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Research Overview
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Learning from Data

m Data is everywhere and holds a significant potential

m Credit card fraud, Medical diagnosis, Political campaigns
m Image classification, Deep Learning
[ T

Key challenges: Centralized solutions are no longer practical

m Large, private, and proprietary datasets
m Computation and communication have practical constraints

Can decentralized algorithms outperform their centralized
counterparts? How to quantify such a comparison?

m Let us consider a classical example ...
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Self-Driving Cars: Recognizing Traffic Signs

m ldentify STOP vs. YIELD sign

@ | Number of sides

Number of edges
| White to red ratio

Figure 1: Binary classification: (Left) Training phase (Right) Testing phase

Input data: Image 0 and its label y

Model: g(x; @) takes the image point and predicts the label

Loss: ¢(g(x; 8),y), prediction error as a function of the parameter x

Problem: Find the parameter x that minimizes the loss
min f(x); f(x) :=£(g(x;0),y)

m Our focus: First-order methods for different function classes
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Some Preliminaries
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Basic Definitions

m f:RP — R is L-smooth, non-convex, and f(x) > f* > —oo, Vx
m Bounded above by a quadratic
m F(y) < F() + V) (y —x) + 5lly —x[I3
m f satisfies Polyak-tojasiewics (PL) condition [Polyak '87, Karimi et al. '16]
m Every stationary point is a global minimum (not necessarily convex)
m Strong convexity is a special case
m 2u(f(x) — ) < [[VF(x)|
f is p-strongly convex
m Convex and bounded below by a quadratic
 f(x) + VF(x) " (y —x) + 5lly = x[3 < f(y)

m K= ﬁ is called the condition number, L > 1 >0

Vi
Vi
'

Figure 2: Non-convex: sin(ax)(x -+ bx?). PL condition: x* 4 3sin?(x). Quadratic
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First-order methods (Gradient Descent)

mxin f(x)

m Search for a point x* where the gradient is zero, i.e., Vf(x*) =0

m Intuition: Take a step in the direction opposite to the gradient
m At +, VFf(x") =0

vf(x)
.

Figure 3: Minimizing strongly convex functions: R — R and R®> — R

m A well-known first-order algorithm: xx41 = xx — o - VF(x)
m With stochastic gradients: Xx11 = xx — - g(Xk)
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Performance Metrics and Other Criteria

m Stochastic Gradient Descent (SGD): xx41 = Xk — a - g(Xk)

m g(x«) is an unbiased estimate of Vf(x,) with bounded variance

Optimality gap (PL and sc): E[ f(xx) — *]

Mean-squared residual (sc): E [ ||xx — x*[|]

m Mean-squared stationary gap (non-convex): % Zle E[IIVF(x0)|?]
= Almost sure (§ > 0): P [limy_00 k' 70(F(x) — £*) =0] =1

m Decentralized problems: node i's iterate is x};
m Replace x, above by x};‘or Xy = % > xf(_
m Agreement error: [ ||x} — x,||?] or E [ ||x} — X||?]
m Network-independent behavior
m Speedup compared to centralized counterparts
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Decentralized First-Order Methods
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Decentralized Optimization

m Problem setup:
n
PL:minF(x), F(x):=> fi(x), fi:R° >R
i=1
m Search for a stationary point x* such that VF(x*) =0

First-order methods under the following setup

m Measurement model:

m Online: Each node i makes a noisy measurement — an imperfect
local gradient Vfi(x) at any x
(Reduces to full gradient model when the variance is zero)

m Batch: Each node j has access to a local dataset with m; data points
and their corresponding labels, i.e., Vfi(x) = >, Vi ;(x)

m Each local cost f; is L-smooth and F*:= infy F(x) > —o0

m The nodes communicate over a strongly connected graph
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Local Gradient Descent

i i (i ;
m Implement xj ; = xj — - Vfi(x}) at each node i
m Each node converges to a local solution

