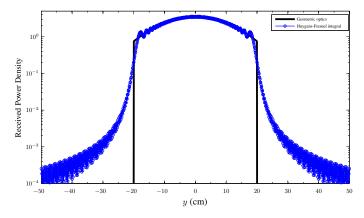
Reflected electrical field:

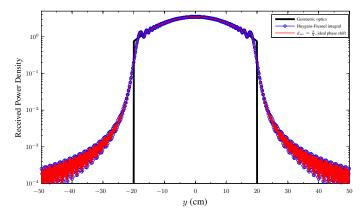
$$\mathsf{E}^{\mathrm{lens}}(\mathbf{r}) = \sum_{\ell \mid \mathbf{r} \in \mathscr{A}_{\ell}} \sqrt{s^{\mathrm{ray}}(\mathsf{E}_{\ell}^{\mathrm{irs}})} \exp(jk|\mathbf{r} - \mathbf{p}_{\ell}|) \exp(j\phi_{\ell}),$$

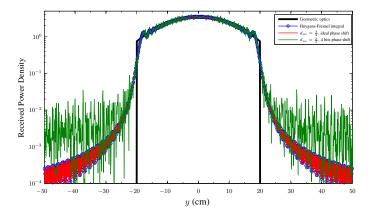
- E^{lens}(r): Electric field at the Rx lens at position r
- E_{ℓ}^{irs} : Incident field on IRS for the ℓ -th ray
- $s^{ray}(\cdot)$: Power of the reflected ray
- \mathbf{p}_{ℓ} : Position of the ℓ -th ray on the IRS
- ϕ_{ℓ} : Phase of the ℓ -th ray leaving the IRS
- \mathscr{A}_{ℓ} : Points that lie along the propagation line of the ℓ -th ray

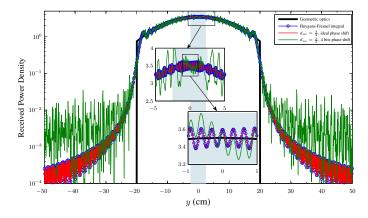

Specular reflection

Anomalous reflection


Focusing



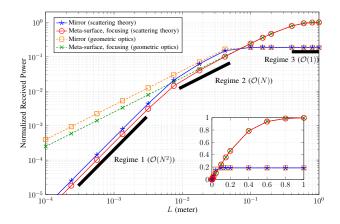




IRS Area

Question: How much do we gain by increasing the IRS area considering

- A concentrated Gaussian beam
- An electrically-large receiving lens


Question: What is the impact of IRS design, e.g.:

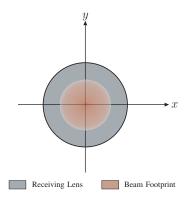
- Specular reflection by a mirror
- Focusing by a meta-surface

Question: For what regime of IRS sizes does geometric-optic-based approximation become accurate?

Power Scaling Law

Fraction of transmit power received by an Rx lens vs. the IRS length *L*. Setup: 2D system; Tx at (-200 m, 300 m); IRS at (0,0), Rx at (0,500 m); Gaussian beam; 1550 nm wavelength; waist radius $w_0 = 1 \text{ mm}$; IRS length *L*; half-wavelength unit-cell spacing; Rx lens length 10 cm [R1].

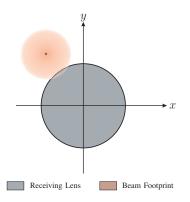
FACULTY OF ENGINEERING


4. Impact of Building Sway

Building Sway

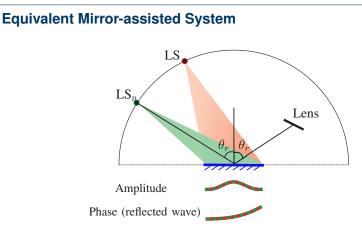

- Building sway is caused by wind, thermal expansions, etc.
- Due to narrow laser beam, it causes beam misalignment or pointing error

Building Sway


- Building sway is caused by wind, thermal expansions, etc.
- Due to narrow laser beam, it causes beam misalignment or pointing error

