# Decentralized Stochastic Non-convex Optimization

#### Usman A. Khan Electrical and Computer Engineering, Tufts University

August 28, 2020

## Graduate Students









Reza D. (2011-15)



F. Saadatniaki (2014-19)





M. I. Qureshi (2018- )

A. Swar (2020- )

# Research Overview

# Learning from Data

Data is everywhere and holds a significant potential

- Credit card fraud, Medical diagnosis, Political campaigns
- Image classification, Deep Learning
- • •
- Key challenges: Centralized solutions are no longer practical
  - Large, private, and proprietary datasets
  - Computation and communication have practical constraints
- Can decentralized algorithms outperform their centralized counterparts? How to quantify such a comparison?
- Let us consider a classical example ...

# Self-Driving Cars: Recognizing Traffic Signs

Identify STOP vs. YIELD sign



Figure 1: Binary classification: (Left) Training phase (Right) Testing phase

- Input data: Image  $\theta$  and its label **y**
- Model:  $g(\mathbf{x}; \theta)$  takes the image point and predicts the label
- Loss:  $\ell(g(\mathbf{x}; \boldsymbol{\theta}), \mathbf{y})$ , prediction error as a function of the parameter  $\mathbf{x}$
- Problem: Find the parameter **x** that minimizes the loss

 $\min_{\mathbf{x}} f(\mathbf{x}); \qquad f(\mathbf{x}) := \ell(g(\mathbf{x}; \boldsymbol{\theta}), \mathbf{y})$ 

Our focus: First-order methods for different function classes

# Some Preliminaries

## **Basic Definitions**

•  $f: \mathbb{R}^{p} \to \mathbb{R}$  is *L*-smooth, non-convex, and  $f(\mathbf{x}) \geq f^{*} \geq -\infty, \forall \mathbf{x}$ 

- Bounded above by a quadratic
- $f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} \mathbf{x}) + \frac{L}{2} \|\mathbf{y} \mathbf{x}\|_2^2$

■ f satisfies Polyak-Łojasiewics (PL) condition [Polyak '87, Karimi et al. '16]

- Every stationary point is a global minimum (not necessarily convex)
- Strong convexity is a special case

■ 
$$2\mu (f(\mathbf{x}) - f^*) \le \|\nabla f(\mathbf{x})\|^2$$
.

- *f* is *µ*-strongly convex
  - Convex and bounded below by a quadratic

$$f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 \le f(\mathbf{y})$$

•  $\kappa := \frac{L}{\mu}$  is called the condition number,  $L \ge \mu > 0$ 

Figure 2: Non-convex:  $sin(ax)(x + bx^2)$ . PL condition:  $x^2 + 3sin^2(x)$ . Quadratic

# First-order methods (Gradient Descent)

 $\min_{\mathbf{x}} f(\mathbf{x})$ 

- Search for a point  $\mathbf{x}^*$  where the gradient is zero, i.e.,  $\nabla f(\mathbf{x}^*) = \mathbf{0}$
- Intuition: Take a step in the direction opposite to the gradient

• At 
$$\star$$
,  $\nabla f(\mathbf{x}^*) = 0$ 



Figure 3: Minimizing strongly convex functions:  $\mathbb{R} \to \mathbb{R}$  and  $\mathbb{R}^2 \to \mathbb{R}$ 

- A well-known *first-order* algorithm:  $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha \cdot \nabla f(\mathbf{x}_k)$
- With stochastic gradients:  $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha \cdot \mathbf{g}(\mathbf{x}_k)$

## Performance Metrics and Other Criteria

- Stochastic Gradient Descent (SGD): x<sub>k+1</sub> = x<sub>k</sub> − α ⋅ g(x<sub>k</sub>)
   g(x<sub>k</sub>) is an unbiased estimate of ∇f(x<sub>k</sub>) with bounded variance
- Optimality gap (PL and sc):  $\mathbb{E} [f(\mathbf{x}_k) f^*]$
- Mean-squared residual (sc):  $\mathbb{E} \left[ \| \mathbf{x}_k \mathbf{x}^* \|^2 \right]$
- Mean-squared stationary gap (non-convex):  $\frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \left[ \|\nabla f(\mathbf{x}_k)\|^2 \right]$
- Almost sure  $(\delta > 0)$ :  $\mathbb{P}\left[\lim_{k \to \infty} k^{1-\delta}(f(\mathbf{x}_k) f^*) = 0\right] = 1$
- Decentralized problems: node *i*'s iterate is  $\mathbf{x}_k^i$ 
  - Replace  $\mathbf{x}_k$  above by  $\mathbf{x}_k^i$  or  $\overline{\mathbf{x}}_k := \frac{1}{n} \sum_{i=1}^n \mathbf{x}_k^i$
  - Agreement error:  $\mathbb{E} \left[ \| \mathbf{x}_k^i \mathbf{x}_k^j \|^2 \right]$  or  $\mathbb{E} \left[ \| \mathbf{x}_k^i \overline{\mathbf{x}}_k \|^2 \right]$
  - Network-independent behavior
  - Speedup compared to centralized counterparts