Figure 4: Linear regression: Locally optimal solutions

m Requirements for a decentralized algorithm

m Agreement: Each node agrees to the same solution
m Optimality: The agreed upon solution is the optimal
m Local GD does not meet either
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Decentralized Gradient Descent

m Mix and Descend: At each node i
n
XL+1 = Z Wir - X — oy - V(X))
r=1
m The weight matrix W = {wj;} is primitive and doubly stochastic

m ) €[0,1) is the second largest singular value of W
m (1 —X) €(0,1] is the spectral gap of the network

W14

Figure 5: DGD over undirected graphs
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Decentralized Gradient Descent

m DGD: At each node i
Xiy1 = D Wir - X, — i - VHi(x))

r=1
m For strongly convex problems
m Decaying step-size: convergence is sublinear O(%) [Nedi¢ et al. "09]
m Constant step-size: linear but inexact [Yuan et al. '13]

00 10000 o 200 400 &0 80 10000
Tterations, k —

Figure 6: DGD with a decaying step-size (left) and constant step-size (right)

m Let us consider DGD with stochastic gradients
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Decentralized Stochastic Gradient Descent

m Online setup—each node i makes an imperfect measurement leading
to a stochastic gradient g;:

L] g,-(x}:() is an unbiased estimate of the true gradient Vf(x}), and
m g;(x}) has a bounded variance 2

m DSGD at node i: [Ram et al. '10], [Chen et al. '12]

n
Xirr = Y wir - Xjo — k- gi(x)
r=1

m What do we know about the performance of DSGD?
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Performance of DSGD (constant step-size)

m Smooth strongly convex problems:
m Mean-squared residual decays linearly to an error ball [Yuan et al. '19]

1< ; « « a?K?
lim sup — E[||xi — x*||3 :O(—Vz—l— I M ),
meup 3 B~ 8= O+ {0

2,2

where 7 := 130 [|VF (x) — 3, VA(x)|

m Smooth non-convex problems:
m Mean-squared stationary gap follows [Lian et al. '17]

K-1 _
_ F(Xo) — F* aL , 22 a?l?
E[IVF&)IP] <O —2— + — T
(IVF&IIT] < ( ok T Aot )

x|+

k=0

where ¢ :=sup, 1 7 [|VAi(x) — 3, VAX)|

m DSGD is impacted by three components:
m Dissimilarity (1 or ¢) between the local fi's and the global F =", f;
m Variance 12 of the stochastic gradient
m Spectral gap of the network (1 — X)
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This talk

Eliminate the dependence on local and global dissimilarity

Eliminate the variance of the stochastic gradient

Develop network-independent convergence rates

Precise statements on mean-squared and almost sure convergence

Speedup when compared with centralized counterparts

Optimal rates
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Decentralized Stochastic Gradient Descent
with
Gradient Tracking

Addressing the local and global dissimilarity
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GT-DSGD: Intuition

m Problem: min, }". fi(x)
m DSGD with full gradient and constant step-size:
Koo = 3w — - V()
r=1
m Impacted by || V£i(x*) — VF(x*)|| (sc) or ||[Vfi(x) — VF(x)|| (ncvx)

B x* is not a fixed point: x* # 37 wir - x* — a - V£i(x¥)
m At x*: ), Vfi(x*) = 0, which does not imply Vf(x*) =0

m Fix: Replace Vf; with an estimate of the global gradient VF

m Full gradient: [Xu et al. '15], [Lorenzo et al. '15], [Qu et al. '16],
[Xi-Xin-Khan '16], [Shi et al. '16]

B Stochastic gradient: [Pu et al. '18], [Xin-Sahu-Khan-Kar '19]
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GT-DSGD: Algorithm

m Problem: min, > fi(x)
m DSGD with a constant step-size: xj,; = 3", wir - X — - gi(x})

Algorithm 1: GT-DSGD at each node i

Data: xj; {o}; {wir}7_1; yh = 0p; g (x4, €7 1) :=0,.
for k=0,1,..., do

YL+1 = 2?21 Wir (YZ + gr(xk, &x) — & (X} 1, 52—1))
i n r r
Xjer1 = 2oy—1 Wir (Xk — @k ¥jii1)

end

m The variable y} tracks the global gradient VF(x}) at each node i

® Dynamic average consensus: [Zhu et al. '08]
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GT-DSGD: Experiment

m Decentralized linear regression (strongly convex)
m Full gradient, n = 500 nodes, random connected graph

