
1

Influence Maximization Revisited: Efficient Sampling with
Bound Tightened

QINTIAN GUO, The Chinese University of Hong Kong, China

SIBO WANG∗, The Chinese University of Hong Kong, China

ZHEWEI WEI, Gaoling School of Artificial Intelligence, Renmin University of China, China

WENQING LIN, Tencent, China
JING TANG, The Hong Kong University of Science and Technology (Guangzhou), China and The Hong

Kong University of Science and Technology, China

Given a social network 𝐺 with 𝑛 nodes and 𝑚 edges, a positive integer 𝑘 , and a cascade model C, the
influence maximization (IM) problem asks for 𝑘 nodes in𝐺 such that the expected number of nodes influenced

by the 𝑘 nodes under cascade model C is maximized. The state-of-the-art approximate solutions run in

𝑂 (𝑘 (𝑛 +𝑚) log𝑛/𝜖2) expected time while returning a (1 − 1/𝑒 − 𝜖) approximate solution with at least 1 − 1/𝑛
probability. A key phase of these IM algorithms is the random reverse reachable (RR) set generation, and this

phase significantly affects the efficiency and scalability of the state-of-the-art IM algorithms.

In this paper, we present a study on this key phase and propose an efficient random RR set generation

algorithm under IC model. With the new algorithm, we show that the expected running time of existing IM

algorithms under IC model can be improved to 𝑂 (𝑘 · 𝑛 log𝑛/𝜖2), when for any node 𝑣 , the total weight of its

incoming edges is no larger than a constant. For general IC model where the weights are skewed, we present

a sampling algorithm SKIP. To the best of our knowledge, it is the first index-free algorithm that achieves the

optimal time complexity of the sorted subset sampling problem.

Moreover, existing approximate IM algorithms suffer from scalability issues in high influence networks

where the size of random RR sets is usually quite large. We tackle this challenging issue by reducing the

average size of random RR sets without sacrificing the approximation guarantee. The proposed solution is

orders of magnitude faster than states of the art as shown in our experiment.

Besides, we investigate the issues of forward propagation and derive its time complexity with our proposed

subset sampling techniques. We also present a heuristic condition to indicate when the forward propagation

approach should be utilized to estimate the expected influence of a given seed set.

CCS Concepts: • Mathematics of computing→ Graph algorithms.

∗
Sibo Wang and Zhewei Wei are the corresponding authors.

Sibo Wang is supported by Hong Kong RGC ECS (Grant No. 24203419), Hong Kong RGC CRF (Grant No. C4158-20G), Hong

Kong ITC ITF (Grant No. MRP/071/20X), CUHK Direct Grant (Grant No. 4055181) and NSFC of China (Grant No. U1936205).

Zhewei Wei’s work was partially done at MOE Key Lab of Data Engineering and Knowledge Engineering, and Peng Cheng

Laboratory, and was supported in part by National Natural Science Foundation of China (No. 61932001 and No. 61972401),

Beijing Natural Science Foundation (No. 4222028), and the major key project of PCL (PCL2021A12). Jing Tang’s work is

partially supported by HKUST(GZ) under a Startup Grant.

Authors’ addresses: Qintian Guo, qtguo@se.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong, China; Sibo

Wang, The Chinese University of Hong Kong, Hong Kong, China, swang@se.cuhk.edu.hk; Zhewei Wei, Gaoling School of

Artificial Intelligence, Renmin University of China, Beijing, China, zhewei@ruc.edu.cn; Wenqing Lin, Tencent, Shenzhen,

China, edwlin@tencent.com; Jing Tang, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou,

China and The Hong Kong University of Science and Technology, Hong Kong, China, jingtang@ust.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2022/1-ART1 $15.00

https://doi.org/10.1145/3533817

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0001-9581-9817
HTTPS://ORCID.ORG/0000-0003-1892-6971
HTTPS://ORCID.ORG/0000-0003-3620-5086
HTTPS://ORCID.ORG/0000-0003-4741-801X
HTTPS://ORCID.ORG/0000-0002-0785-707X
https://orcid.org/0000-0001-9581-9817
https://orcid.org/0000-0003-1892-6971
https://orcid.org/0000-0003-1892-6971
https://orcid.org/0000-0003-3620-5086
https://orcid.org/0000-0003-4741-801X
https://orcid.org/0000-0002-0785-707X
https://doi.org/10.1145/3533817

