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Research Overview
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Learning from Data

Data is everywhere and holds a significant potential

Credit card fraud, Medical diagnosis, Political campaigns
Image classification, Deep Learning
. . .

Key challenges: Centralized solutions are no longer practical

Large, private, and proprietary datasets
Computation and communication have practical constraints

Can decentralized algorithms outperform their centralized
counterparts? How to quantify such a comparison?

Let us consider a classical example ...
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Self-Driving Cars: Recognizing Traffic Signs

Identify STOP vs. YIELD sign

Figure 1: Binary classification: (Left) Training phase (Right) Testing phase

Input data: Image θ and its label y

Model: g(x;θ) takes the image point and predicts the label

Loss: `(g(x;θ), y), prediction error as a function of the parameter x

Problem: Find the parameter x that minimizes the loss

min
x

f (x); f (x) := `(g(x;θ), y)

Our focus: First-order methods for different function classes
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Some Preliminaries
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Basic Definitions

f : Rp → R is L-smooth, non-convex, and f (x) ≥ f ∗ ≥ −∞,∀x
Bounded above by a quadratic
f (y) ≤ f (x) +∇f (x)>(y − x) + L

2
‖y − x‖2

2

f satisfies Polyak- Lojasiewics (PL) condition [Polyak ’87, Karimi et al. ’16]

Every stationary point is a global minimum (not necessarily convex)
Strong convexity is a special case
2µ (f (x)− f ∗) ≤ ‖∇f (x)‖2.

f is µ-strongly convex
Convex and bounded below by a quadratic
f (x) +∇f (x)>(y − x) + µ

2
‖y − x‖2

2 ≤ f (y)

κ := L
µ is called the condition number, L ≥ µ > 0

Figure 2: Non-convex: sin(ax)(x +bx2). PL condition: x2 + 3 sin2(x). Quadratic
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First-order methods (Gradient Descent)

min
x

f (x)

Search for a point x∗ where the gradient is zero, i.e., ∇f (x∗) = 0

Intuition: Take a step in the direction opposite to the gradient

At ?, ∇f (x∗) = 0

Figure 3: Minimizing strongly convex functions: R→ R and R2 → R

A well-known first-order algorithm: xk+1 = xk − α · ∇f (xk)

With stochastic gradients: xk+1 = xk − α · g(xk)
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Performance Metrics and Other Criteria

Stochastic Gradient Descent (SGD): xk+1 = xk − α · g(xk)

g(xk) is an unbiased estimate of ∇f (xk) with bounded variance

Optimality gap (PL and sc): E [ f (xk)− f ∗ ]

Mean-squared residual (sc): E [ ‖xk − x∗‖2 ]

Mean-squared stationary gap (non-convex): 1
K

∑K
k=1 E [ ‖∇f (xk)‖2 ]

Almost sure (δ > 0): P
[

limk→∞ k1−δ(f (xk)− f ∗) = 0
]

= 1

Decentralized problems: node i ’s iterate is xik
Replace xk above by xik or xk := 1

n

∑n
i=1 x

i
k

Agreement error: E [ ‖xik − xjk‖
2 ] or E [ ‖xik − xk‖2 ]

Network-independent behavior
Speedup compared to centralized counterparts
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Decentralized First-Order Methods
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Decentralized Optimization

Problem setup:

P1 : min
x

F (x), F (x) :=
n∑

i=1

fi (x), fi : Rp → R

Search for a stationary point x∗ such that ∇F (x∗) = 0

First-order methods under the following setup

Measurement model:

Online: Each node i makes a noisy measurement → an imperfect
local gradient ∇fi (x) at any x
(Reduces to full gradient model when the variance is zero)

Batch: Each node i has access to a local dataset with mi data points
and their corresponding labels, i.e., ∇fi (x) =

∑mi
j=1∇fi,j(x)

Each local cost fi is L-smooth and F ∗ := infx F (x) ≥ −∞
The nodes communicate over a strongly connected graph
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Local Gradient Descent