MSE

Iterations, k

Figure 7: Performance comparison

m When perfect gradients are used:
m Without GT, convergence is linear but inexact due to the
local-vs-global dissimilarity bias
m With GT, convergence is linear and exact
m What happens when the gradients are stochastic?
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GT-DSGD (constant step-size):
Addressing the local and global dissimilarity

Smooth non-convex problems satisfying PL condition
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GT-DSGD (constant step-size):
Smooth non-convex problems satisfying PL condition

Theorem (abridged, Xin-Khan-Kar '201)

Let F satisfy the PL condition. For a certain constant step-size c, the
mean optimality gap decays linearly at O((1 — pa)¥) to an error ball:

lim sup % i}E [F(xi) - /:*] < 0 (%f) +0 (Jmﬁw)
i=1 S

k— 00

Centralized minibatch SGD Decentralized network effect

The bias due to the local and global cost dissimilarity is eliminated

m For a < O(U522), the R.H.S matches centralized minibatch SGD

B n times better than the centralized SGD

(with data parallelization and communication over n machines)

The results are immediately applicable to strongly convex problems

Perfect gradient (v = 0): e-complexity is O(x*/*log 1)
B Improves the best known rate under PL [Tang et al. '19]
W Under strong convexity [Li et al. '19]: O(x log 1) ]

fAn improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195 23/50


https://arxiv.org/abs/2008.04195

GT-DSGD (constant step-size):
Addressing the local and global dissimilarity

General smooth non-convex problems
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GT-DSGD (constant step-size):
General (smooth) non-convex problems

Theorem (abridged, Xin-Khan-Kar '20T)

For any step-size o € (0, min {1, 1g—/<\2, (i:/g‘;);} i} we have VK > 0,

1 e ] 4(F(Xo) — F*)  2al 3200212 )2 64021 2* || V|12
— E|||[VEx)|?] <« m—=22— 2 4 2222 z
HKZZ [|| (xk)H ] = aK + n Vo (1_)\2)3 S (1—)\2)3K n

i=1 k=0
Centralized minibatch SGD

Mean-squared stationary gap Decentralized network effect

m Asymptotic characterization, K — oo

m Forany a < (9((;;‘23), the R.H.S matches the centralized

minibatch SGD (up to constant factors)
n times improvement over centralized SGD

m T An improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195
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GT-DSGD (constant step-size):
General (smooth) non-convex problems

Theorem (abridged, Xin-Khan-Kar '207)

Let |VFo|> = O(n), a = (&)",and K > 4nl? max{l = )\2)27 %}, then

Z Z]E [HVF( Y ] 4(F(X0) — F*) N 2021 N 320nA%02 L2 N 64nL>\*
z 5 X)) = F )
— , VnK VoK | @ = 22PK T (11— 22)3K2

Centralized minibatch SGD Decentralized network effect

Thus, with K > Kne = 0 (5255,

,; Z]E[\VF(xk)H] (\/%)

m Non-asymptotic characterization

m Linear O(n) speedup over centralized SGD
m Network-independent convergence rate (in a finite time)

m T An improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195
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GT-DGD (constant step-size): Demo

m Full gradient, decentralized linear regression, n = 100 nodes
m Each node possesses one data point

m Collaborate to learn the slope and intercept
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GT-DSGD (constant step-size): Experiment

m Full vs. stochastic gradient
m Decentralized linear regression, n = 100 nodes

by
105N
AN

.
(TS A e R

Residual

——DGD (constant)
107} |——=DGD (decaying)
—— GT-DGD
----CGD

Figure 8: GT-DGD vs. GT-DSGD

m Gradient tracking eliminates the local and global dissimilarity bias
m The variance of the stochastic gradient still remains

m Addressing the variance
m Online problems: decaying step-sizes
m Batch problems: variance reduction
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Online GT-DSGD (decaying step-sizes)

Addressing the local and global dissimilarity

Addressing the variance of the stochastic gradient
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GT-DSGD (decaying step-sizes):
Smooth non-convex problems satisfying PL condition