Additional Key Words and Phrases: Influence Maximization; Sampling

ACM Reference Format:
Qintian Guo, Sibo Wang, Zhewei Wei, Wenqing Lin, and Jing Tang. 2022. Influence Maximization Revisited:

Efficient Sampling with Bound Tightened. ACM Trans. Datab. Syst. 1, 1, Article 1 (January 2022), 45 pages.

https://doi.org/10.1145/3533817

1 INTRODUCTION
In social networks, cascademodels the word-of-mouth effect that users adopt certain products, take

up some opinions or receive certain information due to the influence of their friends. Given a social

network 𝐺 with 𝑛 nodes and𝑚 edges, a positive integer 𝑘 , and a cascade model C, the influence
maximization (IM) problem asks for 𝑘 nodes in 𝐺 that can infect the largest number of nodes in

cascade model C. IM finds important applications in viral marketing, a marketing strategy that a

company provides their product freely to a few influential users in social networks, in the hope

that they will recommend the product to their friends.

Kempe et al. [30] present the first seminal work on IM, and show that finding 𝑘 users which

maximizes the influence is NP-hard. They consider two popular cascade models, the Independent-
Cascade (IC) model and Linear-Threshold (LT) model, and provide a general greedy algorithm that

provides (1 − 1/𝑒 − 𝜖)-approximate solutions for both cascade models. However, the proposed

solution requires Ω(𝑘 ·𝑚 · 𝑛 · 𝑝𝑜𝑙𝑦 (1/𝜖)) running time and is prohibitively expensive on large

social networks. A plethora of research works then study how to improve the efficiency of the IM

problem. Most algorithms rely on heuristics to identify those highly influential nodes but fail to

provide the desired approximation guarantee.

To tackle this challenging issue, Borgs et al. [9] make a theoretical breakthrough that reduces

the time complexity to 𝑂 (𝑘 (𝑚 + 𝑛) log
2 𝑛/𝜖3), which is almost linear to the graph size, while still

providing (1 − 1/𝑒 − 𝜖)-approximation under the Independent Cascade model. They further prove

a lower bound Ω(𝑚 + 𝑛) for the expected running time on general graphs under IC model. The

key idea of their proposed solution is to generate a sufficiently large number of random reverse
reachable (RR) sets, and then apply the greedy algorithm to select the 𝑘 nodes. A line of follow-up

research work then focuses on how to reduce the number of random reverse reachable sets to

achieve better efficiency while providing the same approximation guarantee. The representatives

include [42, 46–48]. Tang et al. [48] present TIM/TIM+, which reduces the time complexity to

𝑂 (𝑘 (𝑚 + 𝑛)𝜖−2
log𝑛), and further show that the idea of reverse reachable sets can be applied to

both IC and LT model. Later, Tang et al. [47] propose IMM, Nguyen et al. [42] develop SSA and

D-SSA, and Tang et al. propose OPIM-C [46] to further improve the empirical efficiency by reducing

the number of random RR sets generated without improving the time complexity. This line of

RR-set-based solutions is shown to provide superb efficiency on large scale social networks under

several popular cascade models. For instance, on Twitter network with 1.5 billion edges, OPIM-C

can return an approximate answer within 10 seconds. However, these IM algorithms, using RR set

as the backbone, suffer from scalability issues in high influence networks as evidenced by existing

empirical studies [7]. How to tackle this challenge is still an open problem.