# Decentralized First-Order Methods

## Decentralized Optimization

Problem setup:

$$\mathsf{P1}:\min_{\mathbf{x}} F(\mathbf{x}), \qquad F(\mathbf{x}):=\sum_{i=1}^n f_i(\mathbf{x}), \quad f_i:\mathbb{R}^p\to\mathbb{R}$$

Search for a stationary point  $\mathbf{x}^*$  such that  $\nabla F(\mathbf{x}^*) = 0$ 

#### First-order methods under the following setup

Measurement model:

 Online: Each node *i* makes a noisy measurement → an imperfect local gradient ∇f<sub>i</sub>(x) at any x (Reduces to full gradient model when the variance is zero)

- Batch: Each node *i* has access to a local dataset with m<sub>i</sub> data points and their corresponding labels, i.e., ∇f<sub>i</sub>(**x**) = ∑<sub>i=1</sub><sup>m<sub>i</sub></sup> ∇f<sub>i,j</sub>(**x**)
- Each local cost  $f_i$  is L-smooth and  $F^* := \inf_{\mathbf{x}} F(\mathbf{x}) \ge -\infty$
- The nodes communicate over a strongly connected graph

# Local Gradient Descent

- Implement  $\mathbf{x}_{k+1}^i = \mathbf{x}_k^i \alpha \cdot \nabla f_i(\mathbf{x}_k^i)$  at each node i
- Each node converges to a local solution



Figure 4: Linear regression: Locally optimal solutions

Requirements for a decentralized algorithm

- Agreement: Each node agrees to the same solution
- Optimality: The agreed upon solution is the optimal
- Local GD does not meet either

## Decentralized Gradient Descent

Mix and Descend: At each node i

$$\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir} \cdot \mathbf{x}_{k}^{r} - \boldsymbol{\alpha}_{k} \cdot \nabla f_{i}(\mathbf{x}_{k}^{i})$$

• The weight matrix  $W = \{w_{ij}\}$  is primitive and doubly stochastic

- $\lambda \in [0,1)$  is the second largest singular value of W
- $(1 \lambda) \in (0, 1]$  is the spectral gap of the network



Figure 5: DGD over undirected graphs

## Decentralized Gradient Descent

DGD: At each node i

$$\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir} \cdot \mathbf{x}_{k}^{r} - \boldsymbol{\alpha}_{k} \cdot \nabla f_{i}(\mathbf{x}_{k}^{i})$$

- For strongly convex problems
  - Decaying step-size: convergence is sublinear  $O(\frac{1}{k})$  [Nedić et al. '09]
  - Constant step-size: linear but inexact [Yuan et al. '13]



Figure 6: DGD with a decaying step-size (left) and constant step-size (right)

Let us consider DGD with stochastic gradients

## Decentralized Stochastic Gradient Descent

- Online setup–each node *i* makes an imperfect measurement leading to a stochastic gradient g<sub>i</sub>:
  - **g**<sub>i</sub>( $\mathbf{x}_k^i$ ) is an unbiased estimate of the true gradient  $\nabla f_i(\mathbf{x}_k^i)$ , and **g**<sub>i</sub>( $\mathbf{x}_k^i$ ) has a bounded variance  $\nu^2$
- DSGD at node i: [Ram et al. '10], [Chen et al. '12]

$$\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha_{k} \cdot \mathbf{g}_{i}(\mathbf{x}_{k}^{i})$$

What do we know about the performance of DSGD?

# Performance of DSGD (constant step-size)

Smooth strongly convex problems:

Mean-squared residual decays linearly to an error ball [Yuan et al. '19]

$$\begin{split} \limsup_{k \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\mathbf{x}_{k}^{i} - \mathbf{x}^{*}\|_{2}^{2}] &= \mathcal{O}\Big(\frac{\alpha}{n\mu}\nu^{2} + \frac{\alpha^{2}\kappa^{2}}{1-\lambda}\nu^{2} + \frac{\alpha^{2}\kappa^{2}}{(1-\lambda)^{2}}\eta\Big), \\ \text{where } \eta &:= \frac{1}{n} \sum_{i=1}^{n} \left\|\nabla f_{i}\left(\mathbf{x}^{*}\right) - \sum_{i} \nabla f_{i}(\mathbf{x}^{*})\right\|_{2}^{2} \end{split}$$

Smooth non-convex problems:

Mean-squared stationary gap follows [Lian et al. '17]

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\left[ \|\nabla F(\bar{\mathbf{x}}_k)\|^2 \right] \le \mathcal{O}\left( \frac{F(\bar{\mathbf{x}}_0) - F^*}{\alpha K} + \frac{\alpha L}{n} \nu^2 + \frac{\alpha^2 L^2}{1 - \lambda} \nu^2 + \frac{\alpha^2 L^2}{(1 - \lambda)^2} \zeta \right),$$
  
where  $\zeta := \sup_{\mathbf{x}} \frac{1}{n} \sum_{i=1}^n \left\| \nabla f_i(\mathbf{x}) - \sum_i \nabla f_i(\mathbf{x}) \right\|^2$ 

DSGD is impacted by three components:

- Dissimilarity ( $\eta$  or  $\zeta$ ) between the local  $f_i$ 's and the global  $F = \sum_i f_i$
- Variance  $\nu^2$  of the stochastic gradient
- Spectral gap of the network  $(1 \lambda)$

# This talk

- Eliminate the dependence on local and global dissimilarity
- Eliminate the variance of the stochastic gradient
- Develop network-independent convergence rates
- Precise statements on mean-squared and almost sure convergence
- Speedup when compared with centralized counterparts
- Optimal rates

# Decentralized Stochastic Gradient Descent with Gradient Tracking

Addressing the local and global dissimilarity

# **GT-DSGD**: Intuition

- Problem:  $\min_{\mathbf{x}} \sum_{i} f_i(\mathbf{x})$
- DSGD with full gradient and constant step-size:

$$\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha \cdot \nabla f_{i}(\mathbf{x}_{k}^{i})$$

Impacted by  $\|\nabla f_i(\mathbf{x}^*) - \nabla F(\mathbf{x}^*)\|$  (sc) or  $\|\nabla f_i(\mathbf{x}) - \nabla F(\mathbf{x})\|$  (ncvx)

- $\mathbf{x}^*$  is not a fixed point:  $\mathbf{x}^* \neq \sum_{r=1}^n w_{ir} \cdot \mathbf{x}^* \alpha \cdot \nabla f_i(\mathbf{x}^*)$
- At  $\mathbf{x}^*$ :  $\sum_i \nabla f_i(\mathbf{x}^*) = 0$ , which does not imply  $\nabla f_i(\mathbf{x}^*) = 0$
- Fix: Replace  $\nabla f_i$  with an estimate of the global gradient  $\nabla F$
- Full gradient: [Xu et al. '15], [Lorenzo et al. '15], [Qu et al. '16], [Xi-Xin-Khan '16], [Shi et al. '16]
- Stochastic gradient: [Pu et al. '18], [Xin-Sahu-Khan-Kar '19]

# GT-DSGD: Algorithm

Problem:  $\min_{\mathbf{x}} \sum_{i} f_i(\mathbf{x})$ 

**DSGD** with a constant step-size:  $\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha \cdot \mathbf{g}_{i}(\mathbf{x}_{k}^{i})$ 

#### Algorithm 1: GT-DSGD at each node *i*

Data: 
$$\mathbf{x}_{0}^{i}; \{\alpha_{k}\}; \{w_{ir}\}_{r=1}^{n}; \mathbf{y}_{0}^{i} = \mathbf{0}_{\rho}; \mathbf{g}_{r}(\mathbf{x}_{-1}^{i}, \boldsymbol{\xi}_{-1}^{i}) := \mathbf{0}_{\rho}.$$
  
for  $k = 0, 1, ..., d\mathbf{o}$   
 $\mathbf{y}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir}(\mathbf{y}_{k}^{r} + \mathbf{g}_{r}(\mathbf{x}_{k}^{r}, \boldsymbol{\xi}_{k}^{r}) - \mathbf{g}_{r}(\mathbf{x}_{k-1}^{r}, \boldsymbol{\xi}_{k-1}^{r}))$   
 $\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir}(\mathbf{x}_{k}^{r} - \alpha_{k} \cdot \mathbf{y}_{k+1}^{r})$   
end

- The variable  $\mathbf{y}_k^i$  tracks the global gradient  $\nabla F(\mathbf{x}_k^i)$  at each node *i*
- Dynamic average consensus: [Zhu et al. '08]

# GT-DSGD: Experiment

Decentralized linear regression (strongly convex)

Full gradient, n = 500 nodes, random connected graph



Figure 7: Performance comparison

- When perfect gradients are used:
  - Without GT, convergence is linear but inexact due to the local-vs-global dissimilarity bias
  - With GT, convergence is linear and exact
- What happens when the gradients are stochastic?

# GT-DSGD (constant step-size): Addressing the local and global dissimilarity Smooth non-convex problems satisfying PL condition

# GT-DSGD (constant step-size): Smooth non-convex problems satisfying PL condition

#### Theorem (abridged, Xin-Khan-Kar '20†)

Let F satisfy the PL condition. For a certain constant step-size  $\alpha$ , the mean optimality gap decays **linearly** at  $\mathcal{O}((1 - \mu \alpha)^k)$  to an error ball:

$$\limsup_{k \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[ F(\mathbf{x}_{k}^{i}) - F^{*} \right] \leq \underbrace{\mathcal{O} \left( \frac{\alpha \kappa}{n} \nu^{2} \right)}_{Centralized \ minibatch \ SGD} + \underbrace{\mathcal{O} \left( \alpha^{2} \kappa L \frac{\lambda^{2}}{(1-\lambda)^{3}} \nu^{2} \right)}_{Decentralized \ network \ effect}$$

#### The bias due to the local and global cost dissimilarity is eliminated

■ For  $\alpha \leq O(\frac{(1-\lambda)^3}{\lambda^2 nL})$ , the R.H.S matches centralized minibatch SGD ■ *n* times better than the centralized SGD

(with data parallelization and communication over n machines)