Building Sway

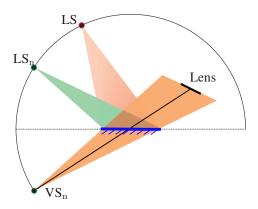
- Building sway is caused by wind, thermal expansions, etc.
- Due to narrow laser beam, it causes beam misalignment or pointing error


Statistical Model

The geometric loss h_g (i.e., the fraction of power reaching the receiving lens) is a random variable due to the random misalignment caused by building sway

Objective: Develop a statistical model of h_g that accounts for the sways of buildings where the transmitter, the IRS, and the receiver are placed on

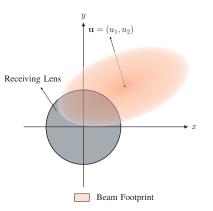
Challenge: The models obtained based on scattering theory and Huygens-Fresnel principle are too complicated to serve as a basis for the derivation of a statistical model



Helpful result [R3]: The IRS phase shift can be chosen such that the phase of the non-specular reflected wave from the IRS in the original system becomes identical to the phase of the (specular) reflected wave from a mirror in the equivalent system!

Equivalent Mirror-assisted System

Analysis methods: This allows us to employ geometric optics and image theory to analyze the impact of building sway via the equivalent mirror-assisted system!



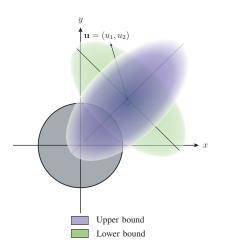
Deterministic Geometric Loss

For a given realization of misalignment vector **u**:

$$h_g = \iint_{(x,y)\in\mathscr{A}} l(x,y) \mathrm{d}x \mathrm{d}y$$

The solution to the above integral is not available in closed form!

Deterministic Geometric Loss


Lower and upper bounds [R6]

$$h_g^{\text{low}} \approx A_0 \exp\left(-\frac{\|\mathbf{u}\|^2}{t_{\min}}\right)$$

 $h_g^{\text{upp}} \approx A_0 \exp\left(-\frac{\|\mathbf{u}\|^2}{t_{\max}}\right)$

Proposed approximation:

$$h_g \approx A_0 \exp\left(-\frac{\|\mathbf{u}\|^2}{t}\right)$$

for some $t \in [t_{\min}, t_{\max}]$ **Note:** A_0 , t_{\min} , and t_{\max} are derived in [R3] as functions of beam parameters!

Statistical Misalignment Model

Assumption: 3D Gaussian building sway with independent components

- Tx: $\varepsilon_s^{x,y,z} \sim \mathcal{N}(\mathbf{0},\sigma_s^2\mathbf{I})$
- IRS: $\varepsilon_r^{x,y,z} \sim \mathcal{N}(\mathbf{0}, \sigma_r^2 \mathbf{I})$
- Rx: $\varepsilon_l^{x,y,z} \sim \mathcal{N}(\mathbf{0},\sigma_l^2\mathbf{I})$

Statistical Misalignment Model

Assumption: 3D Gaussian building sway with independent components

- Tx: $\varepsilon_s^{x,y,z} \sim \mathcal{N}(\mathbf{0},\sigma_s^2\mathbf{I})$
- IRS: $\varepsilon_r^{x,y,z} \sim \mathcal{N}(\mathbf{0},\sigma_r^2\mathbf{I})$
- Rx: $\varepsilon_l^{x,y,z} \sim \mathcal{N}(\mathbf{0}, \sigma_l^2 \mathbf{I})$

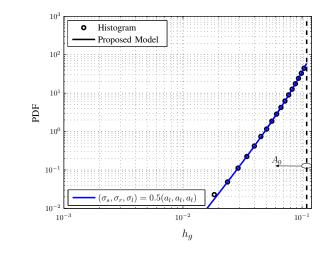
Decoupling: For simplifications, we re-define $\mathcal{E}_{s}^{x,y,z}$, $\mathcal{E}_{r}^{x,y,z}$, and $\mathcal{E}_{l}^{x,y,z}$ in different coordinate systems