Motivated by this, in this paper, we present an in-depth study on the random RR set generation,

the key phase for all existing RR-set-based solutions. Instead of trying to reduce the number of

RR sets, we consider from a totally different perspective, by reducing the computational cost for

generating a random RR set. We improve the efficiency of RR set generation by effective subset

sampling and show that our new RR set generation algorithm improves over the existing RR

set generation algorithm by up to an order of magnitude. With the new algorithm, we show

that the expected running time of existing IM algorithms under IC model can be improved to

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3533817

𝑂 (𝑘 · 𝑛 log𝑛/𝜖2)1, when for any node 𝑣 , the total weight of its incoming edges is no larger than a

constant. We further show that without modifying the existing RR set generation algorithm under

LT model, the time complexity can be improved to 𝑂 (𝑘 · 𝑛 log𝑛/𝜖2) as well.
Moreover, in high influence networks, the size of a random RR set tends to be extremely large,

and it takes prohibitive computational and memory costs. For instance, in the pandemic, messages

about COVID-19 are easily get propagated across the social network, resulting in a phenomena

called Infodemic. In such scenarios, even if we apply our new algorithm to generate the random RR

sets, it is still too expensive since the size of a random RR set is too large. To remedy this deficiency,

we propose a non-trivial two-phase solution that significantly reduces the average size of random

RR sets, making our solution practical for high influence networks. The main idea is that we first

select a set 𝐵 of 𝑏 nodes as the seeds and then select the remaining 𝑘 − 𝑏 nodes. When we select

the remaining 𝑘 − 𝑏 nodes, the RR set generation process can immediately stop when any node in

𝐵 is reached. Thus, the average size of the random RR sets can be reduced. The main challenge is

how to retain the approximation guarantee with this idea. We show that our proposed solution still

provides the same theoretical result as existing solutions. Experimental results demonstrate that

with our solution, the average size of random RR sets can be reduced by up to 700x. Our solution is

further up to two orders of magnitude faster than alternatives.

Though the RR-set-based solution is highly efficient to find out a seed set for the IM problem,

unfortunately it provides limited propagating information. For instance, given a seed set obtained

by RR-set-based solutions, we have no idea about which nodes will be influenced with a probability

higher than a certain threshold. Such a query is sensible on its own. In viral marketing, after

providing products to influential users, a company has the motivation to further distribute coupons

to those who are more likely to purchase the products, in hope of improving its sales performance.

To tackle this issue, if we still insist to apply the RR-set-based solution, then we need to generate

a large number of RR sets from each target node, which incurs prohibitive computational costs.

However, another solution is to conduct many simulations starting from the obtained seed set 𝑆 ,

each of which follows the definition of the influence propagation process. Then for node 𝑣 , the

fraction of the simulations in which 𝑣 is finally activated is an estimator for the probability that 𝑣 is

influenced with respect to seed set 𝑆 . In contrast to the RR-set-based approach, such simulations

are referred to as forward propagations. From the aforementioned example, it is showed that the

forward propagation could be a powerful tool in some scenarios, deserving our full attention. In

this paper, we develop non-trivial results about this problem.

This manuscript is a journal extension to our previous conference paper [26]. We summarize the

main differences from our conference version as follows:

• For general IC model where the weights are skewed, the index-based solution for the subset

sampling problem might suffer from cache efficiency issues as it requires a two-dimensional

index structure. In Section 4, we propose a sampling algorithm, dubbed as SKIP, which

achieves the optimal time complexity of the index-free sorted subset sampling problem [11].

To our best knowledge, this is the first index-free algorithm that achieves the optimal time

complexity. Our experimental results demonstrate that it further achieves better practical

performance than existing solutions.

• In Section 6.1, we prove that with a constraint that the total weight of the incoming edges

for any node 𝑣 ∈ 𝑉 is bounded by a constant number, the cost of a forward propagation

with our subset sampling technique is bounded by 𝑂 (IC (𝑆)), where IC (𝑆) is the expected
influence of the seed set 𝑆 . It is optimal since it costs at least 𝑂 (1) to sample an influenced

node. Furthermore, experimental evaluations show its practical efficiency.

1
The lower bound in [9] only applies to general IC model.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Table 1. Frequently used notations.