Implement xik+1 = xik − α · ∇fi (xik) at each node i

Each node converges to a local solution

Figure 4: Linear regression: Locally optimal solutions

Requirements for a decentralized algorithm

Agreement: Each node agrees to the same solution
Optimality: The agreed upon solution is the optimal
Local GD does not meet either
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Decentralized Gradient Descent

Mix and Descend: At each node i

xik+1 =
n∑

r=1

wir · xrk − αk · ∇fi (xik)

The weight matrix W = {wij} is primitive and doubly stochastic

λ ∈ [0, 1) is the second largest singular value of W
(1− λ) ∈ (0, 1] is the spectral gap of the network

Figure 5: DGD over undirected graphs
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Decentralized Gradient Descent

DGD: At each node i

xik+1 =
n∑

r=1

wir · xrk − αk · ∇fi (xik)

For strongly convex problems

Decaying step-size: convergence is sublinear O( 1
k

) [Nedić et al. ’09]

Constant step-size: linear but inexact [Yuan et al. ’13]
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Figure 6: DGD with a decaying step-size (left) and constant step-size (right)

Let us consider DGD with stochastic gradients
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Decentralized Stochastic Gradient Descent

Online setup–each node i makes an imperfect measurement leading
to a stochastic gradient gi :

gi (x
i
k) is an unbiased estimate of the true gradient ∇fi (xik), and

gi (x
i
k) has a bounded variance ν2

DSGD at node i : [Ram et al. ’10], [Chen et al. ’12]

xik+1 =
n∑

r=1

wir · xrk − αk · gi (xik)

What do we know about the performance of DSGD?
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Performance of DSGD (constant step-size)

Smooth strongly convex problems:
Mean-squared residual decays linearly to an error ball [Yuan et al. ’19]

lim sup
k→∞

1

n

n∑
i=1

E[‖xik − x∗‖2
2] = O

( α
nµ
ν2 +

α2κ2

1− λ
ν2 +

α2κ2

(1− λ)2
η
)
,

where η := 1
n

∑n
i=1

∥∥∇fi (x∗)−
∑

i ∇fi (x
∗)
∥∥2

2

Smooth non-convex problems:
Mean-squared stationary gap follows [Lian et al. ’17]

1

K

K−1∑
k=0

E
[
‖∇F (xk )‖2

]
≤ O

(
F (x0)− F∗

αK
+
αL

n
ν2 +

α2L2

1− λ
ν2 +

α2L2

(1− λ)2
ζ

)
,

where ζ := supx
1
n

∑n
i=1

∥∥∇fi (x)−
∑

i ∇fi (x)
∥∥2

DSGD is impacted by three components:
Dissimilarity (η or ζ) between the local fi ’s and the global F =

∑
i fi

Variance ν2 of the stochastic gradient
Spectral gap of the network (1− λ)
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This talk

Eliminate the dependence on local and global dissimilarity

Eliminate the variance of the stochastic gradient

Develop network-independent convergence rates

Precise statements on mean-squared and almost sure convergence

Speedup when compared with centralized counterparts

Optimal rates
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Decentralized Stochastic Gradient Descent
with

Gradient Tracking
Addressing the local and global dissimilarity
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GT-DSGD: Intuition

Problem: minx
∑

i fi (x)

DSGD with full gradient and constant step-size:

xik+1 =
n∑

r=1

wir · xrk − α · ∇fi (xik)

Impacted by ‖∇fi (x∗)−∇F (x∗)‖ (sc) or ‖∇fi (x)−∇F (x)‖ (ncvx)

x∗ is not a fixed point: x∗ 6=
∑n

r=1 wir · x∗ − α · ∇fi (x∗)
At x∗:

∑
i ∇fi (x∗) = 0, which does not imply ∇fi (x∗) = 0

Fix: Replace ∇fi with an estimate of the global gradient ∇F
Full gradient: [Xu et al. ’15], [Lorenzo et al. ’15], [Qu et al. ’16],