- Tx: $\mathcal{E}_{s}^{x,y,z}$ is decoupled into
 - \mathcal{E}_{s}^{xy} : components orthogonal to the direction of beam propagation
 - \mathcal{E}_{s}^{z} : component in the direction of beam propagation
- IRS: $\mathcal{E}_r^{x,y,z}$ is decoupled into
 - \mathcal{E}_r^{xy} : components in the IRS plane
 - \mathcal{E}_r^z : component orthogonal to the IRS plane
- Rx: $\varepsilon_r^{x,y,z}$ is decoupled into
 - \mathcal{E}_l^{xy} : components orthogonal to the direction of beam propagation
 - \mathcal{E}_{l}^{z} : component in the direction of beam propagation

For sufficiently large IRSs and large Rx-IRS and IRS-Rx distances, only ε_s^{xy} , ε_r^z , and ε_l^{xy} significantly contribute to the overall misalignment!

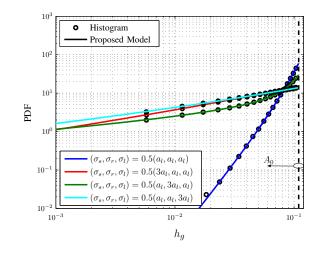
Statistical Geometric Loss Model

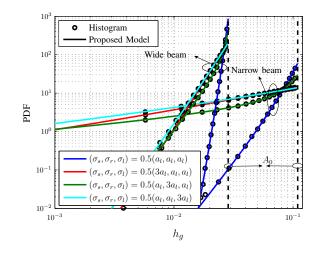
Assuming building sway variables \mathcal{E}_s^{xy} , \mathcal{E}_r^z , and \mathcal{E}_l^{xy} follow Gaussian distribution, $\|\mathbf{u}\|$ follows a Hoyt distribution and h_g follows the following distribution

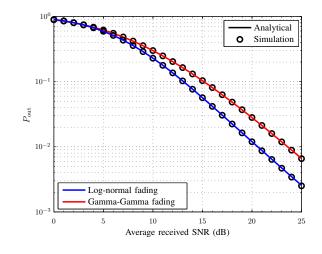

$$f_{h_g}(h_g) = \frac{\overline{\sigma}}{A_0} \left(\frac{h_g}{A_0}\right)^{\frac{(1+q^2)\overline{\sigma}}{2q}-1} l_0 \left(-\frac{(1-q^2)\overline{\sigma}}{2q} \ln\left(\frac{h_g}{A_0}\right)\right), \quad 0 \le h_g \le A_0.$$

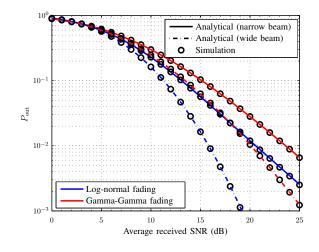
where
$${\pmb \varpi}=rac{(1+q^2)t}{4q\Omega}$$
 is a constant with

$$\Omega = \chi_1 + \chi_2$$
 and $q = \left[\frac{\min\{\chi_1, \chi_2\}}{\max\{\chi_1, \chi_2\}} \right]^{1/2}$,

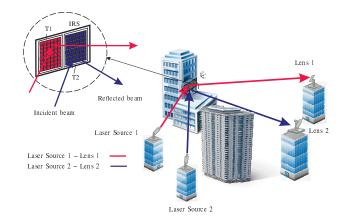

where χ_1 and χ_2 are the eigenvalues of Σ [R3].


 $(\sigma_s, \sigma_r, \sigma_l)$: building sway, $a_l = 2.5$ cm: lens radius [R3]


 $(\sigma_s, \sigma_r, \sigma_l)$: building sway, $a_l = 2.5$ cm: lens radius [R3]

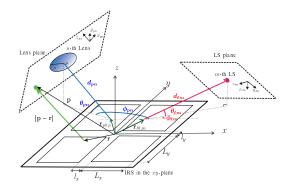


 $(\sigma_s, \sigma_r, \sigma_l)$: building sway, $a_l =$ 2.5 cm: lens radius [R3]