Notation Description
𝐺 (𝑉 , 𝐸) a social network with node set 𝑉 and edge set 𝐸

𝑛,𝑚 𝑛 = |𝑉 |, and𝑚 = |𝐸 |
𝐼𝑁 (𝑣),𝑂𝑈𝑇 (𝑣) the set of in-neighbours and out-neighbours of node 𝑣 , re-

spectively

𝑑𝑖𝑛 (𝑣), 𝑑𝑜𝑢𝑡 (𝑣) 𝑑𝑖𝑛 (𝑣) = |𝐼𝑁 (𝑣) |, and 𝑑𝑜𝑢𝑡 (𝑣) = |𝑂𝑈𝑇 (𝑣) |, respectively
𝑑𝑎𝑣𝑔 the average degree of an undirected graph

IC (𝑆) the expected influence of 𝑆

𝑂𝑃𝑇𝑘 the maximal IC (𝑆) for any size-𝑘 seed set

𝑆𝑜
𝑘

an optimal seed set with IC (𝑆𝑜𝑘) = 𝑂𝑃𝑇𝑘
𝑆∗
𝑘

the size-𝑘 seed set returned by a certain algorithm

𝑅 a random RR set

R a set of random RR sets, that is, R = {𝑅1, 𝑅2, . . .}
ΛR (𝑆) the coverage of a seed set 𝑆 with respect to R
I−
C
(𝑆) a lower bound of the expected influence of 𝑆

I+
C
(𝑆𝑜
𝑘
) an upper bound of the expected influence of 𝑆𝑜

𝑘

• Since a forward propagation is bounded by 𝑂 (IC (𝑆)), if the given seed set has low expected

influence, it is possible to reap some benefits from using the forward propagation approach

when estimating influence of a given seed set. In Section 6.2, we first prove that it takes

𝑂 (𝑑𝑎𝑣𝑔) to sample a random RR set on undirected graphs under WC model, where 𝑑𝑎𝑣𝑔 is

the average degree. With this bound on hand, we further develop a heuristic condition to

indicate when the forward propagation approach should be used. Experimental evaluations

show that for those seed sets satisfying the proposed condition, the forward propagation

estimator does provide a much better practical performance in terms of influence estimation.

The rest of this manuscript is organized as follows. Section 2 reviews the definition of the IM

problem and existing solutions. Section 3 presents our SUBSIM framework for WC and Uniform IC

model. Section 4 extends SUBSIM to general IC model with index-based and index-free solutions.

Section 5 handles with the highly influential scenarios where existing RR-set-based solutions suffer

from scalability issues. Section 6 focuses on the forward propagation issues. Section 7 reviews

related work, and Section 8 shows the experimental evaluations.

2 PRELIMINARIES
2.1 Problem Definition
Let 𝐺 = (𝑉 , 𝐸) be a directed graph 𝐺 with 𝑛 nodes and 𝑚 edges representing a social network

where each node 𝑣 ∈ 𝑉 represents a user and each edge (𝑢, 𝑣) ∈ 𝐸 represents the relationship,

e.g., friendship, between 𝑢 and 𝑣 . If (𝑢, 𝑣) ∈ 𝐸, we say that 𝑢 is the in-neighbor of 𝑣 and 𝑣 is the

out-neighbor of 𝑢. Assume that each edge 𝑒 = (𝑢, 𝑣) is associated with a weight 𝑝 (𝑢, 𝑣) ∈ [0, 1],
denoted as the propagation probability. Given a set 𝑆 of nodes in 𝐺 , we consider the following

discrete-time stochastic cascade process C which applies to both the Independent Cascade and

Linear Threshold model:

• At timestamp 0, all the nodes in set 𝑆 are activated and the remaining nodes are inactive. A node

activated will remain activated in subsequent timestamps.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

• If a node is activated at timestamp 𝑖 , it has a chance to activate its out-neighbors at timestamp

𝑖 + 1 according to some probability distribution (depending on the cascade model), after which it

cannot activate any node.

• The influence propagation terminates when none of the activated nodes can activate other nodes.

Let 𝐼𝐶 (𝑆) be the number of activated nodes in 𝐺 for an instance 𝐶 of above stochastic propagation

C. We denote set 𝑆 as the seed set and 𝐼𝐶 (𝑆) as the influence of 𝑆 in stochastic propagation instance

𝐶 , and denote IC (𝑆) = E𝐶∈C [𝐼𝐶 (𝑆)] as the expected influence of 𝑆 under the cascade process C.
Table 1 lists the notations used frequently in this paper.