Theorem (abridged, Xin-Khan-Kar '201)
Consider the step-size sequence oy = m, with v = max {%7 ==}
Suppose that ||Vf(xo)||> = O(n), then we have

igE[F(xi)—F*] SO(M+ K y2>7

npk

L )\2nn AH5/4 A3/2H11/8 K71/2
when k> Kp = O (max{(l_)\)3, W B ).

m Non-asymptotic, asymptotic, and network-independent behaviors

m The rate matches the centralized minibatch SGD when k > Kp;
m Only requires the global cost }_, f; to satisfy the PL condition

m In contrast, existing work requires each f; to be strongly convex
6

and k > O(U”ii’A)Q) iterations for network-independence

m " An improved convergence analysis for decentralized online stochastic

non-convex optimization: https://arxiv.org/abs/2008.04195 30,5
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GT-DSGD (decaying step-sizes):
Smooth non-convex problems satisfying PL condition

Theorem (abridged, Xin-Khan-Kar '20T)

Consider the step-size sequence: oy = ( 7y For an arbitrarily small € >0,
we have Vi, j,

P( Jim K=<[|x, — x}[* = 0) =1,
0

P(kILmOO K2 (F(x}) — F*) = ) —1.
m Asymptotic almost sure characterization
m The proof uses the Robbins-Siegmund almost supermartingale
convergence theorem
m This is the first pathwise rate for decentralized stochastic
optimization (to the best of our knowledge)
m Leads to almost sure statements for strongly convex problems

m The analysis techniques are of value in other related problems

m T An improved convergence analysis for decentralized online stochastic

non-convex optimization: https://arxiv.org/abs/2008.04195 150


https://arxiv.org/abs/2008.04195

The GT-VR framework: Batch problems

Addressing the local and global dissimilarity

Addressing the variance of the stochastic gradient
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GT-VR framework: Batch problems

m Each node i possesses a local batch of m; data samples

m The local cost f; is the sum over all data samples 7", f;;
m Distribution is arbitrary in terms of both quantity and quality

e
©|%|=

Node n

Figure 9: Data distributed within each node and over multiple nodes

m Gradient computation Zj'":’l Vf; j is O(m;) per node per iteration
[ Eull gradient GD can be prohibitively expensive:

Xiy1 = Do, Wir - X — - 21"1:'1 V(i)
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GT-VR framework: Batch problems

m An efficient method is to sample one data point f; ; per iteration
B X = >, Wi Xg — a- Vi (x})
m Performance is impacted due to sampling and local vs. global bias

= The GT-VR framework: From Vf; . to VF =3 7 > Vf
m Local variance reduction at each node
m Global gradient tracking over the node network

Vfi= &Y Vi VFE=21%" Vfi

Figure 10: GT-VR: Sample, estimate using VR, and track using GT

m Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH
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GT-SAGA

m At node i [Xin-Khan-Kar '197]
m Maintain a gradient table [ﬁ;yl, . .,ﬁfhm,.]
m At each k=0,1,...

Update Xj 3 = >, wir - X — @ -y
Sample a random index s; from 1,..., m;

B SAGA [Defazio et al. '14]: Vi, ; = Vf,-’sli((Xf(Jrl) - ﬂ"vsi + mi Z_,' ﬂi,j

Update the gradient table: ﬂi,s{( — Vfi,sL (Xis1)

m Use the estimated VLH to update the GT variable yLH

m " Variance-reduced decentralized stochastic optimization with accelerated
convergence: https://arxiv.org/abs/1912.04230
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GT-SVRG

m At node i [Xin-Khan-Kar '197]

m Outer loop iterate x}, and inner loop iterate x

m At each k, compute the local full gradient: Vfi(xi) = - 32, Vfij(xi)
m Ateacht=11,..., T]

m Update xi; with the GT variable
B Sample a random index 7 from 1,..., m;