[Xi-Xin-Khan ’16], [Shi et al. ’16]

Stochastic gradient: [Pu et al. ’18], [Xin-Sahu-Khan-Kar ’19]
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GT-DSGD: Algorithm

Problem: minx
∑

i fi (x)

DSGD with a constant step-size: xik+1 =
∑n

r=1 wir · xrk − α · gi (x
i
k)

Algorithm 1: GT-DSGD at each node i

Data: xi0; {αk}; {wir}nr=1; yi0 = 0p; gr (xi−1, ξ
i
−1) := 0p.

for k = 0, 1, . . . , do

yik+1 =
∑n

r=1 wir

(
yrk + gr (xrk , ξ

r
k)− gr (xrk−1, ξ

r
k−1)

)
xik+1 =

∑n
r=1 wir

(
xrk − αk · yrk+1

)
end

The variable yik tracks the global gradient ∇F (xik) at each node i

Dynamic average consensus: [Zhu et al. ’08]
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GT-DSGD: Experiment

Decentralized linear regression (strongly convex)

Full gradient, n = 500 nodes, random connected graph
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Figure 7: Performance comparison

When perfect gradients are used:
Without GT, convergence is linear but inexact due to the
local-vs-global dissimilarity bias
With GT, convergence is linear and exact

What happens when the gradients are stochastic?
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GT-DSGD (constant step-size):
Addressing the local and global dissimilarity

Smooth non-convex problems satisfying PL condition

22 / 50



GT-DSGD (constant step-size):
Smooth non-convex problems satisfying PL condition

Theorem (abridged, Xin-Khan-Kar ’20†)

Let F satisfy the PL condition. For a certain constant step-size α, the
mean optimality gap decays linearly at O((1− µα)k) to an error ball:

lim sup
k→∞

1

n

n∑
i=1

E
[
F (xik)− F ∗

]
≤ O

(ακ
n
ν2
)

︸ ︷︷ ︸
Centralized minibatch SGD

+O
(
α2κL

λ2

(1− λ)3
ν2

)
︸ ︷︷ ︸

Decentralized network effect

The bias due to the local and global cost dissimilarity is eliminated

For α ≤ O
( (1−λ)3

λ2nL

)
, the R.H.S matches centralized minibatch SGD

n times better than the centralized SGD

(with data parallelization and communication over n machines)

The results are immediately applicable to strongly convex problems

Perfect gradient (ν = 0): ε-complexity is O(κ5/4 log 1
ε
)

Improves the best known rate under PL [Tang et al. ’19]

Under strong convexity [Li et al. ’19]: O(κ log 1
ε ) ]

†An improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195 23 / 50
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GT-DSGD (constant step-size):
Addressing the local and global dissimilarity

General smooth non-convex problems
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GT-DSGD (constant step-size):
General (smooth) non-convex problems

Theorem (abridged, Xin-Khan-Kar ’20†)

For any step-size α ∈
(

0,min
{

1, 1−λ2

3λ , (1−λ2)2

4
√

3λ2

}
1

2L

]
, we have ∀K > 0,

1

nK

n∑
i=1

K−1∑
k=0

E
[∥∥∇F (xik )

∥∥2
]

︸ ︷︷ ︸
Mean-squared stationary gap

≤
4(F (x0)− F∗)

αK
+

2αL

n
ν

2︸ ︷︷ ︸
Centralized minibatch SGD

+
320α2L2λ2

(1− λ2)3
ν

2 +
64α2L2λ4

(1− λ2)3K

‖∇f0‖2

n︸ ︷︷ ︸
Decentralized network effect

Asymptotic characterization, K →∞

For any α ≤ O
( (1−λ)3

λ2nL

)
, the R.H.S matches the centralized

minibatch SGD (up to constant factors)
n times improvement over centralized SGD

†An improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195
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GT-DSGD (constant step-size):
General (smooth) non-convex problems

Theorem (abridged, Xin-Khan-Kar ’20†)