FACULTY OF ENGINEERING

5. Multi-link FSO Systems

Multi-Link FSO Systems



- Multiple LS-lens connections
- Single IRS for Gaussian FSO beams

Point-to-Point IRS-assisted FSO link

Repartition the IRS in to Q tiles which connects m-th LS to n-th lens

- Tile parameters: position (x_q, y_q) , size (L_x, L_y) , phase-shift profile $\Delta \phi_q(\mathbf{r})$
- LS and lens centers on the IRS: r_{ℓ0,m}, r_{p0,n}

Point-to-Point Geometric Loss

• **Point-to-point geometric loss** (*m*-th LS and *n*-th lens)

$$h_g^{m,n} = \iint_{\mathscr{A}_{pn}} I^{m,n}(\mathbf{p}_n) \, \mathrm{d}\mathscr{A}_{pn}, \qquad I^{m,n}(\mathbf{p}_n) = \frac{\left|\sum_{q=1}^Q E_q^{m,n}(\mathbf{p}_n)\right|^2}{2\eta P_{\ell m}}$$

Point-to-Point Geometric Loss

• **Point-to-point geometric loss** (*m*-th LS and *n*-th lens)

$$h_g^{m,n} = \iint_{\mathscr{A}_{pn}} I^{m,n}(\mathbf{p}_n) \, \mathrm{d}\mathscr{A}_{pn}, \qquad I^{m,n}(\mathbf{p}_n) = \frac{\left|\sum_{q=1}^Q E_q^{m,n}(\mathbf{p}_n)\right|^2}{2\eta P_{\ell m}}$$

Huygens-Fresnel principle

$$E_q^{\mathrm{m,n}}(\mathbf{p}_n) = \frac{\varsigma_q}{j\lambda} \int_{\mathbf{r} \in \mathscr{A}^{\mathrm{tile}}} E^{\mathrm{irs}}(\mathbf{r}) \frac{\exp(jk|\mathbf{p}_n - \mathbf{r}|)}{|\mathbf{p}_n - \mathbf{r}|} \exp(j\Delta\phi_q(\mathbf{r})) \mathrm{d}\mathbf{r},$$

Point-to-Point Geometric Loss

• **Point-to-point geometric loss** (*m*-th LS and *n*-th lens)

$$h_g^{m,n} = \iint_{\mathscr{A}_{pn}} I^{m,n}(\mathbf{p}_n) \, \mathrm{d}\mathscr{A}_{pn}, \qquad I^{m,n}(\mathbf{p}_n) = \frac{\left|\sum_{q=1}^Q E_q^{m,n}(\mathbf{p}_n)\right|^2}{2\eta P_{\ell m}}$$

Huygens-Fresnel principle

$$E_q^{\mathrm{m,n}}(\mathbf{p}_n) = \frac{\varsigma_q}{j\lambda} \int_{\mathbf{r} \in \mathscr{A}^{\mathrm{tile}}} E^{\mathrm{irs}}(\mathbf{r}) \frac{\exp(jk|\mathbf{p}_n - \mathbf{r}|)}{|\mathbf{p}_n - \mathbf{r}|} \exp(j\Delta\phi_q(\mathbf{r})) \mathrm{d}\mathbf{r},$$

• To find closed form solution, approximate $|\mathbf{p}_n - \mathbf{r}|$ as

$$|\mathbf{p}_{n} - \mathbf{r}| \approx \underbrace{|\mathbf{p}_{n}| - \frac{xp_{x} + yp_{y}}{|\mathbf{p}_{n}|}}_{=t_{1}} + \underbrace{\frac{x^{2} + y^{2}}{2|\mathbf{p}_{n}|} - \frac{x^{2}p_{x}^{2} + y^{2}p_{y}^{2}}{2|\mathbf{p}_{n}|^{3}}}_{=t_{2}}$$

• Far-field regime (term t₁) [R4]

$$krac{x^2+y^2}{2|\mathbf{p}_n|}\ll 2\pi
ightarrow d_f=rac{x_e^2+y_e^2}{2\lambda}$$

where
$$x_e = \min\left(\frac{L_x}{2}, w_x\right)$$
 and $y_e = \min\left(\frac{L_y}{2}, w_y\right)$.