- The results are immediately applicable to strongly convex problems
- Perfect gradient ( $\nu = 0$ ):  $\epsilon$ -complexity is  $\mathcal{O}(\kappa^{5/4} \log \frac{1}{\epsilon})$ 
  - Improves the best known rate under PL [Tang et al. '19]
  - Under strong convexity [Li et al. '19]:  $\mathcal{O}(\kappa \log \frac{1}{\epsilon})$ ]
- <sup>†</sup>An improved convergence analysis for decentralized online stochastic non-convex optimization: https://arxiv.org/abs/2008.04195

# GT-DSGD (constant step-size): Addressing the local and global dissimilarity

General smooth non-convex problems

# GT-DSGD (constant step-size): General (smooth) non-convex problems

# $\begin{array}{l} \hline \text{Theorem (abridged, Xin-Khan-Kar '20^{\dagger})} \\ \hline \text{For any step-size } \alpha \in \left(0, \min\left\{1, \frac{1-\lambda^{2}}{3\lambda}, \frac{(1-\lambda^{2})^{2}}{4\sqrt{3}\lambda^{2}}\right\} \frac{1}{2L}\right], \text{ we have } \forall K > 0, \\ \\ \underbrace{\frac{1}{nK} \sum_{i=1}^{n} \sum_{k=0}^{K-1} \mathbb{E}\left[\|\nabla F(\mathbf{x}_{k}^{i})\|^{2}\right]}_{Mean-squared stationary gap} \leq \underbrace{\frac{4(F(\bar{\mathbf{x}}_{0}) - F^{*})}{\alpha K} + \frac{2\alpha L}{n}\nu^{2}}_{Centralized minibatch SGD} + \underbrace{\frac{320\alpha^{2}L^{2}\lambda^{2}}{(1-\lambda^{2})^{3}}\nu^{2} + \frac{64\alpha^{2}L^{2}\lambda^{4}}{(1-\lambda^{2})^{3}K} \frac{\|\nabla \mathbf{f}_{0}\|^{2}}{n}}_{Decentralized network effect}} \end{array}$

- Asymptotic characterization,  $K \to \infty$ 
  - For any  $\alpha \leq O(\frac{(1-\lambda)^3}{\lambda^2 nL})$ , the R.H.S matches the centralized minibatch SGD (up to constant factors) n times improvement over centralized SGD
- <sup>†</sup>An improved convergence analysis for decentralized online stochastic non-convex optimization: https://arxiv.org/abs/2008.04195

# GT-DSGD (constant step-size): General (smooth) non-convex problems

Theorem (abridged, Xin-Khan-Kar '20<sup>†</sup>)

Let 
$$\|\nabla \mathbf{f}_0\|^2 = \mathcal{O}(n)$$
,  $\alpha = (\frac{n}{K})^{1/2}$ , and  $K \ge 4nL^2 \max\left\{1, \frac{9\lambda^2}{(1-\lambda^2)^2}, \frac{48\lambda^4}{(1-\lambda^2)^4}\right\}$ , then  
 $\frac{1}{n}\sum_{i=1}^n \frac{1}{K}\sum_{k=0}^{K-1} \mathbb{E}\left[\|\nabla F(\mathbf{x}_k^i)\|^2\right] \le \underbrace{\frac{4(F(\bar{\mathbf{x}}_0) - F^*)}{\sqrt{nK}} + \frac{2\nu_a^2 L}{\sqrt{nK}}}_{Centralized minibatch SGD} + \underbrace{\frac{320n\lambda^2\nu_a^2 L^2}{(1-\lambda^2)^3K} + \frac{64nL^2\lambda^4}{(1-\lambda^2)^3K^2}}_{Decentralized network effect}$   
Thus, with  $K \ge K_{nc} := \mathcal{O}\left(\frac{n^3\lambda^4L^2}{(1-\lambda)^6}\right)$ ,

us, with 
$$K \ge K_{nc} := \mathcal{O}\left(\frac{n^{3}\lambda^{*}L^{2}}{(1-\lambda)^{6}}\right)$$
,  
$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\left[\|\nabla F(\mathbf{x}_{k}^{i})\|^{2}\right] \le \mathcal{O}\left(\frac{\nu_{a}^{2}L}{\sqrt{nK}}\right).$$

- Non-asymptotic characterization
  - Linear  $\mathcal{O}(n)$  speedup over centralized SGD
  - Network-independent convergence rate (in a finite time)
- <sup>†</sup>An improved convergence analysis for decentralized online stochastic non-convex optimization: https://arxiv.org/abs/2008.04195

# GT-DGD (constant step-size): Demo

- Full gradient, decentralized linear regression, n = 100 nodes
- Each node possesses one data point
- Collaborate to learn the slope and intercept

# GT-DSGD (constant step-size): Experiment

- Full vs. stochastic gradient
- Decentralized linear regression, n = 100 nodes



Figure 8: GT-DGD vs. GT-DSGD

- Gradient tracking eliminates the local and global dissimilarity bias
- The variance of the stochastic gradient still remains
- Addressing the variance
  - Online problems: decaying step-sizes
  - Batch problems: variance reduction