Let ‖∇f0‖2 = O(n), α = ( n
K

)
1/2, and K ≥ 4nL2 max

{
1, 9λ2

(1−λ2)2 ,
48λ4

(1−λ2)4

}
, then

1

n

n∑
i=1

1

K

K−1∑
k=0

E
[
‖∇F (xik )‖2

]
≤

4(F (x0)− F∗)
√
nK

+
2ν2

aL√
nK︸ ︷︷ ︸

Centralized minibatch SGD

+
320nλ2ν2

aL
2

(1− λ2)3K
+

64nL2λ4

(1− λ2)3K 2︸ ︷︷ ︸
Decentralized network effect

Thus, with K ≥ Knc := O
(

n3λ4L2

(1−λ)6

)
,

1

n

n∑
i=1

1

K

K−1∑
k=0

E
[
‖∇F (xik )‖2

]
≤ O

(
ν2
aL√
nK

)
.

Non-asymptotic characterization

Linear O(n) speedup over centralized SGD
Network-independent convergence rate (in a finite time)

†An improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195
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GT-DGD (constant step-size): Demo

Full gradient, decentralized linear regression, n = 100 nodes

Each node possesses one data point

Collaborate to learn the slope and intercept
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GT-DSGD (constant step-size): Experiment

Full vs. stochastic gradient

Decentralized linear regression, n = 100 nodes

0 50 100 150 200 250
10 -20

10 -15

10 -10

10 -5

100

0 50 100 150 200 250
10 -20

10 -15

10 -10

10 -5

100

Figure 8: GT-DGD vs. GT-DSGD

Gradient tracking eliminates the local and global dissimilarity bias

The variance of the stochastic gradient still remains

Addressing the variance
Online problems: decaying step-sizes
Batch problems: variance reduction
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Online GT-DSGD (decaying step-sizes)
Addressing the local and global dissimilarity

Addressing the variance of the stochastic gradient
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GT-DSGD (decaying step-sizes):
Smooth non-convex problems satisfying PL condition

Theorem (abridged, Xin-Khan-Kar ’20†)

Consider the step-size sequence αk = 6
µ(k+γ) , with γ = max

{
6
µα ,

8
1−λ2

}
.

Suppose that ‖∇f(x0)‖2 = O(n), then we have

1

n

n∑
i=1

E
[
F (xik)− F ∗

]
≤ O

(
κ2 (F (x0)− F ∗)

k2
+

κ

nµk
ν2

)
,

when k ≥ KPL := O
(

max
{

λ2nκ
(1−λ)3 ,

λκ5/4

1−λ , κ,
λ3/2κ11/8

(1−λ)3/2 ,
κ−1/2

(1−λ)3/2

})
.

Non-asymptotic, asymptotic, and network-independent behaviors

The rate matches the centralized minibatch SGD when k ≥ KPL

Only requires the global cost
∑

i fi to satisfy the PL condition

In contrast, existing work requires each fi to be strongly convex

and k ≥ O( n2κ6

(1−λ)2 ) iterations for network-independence

†An improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195

30 / 50

https://arxiv.org/abs/2008.04195


GT-DSGD (decaying step-sizes):
Smooth non-convex problems satisfying PL condition

Theorem (abridged, Xin-Khan-Kar ’20†)

Consider the step-size sequence: αk = 1
(k+1) . For an arbitrarily small ε>0,

we have ∀i , j ,

P
(

lim
k→∞

k1−ε∥∥xik − xjk
∥∥2

= 0
)

= 1,

P
(

lim
k→∞

k1−ε(F (xik)− F ∗
)

= 0
)

= 1.