B SVRG [Johnson et al. "13]: vi,; = Vi - (xl ;) — V£ (x}) + VF(x})
m Use the estimated V£+1 in GT

i 1 i
m Set X)1 =XpOr £ . X,

m " Variance-reduced decentralized stochastic optimization with accelerated
convergence: https://arxiv.org/abs/1912.04230
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GT-SARAH

m At node i [Xin-Khan-Kar. '207]

m Outer loop iterate x|, and inner loop iterate x|

m At each k, compute the local full gradient: Vfi(xj) = -1 >, Vi (xi)
m Ateach t=11,..., T]

m Update 5£+1 with the GT variable
m Sample a random index 7 from 1,..., m;

m SARAH [Nguyen et al. '17], [Fang et al. '18]:
Vepr = Vi (Xe4q) = Vi (x) +ve

m Use the estimated vi ; in GT

i 1 i
m Set Xx11 = X7 or % DX

m T A near-optimal stochastic gradient method for decentralized non-convex
finite-sum optimization: https://arxiv.org/abs/2008.07428
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GT-SAGA: Smooth and strongly convex

Theorem (Mean-squared and almost sure convergence
Xin-Khan-Kar '197)

Let m := min m; and M := max; m;. Under a certain constant
step-size ot, GT-SAGA achieves an e-optima/ solution of x* in

(@] (max {M Ty /\)2 } log = )
component gradient computations (iterations) at each node.

In addition, we have, Vi € {1,--- , n},
. —k : % 2 . -
P(k'gr;o'yg [xic =] —0> =1

where vz = 1 — min {(’) (%),0 (’"(,\1/,;;\)2)}.

m " Variance-reduced decentralized stochastic optimization with accelerated
convergence: https://arxiv.org/abs/1912.04230

38/50



GT-SVRG: Smooth and strongly convex

Theorem (Mean-squared and almost sure convergence
Xin-Khan-Kar '197)

Let m := min m; and M := max; m;. Under a certain constant
step-size o, GT-SVRG achieves an e-optimal solution of x* in

2
O ((M+ %) tog 1)
component gradient computations at each node.

:0):1_

m " Variance-reduced decentralized stochastic optimization with accelerated
convergence: https://arxiv.org/abs/1912.04230

In addition, we have, Vi € {1,--- , n},

1P>< lim 0.8~ [[xf —x*||”
k—00
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GT-SAGA vs. GT-SVRG: Smooth and strongly convex

2
O (max {M, %ﬁ} log %) vs. O ((M + ('L";\gz;) log %)
m Big-data regime M = m ~ O(x?(1 — \)72)
m O(Mlog?) vs. centralized O(nM log %)

m Linear speedup vs. the centralized

m Uneven data distribution: M > m=1
2 Iﬂ?z 0g K
8 0 (MgSplog) vs. O ((M+ 2555 ) log 2
m GT-SVRG performs better at the expense of added synchronization
m GT-SAGA on the other hand needs O(m;)
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GT-SAGA vs. SVRG: Experiments

m Non-asymptotic network-independent convergence

m Linear speedup vs. centralized counterparts

GT-SAGA in the big data regime GT-SVRG in the big data regime Linear speedup of GT-SAGAISVRG in the big data regime
o = directed ring 100 = directed ring ] 4 GT-saca
o > directed exponential . > directed exponential ol = cT.sveG
N — complete N — complete
g 10 § o o
z Rt B a0
5 10 H 2
& Eiom
w0
u w0
10 s
10730
0 5 10 15 20 0 2 4 6 8 10 0 20 30 40 50 60
Epochs Epochs

Number of nodes

Figure 11: GT-SAGA and GT-SVRG: Behavior in the big-data regime
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GT-SAGA vs. SVRG: Experiments

m Comparison with related work

Optimality gap

Fashion-MNIST

>

e
R R

w0

»- DAVRG

Optimality gap

-» DAVRG

- DAVRG

[ 10

50

[

10 20 30 40 50
Epochs

10 20 30 40 50
Epochs

[

20 30
Epochs

Figure 12: Performance comparison over different datasets
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GT-SARAH: Smooth and non-convex

Theorem (Almost sure and mean-squared convergence
Xin-Khan-Kar '207)

For arbitrary inner loop length, as long as the constant step-size c is less
than a certain upper bound, GT-SARAH's outer loop iterate x) follows