• Far-field regime (term t₁) [R4]

$$krac{x^2+y^2}{2|\mathbf{p}_n|}\ll 2\pi
ightarrow d_f=rac{x_e^2+y_e^2}{2\lambda}$$

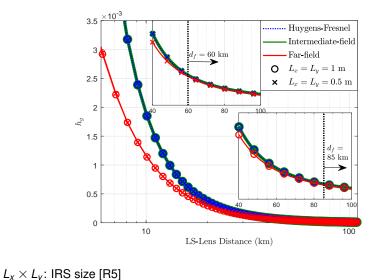
where $x_e = \min\left(\frac{L_x}{2}, w_x\right)$ and $y_e = \min\left(\frac{L_y}{2}, w_y\right)$.

• Intermediate-field regime (terms t₁ and t₂) [R4]

$$k \frac{(x^2 + y^2)(x p_x + y p_y)}{2|\mathbf{p}_n|^3} \ll 2\pi \to d_n = \left[\frac{(x_e^2 + y_e^2)(x_e + y_e)}{4\lambda}\right]^{1/2}$$

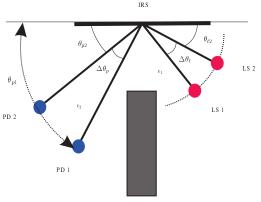
• Far-field regime (term t1) [R4]

$$krac{x^2+y^2}{2|\mathbf{p}_n|}\ll 2\pi
ightarrow d_{
m f}=rac{x_e^2+y_e^2}{2\lambda}$$


where $x_e = \min\left(\frac{L_x}{2}, w_x\right)$ and $y_e = \min\left(\frac{L_y}{2}, w_y\right)$.

Intermediate-field regime (terms t₁ and t₂) [R4]

$$k \frac{(x^2 + y^2)(x p_x + y p_y)}{2|\mathbf{p}_n|^3} \ll 2\pi \to d_n = \left[\frac{(x_e^2 + y_e^2)(x_e + y_e)}{4\lambda}\right]^{1/2}$$

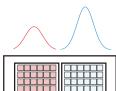

• Example: IRS with $L_x = L_y = 50$ cm and LS at $(d_\ell, \theta_\ell, \phi_\ell) = (1000 \text{ m}, \frac{\pi}{8}, 0)$ with $\lambda = 1550$ nm and $w_0 = 2.5$ mm $d_f = 32.7 \times 10^3 \text{ m}$ and $d_n = 85.6 \text{ m}$

Multi-Link IRS-Assisted FSO Systems

Obstacle

Share an IRS among multiple FSO links \Leftrightarrow Impact of misalignment errors,

delay, received power, and inter-link interference

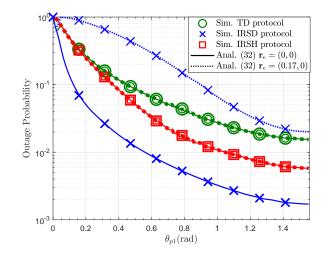


IRS Sharing Protocols

Protocols [R5]

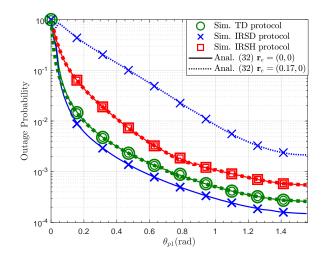
a) Time Division (TD)

c) IRS Homogenization (IRSH)


Parameters

- Number of tiles (Q)
- Tile phase shift profile (\mathbf{r}_{a}^{t})
- LS footprint center ($\mathbf{r}_{\ell 0}$)
- Lens center on the IRS (r_{p0})

Table: IRS sharing protocols parameters.


Sharing Protocols	Q	\mathbf{r}_q^t	r _{ℓ0} , r _{p0}
TD protocol	1	(0,0)	(0,0)
IRSD protocol	N	r _q	r _q
IRSH protocol	$\gg N$	(0,0)	(0,0)

Target rate: R = 1.7 Gbit/s [R5]

Target rate: R = 0.5 Gbit/s [R5]

FACULTY OF ENGINEERING

6. Conclusions and Future Work

Summary and Conclusions

- Optical IRSs
 - · Review and comparison of different optical IRS technologies
 - Comparison of IRS-assisted RF and FSO systems
- Deterministic channel model
 - Geometric loss
 - · Comparison of different analysis methods
- Statistical channel model
 - Building sway
 - · Equivalent mirror-assisted analysis
- Multi-link FSO systems