Asymptotic almost sure characterization

The proof uses the Robbins-Siegmund almost supermartingale
convergence theorem
This is the first pathwise rate for decentralized stochastic
optimization (to the best of our knowledge)
Leads to almost sure statements for strongly convex problems

The analysis techniques are of value in other related problems
†An improved convergence analysis for decentralized online stochastic
non-convex optimization: https://arxiv.org/abs/2008.04195
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The GT-VR framework: Batch problems
Addressing the local and global dissimilarity

Addressing the variance of the stochastic gradient
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GT-VR framework: Batch problems

Each node i possesses a local batch of mi data samples

The local cost fi is the sum over all data samples
∑mi

j=1 fi,j
Distribution is arbitrary in terms of both quantity and quality

Figure 9: Data distributed within each node and over multiple nodes

Gradient computation
∑mi

j=1∇fi,j is O(mi ) per node per iteration

Full gradient GD can be prohibitively expensive:
xik+1 =

∑
r wir · xrk − α ·

∑mi
j=1∇fi,j(x

i
k)

33 / 50



GT-VR framework: Batch problems

An efficient method is to sample one data point fi,τ per iteration

xik+1 =
∑

r wir · xrk − α · ∇fi,τ (xik)
Performance is impacted due to sampling and local vs. global bias

The GT-VR framework: From ∇fi,τ to ∇F =
∑n

i=1

∑mi

j=1∇fi,j
Local variance reduction at each node
Global gradient tracking over the node network

Figure 10: GT-VR: Sample, estimate using VR, and track using GT

Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH
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GT-SAGA

At node i [Xin-Khan-Kar ’19†]

Maintain a gradient table [∇̂f i,1, . . . , ∇̂f i,mi ]

At each k = 0, 1, . . .

Update xik+1 =
∑

r wir · xrk − α · yik
Sample a random index s ik from 1, . . . ,mi

SAGA [Defazio et al. ’14]: vik+1 = ∇fi,s i
k
(xik+1)− ∇̂f i,s i

k
+ 1

mi

∑
j ∇̂f i,j

Update the gradient table: ∇̂f i,s i
k
← ∇fi,s i

k
(xik+1)

Use the estimated vik+1 to update the GT variable yik+1

†Variance-reduced decentralized stochastic optimization with accelerated

convergence: https://arxiv.org/abs/1912.04230
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GT-SVRG

At node i [Xin-Khan-Kar ’19†]

Outer loop iterate xik , and inner loop iterate xit

At each k, compute the local full gradient: ∇fi (xik) = 1
mi

∑
j ∇fi,j(x

i
k)

At each t = [1, . . . ,T ]

Update xit+1 with the GT variable
Sample a random index τ from 1, . . . ,mi

SVRG [Johnson et al. ’13]: vit+1 = ∇fi,τ (xit+1)−∇fi,τ (xik ) +∇fi (xik )

Use the estimated vit+1 in GT

Set xk+1 = xiT or 1
T

∑
t x

i
t

†Variance-reduced decentralized stochastic optimization with accelerated

convergence: https://arxiv.org/abs/1912.04230
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GT-SARAH

At node i [Xin-Khan-Kar. ’20†]

Outer loop iterate xik , and inner loop iterate xit

At each k, compute the local full gradient: ∇fi (xik) = 1
mi

∑
j ∇fi,j(x

i
k)

At each t = [1, . . . ,T ]

Update xit+1 with the GT variable
Sample a random index τ from 1, . . . ,mi

SARAH [Nguyen et al. ’17], [Fang et al. ’18]:
vit+1 = ∇fi,τ (xit+1)−∇fi,τ (xit) + vit

Use the estimated vit+1 in GT

Set xk+1 = xiT or 1
T

∑
t x

i
t

†A near-optimal stochastic gradient method for decentralized non-convex

finite-sum optimization: https://arxiv.org/abs/2008.07428
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GT-SAGA: Smooth and strongly convex

Theorem (Mean-squared and almost sure convergence
Xin-Khan-Kar ’19†)

Let m := minmi and M := maxi mi . Under a certain constant
step-size α, GT-SAGA achieves an ε-optimal solution of x∗ in

O
(

max
{
M, Mm

κ2

(1−λ)2

}
log 1

ε

)
component gradient computations (iterations) at each node.