## Online GT-DSGD (decaying step-sizes)

Addressing the local and global dissimilarity

Addressing the variance of the stochastic gradient

# GT-DSGD (decaying step-sizes): Smooth non-convex problems satisfying PL condition

#### Theorem (abridged, Xin-Khan-Kar '20†)

Consider the step-size sequence  $\alpha_k = \frac{6}{\mu(k+\gamma)}$ , with  $\gamma = \max\left\{\frac{6}{\mu\overline{\alpha}}, \frac{8}{1-\lambda^2}\right\}$ . Suppose that  $\|\nabla \mathbf{f}(\mathbf{x}_0)\|^2 = \mathcal{O}(n)$ , then we have

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[F(\mathbf{x}_{k}^{i})-F^{*}\right] \leq \mathcal{O}\left(\frac{\kappa^{2}\left(F(\bar{\mathbf{x}}_{0})-F^{*}\right)}{k^{2}}+\frac{\kappa}{n\mu k}\nu^{2}\right)$$

when 
$$k \geq K_{PL} := \mathcal{O}\left(\max\left\{\frac{\lambda^2 n\kappa}{(1-\lambda)^3}, \frac{\lambda \kappa^{5/4}}{1-\lambda}, \kappa, \frac{\lambda^{3/2} \kappa^{11/8}}{(1-\lambda)^{3/2}}, \frac{\kappa^{-1/2}}{(1-\lambda)^{3/2}}\right\}\right)$$

- Non-asymptotic, asymptotic, and network-independent behaviors
- The rate matches the centralized minibatch SGD when  $k \ge K_{PL}$
- Only requires the global cost  $\sum_i f_i$  to satisfy the PL condition
- In contrast, existing work requires each  $f_i$  to be strongly convex and  $k \ge O(\frac{n^2 \kappa^6}{(1-\lambda)^2})$  iterations for network-independence
- An improved convergence analysis for decentralized online stochastic non-convex optimization: https://arxiv.org/abs/2008.04195

# GT-DSGD (decaying step-sizes): Smooth non-convex problems satisfying PL condition

#### Theorem (abridged, Xin-Khan-Kar '20†)

Consider the step-size sequence:  $\alpha_k = \frac{1}{(k+1)}$ . For an arbitrarily small  $\varepsilon > 0$ , we have  $\forall i, j$ ,

$$\mathbb{P}\Big(\lim_{k \to \infty} k^{1-\varepsilon} \|\mathbf{x}_k^i - \mathbf{x}_k^j\|^2 = 0\Big) = 1,$$
$$\mathbb{P}\Big(\lim_{k \to \infty} k^{1-\varepsilon} (F(\mathbf{x}_k^i) - F^*) = 0\Big) = 1.$$

Asymptotic almost sure characterization

- The proof uses the Robbins-Siegmund almost supermartingale convergence theorem
- This is the first pathwise rate for decentralized stochastic optimization (to the best of our knowledge)
- Leads to almost sure statements for strongly convex problems
- The analysis techniques are of value in other related problems
- \* An improved convergence analysis for decentralized online stochastic non-convex optimization: https://arxiv.org/abs/2008.04195

#### The GT-VR framework: Batch problems

Addressing the local and global dissimilarity

Addressing the variance of the stochastic gradient

## GT-VR framework: Batch problems

- Each node *i* possesses a local batch of  $m_i$  data samples
  - The local cost  $f_i$  is the sum over all data samples  $\sum_{i=1}^{m_i} f_{i,j}$
  - Distribution is arbitrary in terms of both quantity and quality



Figure 9: Data distributed within each node and over multiple nodes

- Gradient computation  $\sum_{j=1}^{m_i} \nabla f_{i,j}$  is  $\mathcal{O}(m_i)$  per node per iteration
  - Full gradient GD can be prohibitively expensive:  $\mathbf{x}_{k+1}^{i} = \sum_{r} w_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha \cdot \sum_{i=1}^{m_{i}} \nabla f_{i,j}(\mathbf{x}_{k}^{i})$

## GT-VR framework: Batch problems

• An efficient method is to sample one data point  $f_{i,\tau}$  per iteration

• 
$$\mathbf{x}_{k+1}^{i} = \sum_{r} w_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha \cdot \nabla f_{i,\tau}(\mathbf{x}_{k}^{i})$$

- Performance is impacted due to sampling and local vs. global bias
- The GT-VR framework: From  $\nabla f_{i,\tau}$  to  $\nabla F = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \nabla f_{i,j}$ 
  - Local variance reduction at each node
  - Global gradient tracking over the node network