Summary and Conclusions

- Optical IRSs
 - · Review and comparison of different optical IRS technologies
 - Comparison of IRS-assisted RF and FSO systems
- Deterministic channel model
 - Geometric loss
 - · Comparison of different analysis methods
- Statistical channel model
 - Building sway
 - · Equivalent mirror-assisted analysis
- Multi-link FSO systems

Take-away messages:

- Optical IRSs can be used to relax the LoS requirement, which is a persisting limitation of FSO systems
- Optical IRS-assisted systems have unique features different from RF IRS-assisted systems; hence new design and analysis methods are needed
- Compared to RF IRSs, optical IRSs are relatively less studied from a communication-theoretical perspective; many open problems exist

Future Work

Channel modeling

- · Geometric loss for general phase-shift models
- Pointing error for a given IRS design (e.g., focusing, collimation, etc.)
- Channel delay dispersion
- Wavefront distortion

System design and performance analysis

- Initial link establishment
- Channel estimation
- Modulation schemes
- IRS optimization

Implementation

- Relevant hardware constraints/impairments
- Verification of the theory via experiments

FACULTY OF ENGINEERING

References

THE FRIDE
STATIS
A A A A A A A A A A A A A A A A A A A
THINKE SIGN

References for Further Reading I

Overview paper on IRS-assisted FSO systems:

[R1] V. Jamali, H. Ajam, M. Najafi, B. Schmauss, R. Schober, and H. V. Poor, "Intelligent Reflecting Surface-assisted Free-space Optical Communications," *Accepted for Publication in IEEE Communications Magazine*, 2021.

Mirror-assisted FSO systems (deterministic and statistical models):

[R2] M. Najafi and R. Schober, "Intelligent Reflecting Surfaces for Free Space Optical Communications," *IEEE Global Communications Conference*, pp. 1-7, Dec. 2019.

Meta-surface-assisted FSO systems (deterministic and statistical models using geometric optic-based analysis):

[R3] M. Najafi, B. Schmauss, and R. Schober, "Intelligent Reconfigurable Reflecting Surfaces for Free Space Optical Communications," *IEEE Transactions on Communications*, vol. 69, no. 9, pp. 6134-6151, Sept. 2021.

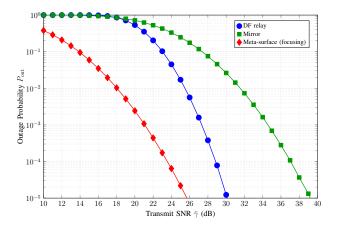
References for Further Reading II

Meta-surface-assisted FSO systems (deterministic model using Huygens-Fresnel principle-based analysis):

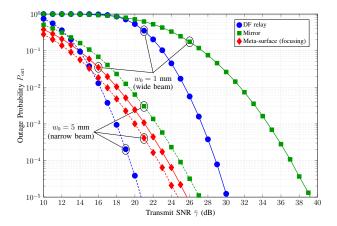
[R4] H. Ajam, M. Najafi, V. Jamali, and R. Schober, "Channel Modeling for IRS-assisted FSO Systems," *IEEE Wireless Communications and Networking Conference*, pp. 1-7, March 2021.

Meta-surface-assisted multi-link FSO systems (deterministic model using Huygens-Fresnel principle-based analysis):

[R5] H. Ajam, M. Najafi, V. Jamali, and R. Schober, "Modeling and Design of IRS-Assisted Multi-Link FSO Systems," *Submitted to IEEE Transactions on Communications*.


Derivation of the lower and upper bounds on the geometric loss for a beam footprint on the receiving lens plane with a rotated elliptical power contours: [R6] M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis, and R. Schober. "Statistical Modeling of the FSO Fronthaul Channel for UAV-based Communications," *IEEE Transactions on Communications*, vol. 68, no. 6, pp. 3720-3736, Jun. 2020.

Thank you for your attention! Questions?



Optical IRSs vs. Optical Relays

Optical IRSs vs. Optical Relays