In addition, we have, ∀i ∈ {1, · · · , n},

P
(

lim
k→∞

γ−kg

∥∥xik − x∗
∥∥2

= 0

)
= 1,

where γg = 1−min
{
O
(

1
M

)
,O
(

m(1−λ)2

Mκ2

)}
.

†Variance-reduced decentralized stochastic optimization with accelerated

convergence: https://arxiv.org/abs/1912.04230
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GT-SVRG: Smooth and strongly convex

Theorem (Mean-squared and almost sure convergence
Xin-Khan-Kar ’19†)

Let m := minmi and M := maxi mi . Under a certain constant
step-size α, GT-SVRG achieves an ε-optimal solution of x∗ in

O
((

M + κ2 log κ
(1−λ2)2

)
log 1

ε

)
component gradient computations at each node.

In addition, we have, ∀i ∈ {1, · · · , n},

P
(

lim
k→∞

0.8−k
∥∥xki − x∗

∥∥2
= 0

)
= 1.

†Variance-reduced decentralized stochastic optimization with accelerated

convergence: https://arxiv.org/abs/1912.04230
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GT-SAGA vs. GT-SVRG: Smooth and strongly convex

O
(

max
{
M, M

m
κ2

(1−λ)2

}
log 1

ε

)
vs. O

((
M + κ2 log κ

(1−λ2)2

)
log 1

ε

)
Big-data regime M = m ≈ O(κ2(1− λ)−2)

O(M log 1
ε
) vs. centralized O(nM log 1

ε
)

Linear speedup vs. the centralized

Uneven data distribution: M � m = 1

O
(
M κ2

(1−λ)2 log 1
ε

)
vs. O

((
M + κ2 log κ

(1−λ2)2

)
log 1

ε

)
GT-SVRG performs better at the expense of added synchronization
GT-SAGA on the other hand needs O(mi )
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GT-SAGA vs. SVRG: Experiments

Non-asymptotic network-independent convergence

Linear speedup vs. centralized counterparts
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Figure 11: GT-SAGA and GT-SVRG: Behavior in the big-data regime
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GT-SAGA vs. SVRG: Experiments

Comparison with related work
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Figure 12: Performance comparison over different datasets
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GT-SARAH: Smooth and non-convex

Theorem (Almost sure and mean-squared convergence
Xin-Khan-Kar ’20†)

For arbitrary inner loop length, as long as the constant step-size α is less
than a certain upper bound, GT-SARAH’s outer loop iterate xik follows

P
(

lim
k→∞

‖∇F (xik)‖ = 0

)
= 1 and lim

k→∞
E
[∥∥∇F (xik)

∥∥2
]

= 0.

†A near-optimal stochastic gradient method for decentralized non-convex

finite-sum optimization: https://arxiv.org/abs/2008.07428

43 / 50

https://arxiv.org/abs/2008.07428


GT-SARAH: Smooth and non-convex

Total of N = nm data points divided equally among n nodes

Theorem (Gradient computation complexity Xin-Khan-Kar ’20†)

Under a certain constant step-size α, GT-SARAH, with O(m) inner loop
iterations, reaches an ε-optimal stationary point of the global cost F in

H := O
(

max
{
N

1/2, n
(1−λ)2 ,

(n+m)
1/3n

2/3

1−λ

}(
Lc + 1

n

∑n
i=1 ‖∇fi (x0)‖2

)1

ε

)
gradient computations across all nodes, where c := F

(
x0

)
− F ∗.