Figure 10: GT-VR: Sample, estimate using VR, and track using GT

Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH

## **GT-SAGA**

- At node *i* [Xin-Khan-Kar '19<sup>†</sup>]
- Maintain a gradient table  $[\widehat{\nabla f}_{i,1}, \dots, \widehat{\nabla f}_{i,m_i}]$
- At each *k* = 0, 1, ...
  - Update  $\mathbf{x}_{k+1}^i = \sum_r \mathbf{w}_{ir} \cdot \mathbf{x}_k^r \alpha \cdot \mathbf{y}_k^i$
  - Sample a random index  $s_k^i$  from  $1, \ldots, m_i$
  - **SAGA** [Defazio et al. '14]:  $\mathbf{v}_{k+1}^{i} = \nabla f_{i,s_{k}^{i}}(\mathbf{x}_{k+1}^{i}) \widehat{\nabla f}_{i,s_{k}^{i}} + \frac{1}{m_{i}}\sum_{j}\widehat{\nabla f}_{i,j}$
  - Update the gradient table:  $\widehat{\nabla f}_{i,s_k^i} \leftarrow \nabla f_{i,s_k^i}(\mathbf{x}_{k+1}^i)$
  - Use the estimated  $\mathbf{v}_{k+1}^i$  to update the GT variable  $\mathbf{y}_{k+1}^i$

<sup>†</sup>Variance-reduced decentralized stochastic optimization with accelerated convergence: https://arxiv.org/abs/1912.04230

# **GT-SVRG**

- At node *i* [Xin-Khan-Kar '19<sup>†</sup>]
- Outer loop iterate  $\mathbf{x}_k^i$ , and inner loop iterate  $\underline{\mathbf{x}}_t^i$
- At each k, compute the local full gradient:  $\nabla f_i(\mathbf{x}_k^i) = \frac{1}{m_i} \sum_j \nabla f_{i,j}(\mathbf{x}_k^i)$ 
  - At each  $t = [1, \ldots, T]$ 
    - Update  $\underline{\mathbf{x}}_{t+1}^{i}$  with the GT variable
    - Sample a random index  $\tau$  from  $1, \ldots, m_i$
    - **SVRG** [Johnson et al. '13]:  $\mathbf{v}_{t+1}^i = \nabla f_{i,\tau}(\underline{\mathbf{x}}_{t+1}^i) \nabla f_{i,\tau}(\mathbf{x}_k^i) + \nabla f_i(\mathbf{x}_k^i)$
    - Use the estimated  $\mathbf{v}_{t+1}^i$  in GT
  - Set  $\mathbf{x}_{k+1} = \underline{\mathbf{x}}_T^i$  or  $\frac{1}{T} \sum_t \underline{\mathbf{x}}_t^i$
- <sup>†</sup>Variance-reduced decentralized stochastic optimization with accelerated convergence: https://arxiv.org/abs/1912.04230

# **GT-SARAH**

- At node *i* [Xin-Khan-Kar. '20<sup>†</sup>]
- Outer loop iterate  $\mathbf{x}_k^i$ , and inner loop iterate  $\underline{\mathbf{x}}_t^i$
- At each k, compute the local full gradient:  $\nabla f_i(\mathbf{x}_k^i) = \frac{1}{m_i} \sum_j \nabla f_{i,j}(\mathbf{x}_k^i)$ 
  - At each  $t = [1, \ldots, T]$ 
    - Update <u>x</u><sup>i</sup><sub>t+1</sub> with the GT variable
    - Sample a random index  $\tau$  from  $1, \ldots, m_i$
    - **SARAH** [Nguyen et al. '17], [Fang et al. '18]:  $\mathbf{v}_{t+1}^i = \nabla f_{i,\tau}(\underline{\mathbf{x}}_{t+1}^i) - \nabla f_{i,\tau}(\underline{\mathbf{x}}_{t}^i) + \mathbf{v}_{t}^i$

• Use the estimated 
$$\mathbf{v}_{t+1}^i$$
 in GT

• Set 
$$\mathbf{x}_{k+1} = \underline{\mathbf{x}}_T^i$$
 or  $\frac{1}{T} \sum_t \underline{\mathbf{x}}_t^i$ 

\* A near-optimal stochastic gradient method for decentralized non-convex finite-sum optimization: https://arxiv.org/abs/2008.07428

# GT-SAGA: Smooth and strongly convex

Theorem (Mean-squared and almost sure convergence Xin-Khan-Kar '19 $^{\dagger}$ )

Let  $m := \min m_i$  and  $M := \max_i m_i$ . Under a certain constant step-size  $\alpha$ , GT-SAGA achieves an  $\epsilon$ -optimal solution of  $\mathbf{x}^*$  in

$$\mathcal{O}\left(\max\left\{M, \frac{M}{m}\frac{\kappa^2}{(1-\lambda)^2}\right\}\log\frac{1}{\epsilon}\right)$$

component gradient computations (iterations) at each node.

In addition, we have,  $\forall i \in \{1, \cdots, n\}$ ,

$$\mathbb{P}\left(\lim_{k\to\infty}\gamma_{g}^{-k}\left\|\mathbf{x}_{k}^{i}-\mathbf{x}^{*}\right\|^{2}=0\right)=1,$$
where  $\gamma_{g}=1-\min\left\{\mathcal{O}\left(\frac{1}{M}\right),\mathcal{O}\left(\frac{m(1-\lambda)^{2}}{M\kappa^{2}}\right)\right\}.$ 

<sup>†</sup>Variance-reduced decentralized stochastic optimization with accelerated convergence: https://arxiv.org/abs/1912.04230

# GT-SVRG: Smooth and strongly convex

Theorem (Mean-squared and almost sure convergence Xin-Khan-Kar '19 $^{\dagger}$ )

Let  $m := \min m_i$  and  $M := \max_i m_i$ . Under a certain constant step-size  $\alpha$ , GT-SVRG achieves an  $\epsilon$ -optimal solution of  $\mathbf{x}^*$  in

$$\mathcal{O}\left(\left(M + \frac{\kappa^2 \log \kappa}{(1-\lambda^2)^2}\right)\log \frac{1}{\epsilon}\right)$$

component gradient computations at each node.