Definition 1 (Influence Maximization). Given a graph𝐺 , a cascade model C, and an integer 𝑘 ,
the influence maximization problem asks for a size-𝑘 seed set 𝑆𝑘 with the largest expected influence,
i.e., 𝑆𝑘 = arg max𝑆′: |𝑆′ |=𝑘 IC (𝑆 ′).

Cascade Models. We focus on two widely adopted diffusion models: the Independent Cascade (IC)
model and Linear Threshold (LT) model. Both models share the same discrete-time cascade process

as mentioned in Section 2.1 and the main difference lies in how the inactive nodes get activated:

• IC model. Suppose node 𝑢 gets activated at timestamp 𝑖 , then 𝑢 has a single chance to activate

its inactive out-neighbor 𝑣 with probability 𝑝 (𝑢, 𝑣) at timestamp 𝑖 + 1.

• LT model. In the LT model, it assumes that for each node 𝑣 : (i) the sum of the propagation

probability of its incoming edges is no more than 1, and (ii) a probability _𝑣 is selected uniformly

at random from [0, 1]. If 𝑣 is inactive at timestamp 𝑖 , then it becomes activated at timestamp 𝑖 + 1

if and only if

∑
𝑢∈𝐴 𝑝 (𝑢, 𝑣) ≥ _𝑣 , where 𝐴 is the set of activated in-neighbor of 𝑣 at timestamp 𝑖 .

2.2 Existing Solutions
As mentioned in Section 1, most existing scalable IM methods utilize a sampling technique called

Reverse Influence Sampling (RIS), proposed by Borgs et al. [9]. This technique is based on the concept

of random reverse reachable (RR) set. A random RR set 𝑅 is constructed in two steps: (i) randomly

select a node 𝑣 ∈ 𝑉 ; (ii) reversely sample the set 𝑅 of nodes that can activate 𝑣 , such that for each

node 𝑢 ∈ 𝑉 , the probability that it appears in 𝑅 equals the probability that 𝑢 can activate 𝑣 . This set

𝑅 is denoted as a reverse reachable set of 𝑣 , and node 𝑣 is the target node of the RR set 𝑅.

Under IC model, we can generate a random RR set as follows: Generate a directed graph 𝑔 by

removing each edge 𝑒 with probability 1 − 𝑝 (𝑒) independently, and denote G as the distribution of

𝑔. Given an instance 𝑔 of distribution G and a node 𝑣 , the reverse reachable set 𝑅 for 𝑣 in 𝑔 is the

set of nodes in 𝑔 that can reach 𝑣 . 𝑅 is a random RR set if 𝑣 is sampled uniformly at random from𝑉 .

Intuitively, if a set 𝑆 is highly influential, then there is a high chance that some nodes in 𝑆 appear

in the RR set of a randomly generated node 𝑣 . Borgs et al. [9] establish the following connection

between the expected influence of 𝑆 and a random RR sample.

Lemma 1. Let 𝑆 ⊆ 𝑉 be a seed set and 𝑅 be a random RR set generated with diffusion model C, then

IC [𝑆] = 𝑛 · Pr[𝑆 ∩ 𝑅 ≠ ∅] .

Lemma 1 indicates that we can estimate the expected influence of an arbitrary seed set 𝑆 using

random RR sets. We say 𝑆 covers an RR set 𝑅 if 𝑆 ∩ 𝑅 ≠ ∅. Assume that we generate a set R of

random RR sets. Define the coverage ΛR (𝑆) of a seed 𝑆 with respect to R as the number of RR sets

in R that is covered by 𝑆 . Then, 𝑛 · ΛR (𝑆)/|R| provides an unbiased estimation of the expected

influence of 𝑆 .