]P’( lim ||V F(x)]| :o) =1 and limE [||VF(xL)||2} —0.
k— o0 k— o0

m A near-optimal stochastic gradient method for decentralized non-convex
finite-sum optimization: https://arxiv.org/abs/2008.07428
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GT-SARAH: Smooth and non-convex

m Total of N = nm data points divided equally among n nodes

Theorem (Gradient computation complexity Xin-Khan-Kar '20")

Under a certain constant step-size o, GT-SARAH, with O(m) inner loop
iterations, reaches an e-optimal stationary point of the global cost F in

n+m)'/2n’l n — 1
Hi=0 (max{N e e ||Vf,-(xo>||2);)
gradient computations across all nodes, where c := F(Xo) — F*.

m In the regime n < O(N'2(1 — )\)3): H = O(N'?e71)
m Matches the near-optimal algorithmic lower bound
[SPIDER: Fang et al. '18]

m T A near-optimal stochastic gradient method for decentralized non-convex
finite-sum optimization: https://arxiv.org/abs/2008.07428
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GT-SARAH: Smooth and non-convex

m Minimize a sum of N := nm smooth non-convex functions

m Near-optimal Rate: O(N'2¢™1) in the regime n < O(N'/2(1 — \)3)
m Matches the near-optimal algorithmic lower bound
[SPIDER: Fang et al. '18]
m Independent of the variance of local gradient estimators
m Independent of the local vs. global dissimilarity bias
m Network-independent performance
m Linear speedup
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Conclusions

m Gradient tracking plus DSGD (constant step-sizes)
m GT eliminates the local vs. global dissimilarity bias
m Improved rates for non-convex functions (and PL condition)

m Gradient tracking plus DSGD (decaying step-sizes)
m Decaying step-sizes eliminate the variance due to the stochastic grad
m Improved rates and analysis for non-convex functions satisfying the
PL condition

GT-VR for batch problems

m Linear convergence for smooth strongly convex problems
m Near-optimal performance for non-convex finite sum problems

Linear speedup

Network-independent convergence behavior

Regimes where decentralized methods “outperform” their
centralized counterparts
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GT-SARAH: Analysis
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GT-SARAH: Analysis

m Use the L-smoothness of F to establish the following lemma
F(Y) SF()+(VF(x)y =x) +5lly—x|*  VxyeR’

Lemma (Descent inequality)

If the step-size follows that O <a< then we have

2L'
B [FE9] < FEY Z]E [HVF &) H }
K, T K, T 1 ® Stk
a(iZE[vr,kz] E[*Tvk,7 tk)”}iLZZ [ x> | })
k,t k.t
m The object in red has two errors that we need to bound
m Gradient estimation error: E[|[v®* — VF(x"*)||?]
m Agreement error: E[|[x"* — 1 @ x“*||?]
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GT-SARAH: Analysis

Lemma (Gradient estimation error)

We have Vk > 1,

T Iy 302712 21 6TL> . [x0K — 1@ x0k|?
E ||[v"% — VE")?| < E [[|v"%)? E[i}
e <= =]+ a

n

Lemma (Agreement error)

If the step-size follows 0 < a < (8rL , then
XK:XT:E I — 1@ & ?) __64a® VR 1536afL2 u ZT:]E[ v
k=1 t=0 n B n (C RS M

m Agreement error is coupled with the gradient estimation error

Derive an LTI system that describes their evolution

m Analyze the LTI dynamics to obtain the agreement error lemma

m Use the two lemmas back in the descent inequality
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GT-SARAH: Analysis

Lemma (Refined descent inequality)

1
1=x222 n 2n \z1-X221 1
(3n+12T) & [ ar We have

For0 < a <@ :=min T R
el HFESD—F") /3 6T\ 256a2L% || VF(x>)
]E[HVF tk)”] ( a) +(§ )(1_0;2)3 Il g I

1
m ikt

m Taking K — oo on both sides leads to TE[|VF(x")|] < oo
m Mean-squared and a.s. results follow

m Divide both sides by K - T and solve for K when the R.H.S <€
m Gradient computation complexity follows by nothing that GT-SARAH

computes n(m + 2T) gradients per iteration across all nodes
m Choose « as the maximum and T = O(m) to obtain the optimal rate
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