In addition, we have, 
$$\forall i \in \{1, \cdots, n\}$$
,

$$\mathbb{P}\left(\lim_{k\to\infty}0.8^{-k}\left\|\mathbf{x}_{i}^{k}-\mathbf{x}^{*}\right\|^{2}=0\right)=1.$$

<sup>†</sup>Variance-reduced decentralized stochastic optimization with accelerated convergence: https://arxiv.org/abs/1912.04230

# GT-SAGA vs. GT-SVRG: Smooth and strongly convex

- Big-data regime  $M = m pprox \mathcal{O}(\kappa^2(1-\lambda)^{-2})$ 
  - $\mathcal{O}(M \log \frac{1}{\epsilon})$  vs. centralized  $\mathcal{O}(nM \log \frac{1}{\epsilon})$
  - Linear speedup vs. the centralized

# GT-SAGA vs. SVRG: Experiments

- Non-asymptotic network-independent convergence
- Linear speedup vs. centralized counterparts



Figure 11: GT-SAGA and GT-SVRG: Behavior in the big-data regime

# GT-SAGA vs. SVRG: Experiments

#### Comparison with related work



Figure 12: Performance comparison over different datasets

# GT-SARAH: Smooth and non-convex

Theorem (Almost sure and mean-squared convergence Xin-Khan-Kar '20<sup> $\dagger$ </sup>)

For arbitrary inner loop length, as long as the constant step-size  $\alpha$  is less than a certain upper bound, GT-SARAH's outer loop iterate  $\mathbf{x}_k^i$  follows

$$\mathbb{P}\left(\lim_{k\to\infty} \|\nabla F(\mathbf{x}_k^i)\| = 0\right) = 1 \quad \text{and} \quad \lim_{k\to\infty} \mathbb{E}\left[\left\|\nabla F(\mathbf{x}_k^i)\right\|^2\right] = 0.$$

\* A near-optimal stochastic gradient method for decentralized non-convex finite-sum optimization: https://arxiv.org/abs/2008.07428

# GT-SARAH: Smooth and non-convex

• Total of N = nm data points divided equally among n nodes

#### Theorem (Gradient computation complexity Xin-Khan-Kar '20<sup>†</sup>)

Under a certain constant step-size  $\alpha$ , GT-SARAH, with  $\mathcal{O}(m)$  inner loop iterations, reaches an  $\epsilon$ -optimal stationary point of the global cost F in

$$\mathcal{H} := \mathcal{O}\left(\max\left\{N^{1/2}, \frac{n}{(1-\lambda)^2}, \frac{(n+m)^{1/2}n^{2/2}}{1-\lambda}\right\}\left(Lc + \frac{1}{n}\sum_{i=1}^n \left\|\nabla f_i(\bar{\mathbf{x}}_0)\right\|^2\right)\frac{1}{\epsilon}\right)$$

gradient computations across all nodes, where  $c := F(\overline{\mathbf{x}}_0) - F^*$ .

- In the regime n ≤ O(N<sup>1/2</sup>(1 − λ)<sup>3</sup>): H = O(N<sup>1/2</sup>ϵ<sup>-1</sup>)
   Matches the near-optimal algorithmic lower bound [SPIDER: Fang et al. '18]
- \* A near-optimal stochastic gradient method for decentralized non-convex finite-sum optimization: https://arxiv.org/abs/2008.07428

# GT-SARAH: Smooth and non-convex

- Minimize a sum of N := nm smooth non-convex functions
- Near-optimal Rate:  $O(N^{1/2}\epsilon^{-1})$  in the regime  $n \leq O(N^{1/2}(1-\lambda)^3)$ 
  - Matches the near-optimal algorithmic lower bound [SPIDER: Fang et al. '18]
- Independent of the variance of local gradient estimators
- Independent of the local vs. global dissimilarity bias
- Network-independent performance
- Linear speedup

# Conclusions

- Gradient tracking plus DSGD (constant step-sizes)
  - GT eliminates the local vs. global dissimilarity bias
  - Improved rates for non-convex functions (and PL condition)
- Gradient tracking plus DSGD (decaying step-sizes)
  - Decaying step-sizes eliminate the variance due to the stochastic grad
  - Improved rates and analysis for non-convex functions satisfying the PL condition
- GT-VR for batch problems
  - Linear convergence for smooth strongly convex problems
  - Near-optimal performance for non-convex finite sum problems
- Linear speedup
- Network-independent convergence behavior
- Regimes where decentralized methods "outperform" their centralized counterparts

• Use the *L*-smoothness of *F* to establish the following lemma  $F(\mathbf{y}) \leq F(\mathbf{x}) + \langle \nabla F(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{l}{2} \|\mathbf{y} - \mathbf{x}\|^2 \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$ 