Borgs et al.’s solution. With Lemma 1, Borgs et al. [9] propose a two-step method for IM. Firstly,

a sufficiently large set R of random RR sets is generated. Given a node 𝑣 and the set R, define the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 1:Max-Coverage-Greedy(R, 𝑘)

1 𝑆∗
𝑘
= ∅;

2 for 𝑖 = 1 to 𝑘 do
3 𝑣 ← arg max𝑣′∈𝑉 (ΛR (𝑆∗𝑘 ∪ {𝑣

′})) − ΛR (𝑆∗𝑘);
4 𝑆∗

𝑘
← 𝑆∗

𝑘
∪ {𝑣};

5 return 𝑆∗
𝑘
;

marginal coverage of 𝑣 w.r.t a set 𝑆 as:

ΛR (𝑣 |𝑆) = ΛR ({𝑣} ∪ 𝑆) − ΛR (𝑆).
Then, in the second phase of their solution, it simply applies the standard greedy algorithm as

shown in Algorithm 1 that iteratively selects the node with the maximum marginal coverage with

respect to the set of selected nodes in previous iterations. Denote this set as 𝑆∗
𝑘
and return 𝑆∗

𝑘
as

the solution. Let 𝑆𝑜
𝑘
be the size-𝑘 seed set that covers the largest number of RR sets in R and 𝑆𝑜

𝑘
be

the optimal seed that provides the highest expected influence. Then obviously, ΛR (𝑆𝑜𝑘) ≥ ΛR (𝑆𝑜𝑘).
Then, the greedy algorithm guarantees that:

ΛR (𝑆∗𝑘) ≥ (1 − 1/𝑒)ΛR (𝑆𝑜𝑘) ≥ (1 − 1/𝑒)ΛR (𝑆𝑜𝑘).
Borgs et al. show that 𝑆∗

𝑘
provides a (1 − 1/𝑒 − 𝜖)-approximate solution with probability at least

1 − 1/𝑛 if 𝑂 (𝑘 (𝑚 + 𝑛)𝜖−3
log

2 𝑛) edges are examined in the RR set generation.

TIM+ and IMM. Tang et al. [48] present an improved algorithm TIM+ , which runs in 𝑂 (𝑘 · (𝑛 +
𝑚)𝜖−2 · log𝑛) time. The main idea is to use Chernoff bound to decide if the number of RR sets,

instead of the number of edge examined, is sufficient to provide an approximation guarantee. Later,

Tang et al. [47] present IMM that uses a martingale-based technique to allow the random RR set to

have some weak dependencies without affecting the concentration bound. They apply below two

martingale-based concentration bounds tailed for IM.

Lemma 2 ([47]). Given a fixed number \ of random RR sets and a seed set 𝑆 , for any _ > 0,

Pr

[
ΛR (𝑆) − IC (𝑆) ·

\

𝑛
≥ _

]
≤ exp

(
− _2

2IC (𝑆) · \𝑛 +
2

3
_

)
,

Pr

[
ΛR (𝑆) − IC (𝑆) ·

\

𝑛
≤ −_

]
≤ exp

(
− _2

2IC (𝑆) · \𝑛

)
.

As shown in [47], IMM offers the same guarantee as that of TIM+, but gains better practical
performance since it reduces the number of RR set samples and thus the query time.

SSA and D-SSA. All previous methods are pessimistic about the seed set selected in the greedy

algorithm and thus apply the union bound on the possible

(
𝑛
𝑘

)
size-𝑘 seeds for the case when the

seed set selected does not provide an approximation guarantee. Thus, the final time complexity

will depend on 𝑘 and the larger 𝑘 it is, the more RR sets are required to provide the approximation

ratio. Nguyen et al. [42] propose SSA and D-SSA to alleviate the (empirical) dependency on 𝑘 by

being optimistic about the seeds selected by Algorithm 1 and then use a validation phase to verify

if the chosen seed is good or not. They claim that they provide the same theoretical result as IMM,

but Huang et al. [28] show that the theoretical analysis of SSA and D-SSA contains loopholes that

invalidate the claimed time complexity and approximation guarantee. Huang et al. further present

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 2: RR set-Generation-IC(𝐺)

1 Randomly sample a node 𝑣 ∈ 𝑉 and set 𝑅 as {𝑣};
2 Add 𝑣 to queue 𝑄 and mark 𝑣 as activated ;

3 while 𝑄 is not empty do
4 Let 𝑢 be the top element of 𝑄 . Pop it from 𝑄 ;

5 for each in-neighbor𝑤 of 𝑢 do
6 if 𝑤 is inactivated and 𝑟𝑎𝑛𝑑 () ≤ 𝑝 (𝑤,𝑢) then
7 Add𝑤 to 𝑅;

8 Add𝑤 queue 𝑄 and mark𝑤 as activated;

9 return 𝑅;

SSA-Fix to reassure the (1−1/𝑒 −𝜖)-approximation guarantee with 1−1/𝑛 probability and pinpoint
that it is unclear how to provide efficiency and approximation guarantee for D-SSA. Nguyen et

al. [39] further present D-SSA-Fix to restore the (1 − 1/𝑒 − 𝜖)-approximation guarantee, but the

efficiency guarantee of D-SSA-Fix is still unclear, as pointed out in [28, 46].

