On embedding of diffeomorphisms on Banach space in regular iteration semigroup

Marek Cezary Zdun

Abstract

Let X be a real Banach space, $U \subset X$ be an open set and $F: U \to U$ be a diffeomorphism. A family of C^1 mappings $\{f_t: U \longrightarrow U, t \ge 0\}$ is said to be a regular iteration semigroup or semiflow of f if

$$f_s(f_t(x)) = f_{t+s}(x), \quad t, s \ge 0, \quad x \in U$$

and $f = f_1$.

Let $0 \in U$ be a unique globally attractive fixed point of f. Assume that there exists a linear bounded operator $A: X \longrightarrow X$ such that f'(0) = expA. We give some conditions which imply the existence of the following limit

$$f_t(x) := \lim_{n \to \infty} f^{-n}((\exp tA)f^n(x)), \quad x \in U, \quad t \ge 0$$

and the property that the mappings $\{f_t, t \ge 0\}$ yields a regular iteration semigroup of f.

An application for C^1 iterative roots of f is given, that is the functions g such that $g^n = f$. In particular we consider the case $X = \mathbb{R}^n$.

Institute of Mathematics Pedagogical University ul. Podchorążych 2 PL-30-084 Kraków Poland E-mail: mczdun@ap.krakow.pl