#### Lemma (Descent inequality)

If the step-size follows that  $0 < \alpha \leq \frac{1}{2L}$ , then we have  $\mathbb{E}\left[F(\bar{\mathbf{x}}^{T+1,K})\right] \leq F(\bar{\mathbf{x}}^{0,1}) - \frac{\alpha}{2} \sum_{k,t}^{K,T} \mathbb{E}\left[\left\|\nabla F(\bar{\mathbf{x}}^{t,k})\right\|^{2}\right]$   $- \alpha \left(\frac{1}{4} \sum_{k,t}^{K,T} \mathbb{E}\left[\left\|\bar{\mathbf{v}}^{t,k}\right\|^{2}\right] - \sum_{k,t}^{K,T} \mathbb{E}\left[\left\|\bar{\mathbf{v}}^{t,k} - \overline{\nabla f}(\mathbf{x}^{t,k})\right\|^{2}\right] - L^{2} \sum_{k,t}^{K,T} \mathbb{E}\left[\frac{\left\|\mathbf{x}^{t,k} - \mathbf{1} \otimes \bar{\mathbf{x}}^{t,k}\right\|^{2}}{n}\right]\right)$ 

- The object in red has two errors that we need to bound
  - Gradient estimation error:  $\mathbb{E}[\|\overline{\mathbf{v}}^{t,k} \overline{\nabla \mathbf{f}}(\mathbf{x}^{t,k})\|^2]$
  - Agreement error:  $\mathbb{E}[\|\mathbf{x}^{t,k} \mathbf{\hat{1}} \otimes \mathbf{\bar{x}}^{t,k}\|^2]$

#### Lemma (Gradient estimation error)

We have 
$$\forall k \geq 1$$
,  
$$\sum_{t=0}^{T} \mathbb{E}\left[\|\overline{\mathbf{v}}^{t,k} - \overline{\nabla \mathbf{f}}(\mathbf{x}^{t,k})\|^2\right] \leq \frac{3\alpha^2 T L^2}{n} \sum_{t=0}^{T-1} \mathbb{E}\left[\|\overline{\mathbf{v}}^{t,k}\|^2\right] + \frac{6 T L^2}{n} \sum_{t=0}^{T} \mathbb{E}\left[\frac{\|\mathbf{x}^{t,k} - \mathbf{1} \otimes \overline{\mathbf{x}}^{t,k}\|^2}{n}\right].$$

#### Lemma (Agreement error)

If the step-size follows  $0 < \alpha \le \frac{(1-\lambda^2)^2}{8\sqrt{42L}}$ , then  $\sum_{k=1}^{K} \sum_{t=0}^{T} \mathbb{E}\left[\frac{\|\mathbf{x}^{t,k} - \mathbf{1} \otimes \bar{\mathbf{x}}^{t,k}\|^2}{n}\right] \le \frac{64\alpha^2}{(1-\lambda^2)^3} \frac{\|\nabla f(\mathbf{x}^{0,1})\|^2}{n} + \frac{1536\alpha^4 L^2}{(1-\lambda^2)^4} \sum_{k=1}^{K} \sum_{t=0}^{T} \mathbb{E}\left[\|\bar{\mathbf{v}}^{t,k}\|^2\right].$ 

- Agreement error is coupled with the gradient estimation error
- Derive an LTI system that describes their evolution
- Analyze the LTI dynamics to obtain the agreement error lemma

Use the two lemmas back in the descent inequality

#### Lemma (Refined descent inequality)

$$\begin{aligned} & \text{For } 0 < \alpha \leq \overline{\alpha} := \min\left\{\frac{(1-\lambda^2)^2}{4\sqrt{42}}, \frac{\sqrt{n}}{\sqrt{6T}}, \left(\frac{2n}{3n+12T}\right)^{\frac{1}{4}}\frac{1-\lambda^2}{6}\right\}\frac{1}{2L}, \text{ we have} \\ & \frac{1}{n}\sum_{i,k,t}^{n,K,T} \mathbb{E}\Big[\|\nabla F(\mathbf{x}_i^{t,k})\|^2\Big] \leq \frac{4(F(\overline{\mathbf{x}}^{0,1}) - F^*)}{\alpha} + \left(\frac{3}{2} + \frac{6T}{n}\right)\frac{256\alpha^2 L^2}{(1-\lambda^2)^3}\frac{\|\nabla f(\mathbf{x}^{0,1})\|^2}{n}. \end{aligned}$$

- Taking  $K \to \infty$  on both sides leads to  $\sum_{k,t}^{\infty, T} \mathbb{E}[\|\nabla F(\mathbf{x}_i^{t,k})\|] < \infty$ ■ Mean-squared and a.s. results follow
- Divide both sides by  $K \cdot T$  and solve for K when the R.H.S  $\leq \epsilon$ 
  - Gradient computation complexity follows by nothing that GT-SARAH computes n(m + 2T) gradients per iteration across all nodes
  - Choose  $\alpha$  as the maximum and  $T = \mathcal{O}(m)$  to obtain the optimal rate