In the regime n ≤ O(N
1/2(1− λ)3): H = O(N

1/2ε−1)

Matches the near-optimal algorithmic lower bound
[SPIDER: Fang et al. ’18]

†A near-optimal stochastic gradient method for decentralized non-convex

finite-sum optimization: https://arxiv.org/abs/2008.07428
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GT-SARAH: Smooth and non-convex

Minimize a sum of N := nm smooth non-convex functions

Near-optimal Rate: O(N
1/2ε−1) in the regime n ≤ O(N

1/2(1− λ)3)

Matches the near-optimal algorithmic lower bound
[SPIDER: Fang et al. ’18]

Independent of the variance of local gradient estimators

Independent of the local vs. global dissimilarity bias

Network-independent performance

Linear speedup
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Conclusions

Gradient tracking plus DSGD (constant step-sizes)
GT eliminates the local vs. global dissimilarity bias
Improved rates for non-convex functions (and PL condition)

Gradient tracking plus DSGD (decaying step-sizes)
Decaying step-sizes eliminate the variance due to the stochastic grad
Improved rates and analysis for non-convex functions satisfying the
PL condition

GT-VR for batch problems
Linear convergence for smooth strongly convex problems
Near-optimal performance for non-convex finite sum problems

Linear speedup

Network-independent convergence behavior

Regimes where decentralized methods “ outperform” their
centralized counterparts

46 / 50



GT-SARAH: Analysis
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GT-SARAH: Analysis

Use the L-smoothness of F to establish the following lemma

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L
2
‖y − x‖2 ∀x, y ∈ Rp

Lemma (Descent inequality)

If the step-size follows that 0 < α ≤ 1
2L , then we have

E
[
F
(
xT+1,K)] ≤ F (x0,1)−

α

2

K,T∑
k,t

E
[∥∥∥∇F (xt,k )

∥∥∥2
]

− α

 1

4

K,T∑
k,t

E
[∥∥∥vt,k∥∥∥2

]
−

K,T∑
k,t

E
[∥∥∥vt,k−∇f(xt,k )

∥∥∥2
]
− L2

K,T∑
k,t

E
[∥∥∥xt,k − 1⊗ xt,k

∥∥∥2

n

]

The object in red has two errors that we need to bound

Gradient estimation error: E[‖vt,k −∇f(xt,k)‖2]
Agreement error: E[‖xt,k − 1⊗ x̄t,k‖2]
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GT-SARAH: Analysis

Lemma (Gradient estimation error)

We have ∀k ≥ 1,
T∑
t=0

E
[
‖vt,k −∇f(xt,k )‖2

]
≤

3α2TL2

n

T−1∑
t=0

E
[
‖vt,k‖2

]
+

6TL2

n

T∑
t=0

E
[‖xt,k − 1⊗ x̄t,k‖2

n

]
.

Lemma (Agreement error)

If the step-size follows 0 < α ≤ (1−λ2)2

8
√

42L
, then

K∑
k=1

T∑
t=0

E
[
‖xt,k − 1⊗ x̄t,k‖2

n

]
≤

64α2

(1− λ2)3

‖∇f(x0,1)‖2

n
+

1536α4L2

(1− λ2)4

K∑
k=1

T∑
t=0

E
[
‖vt,k‖2

]
.

Agreement error is coupled with the gradient estimation error

Derive an LTI system that describes their evolution

Analyze the LTI dynamics to obtain the agreement error lemma

Use the two lemmas back in the descent inequality
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GT-SARAH: Analysis

Lemma (Refined descent inequality)

For 0 < α ≤ α := min
{

(1−λ2)2

4
√

42
,
√
n√

6T
,
(

2n
3n+12T

) 1
4 1−λ2

6

}
1

2L
, we have

1

n

n,K,T∑
i,k,t

E
[
‖∇F

(
xt,ki

)
‖2
]
≤

4(F
(
x0,1
)
−F∗)

α
+

(
3

2
+

6T

n

)
256α2L2

(1− λ2)3

∥∥∇f(x0,1)
∥∥2

n
.

Taking K →∞ on both sides leads to
∑∞,T

k,t E[‖∇F (xt,ki )‖] <∞
Mean-squared and a.s. results follow

Divide both sides by K · T and solve for K when the R.H.S ≤ ε
Gradient computation complexity follows by nothing that GT-SARAH
computes n(m + 2T ) gradients per iteration across all nodes
Choose α as the maximum and T = O(m) to obtain the optimal rate
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