SKIS. A singular RR set is an RR set which includes only one node (i.e., the target node of the

RR set). Nguyen et al. [40] propose a sketching framework, SKIS, which uses the importance

influence sampling method to generate a collection of only non-singular RR sets for influence

estimation. However, such a strategy might not significantly improve the practical performance,

since the generation of a singular RR set does not take much computational cost. To explain, it

can stop immediately after all the incoming edges of the target node have been blocked, and thus

the expected cost of a random singular RR set is only the average in-degree of the graph. Besides,

when we apply the greedy algorithm to get a potential seed set, the SKIS-based solution has to

utilize the max heap method so as to find out the node with the largest marginal influence
which is float data type in each iteration. In contrast, for the RR-set-based solution, a more efficient

implementation of inverted list and lazy update for the greedy algorithm can be used to find out

the node with the largest marginal coverage which is integer data type. This issue also degrades

the practical performance of the SKIS-based solution.

OPIM-C. The latest RR-set-based solution for IM is the OPIM-C algorithm [46]. OPIM-C shares

a similar spirit as SSA/D-SSA in that they are both optimistic about the selected seed set by the

greedy algorithm. In OPIM-C, they first sample a set R1 of RR sets to select the seed set 𝑆∗
𝑘
and

derive the upper bound I+
C
(𝑆𝑜
𝑘
) of IC (𝑆𝑜𝑘). Next, they sample another set R2 of random RR sets with

|R2 | = |R1 | and derive a lower bound I−
C
(𝑆∗
𝑘
) of IC (𝑆∗𝑘). The algorithm terminates as soon as

I−C (𝑆
∗
𝑘
)/I+C (𝑆

𝑜
𝑘
) > (1 − 1/𝑒 − 𝜖),

i.e., when the algorithm provides a (1 − 1/𝑒 − 𝜖)-approximate solution. In OPIM-C, the authors
present strategies to provide a tighter upper bound I+

C
(𝑆𝑜
𝑘
) of IC (𝑆𝑜𝑘). With tighter bounds, the

number of RR set samples can be reduced, thus improving the running time. By applying Lemma 2,

Tang et al.[46] derive the lower bound I−
C
(𝑆∗
𝑘
) as follows:

I−C (𝑆
∗
𝑘
) = ©«

(√︂
ΛR2
(𝑆∗
𝑘
) + 2[𝑙

9

−
√︂
[𝑙

2

)
2

− [𝑙
18

ª®¬ · 𝑛\2

, (1)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

where [𝑙 = ln(1/𝛿𝑙) and 𝛿𝑙 is the probability that the above lower bound fails. By applying Lemma

2, the upper bound I+
C
(𝑆𝑜
𝑘
) is given as follows:

I+C (𝑆
𝑜
𝑘
) =

(√︂
Λ𝑢R1

(𝑆𝑜
𝑘
) + [𝑢

2

+
√︂
[𝑢

2

)2

· 𝑛
\1

, (2)

where [𝑢 = ln(1/𝛿𝑢) and 𝛿𝑢 is the probability that the above upper bound fails; Λ𝑢R1

(𝑆𝑜
𝑘
), an upper

bound of the coverage of 𝑆𝑜
𝑘
with respect to R1, is derived as follows. Though the optimal seed set

𝑆𝑜
𝑘
is unknown, the upper bound Λ𝑢R1

(𝑆𝑜
𝑘
) can be obtained from the construction of 𝑆∗

𝑘
due to the

submodular property of coverage function Λ(·). Let 𝑆∗𝑖 be the set that contains the first 𝑖 nodes
selected by running the greedy algorithm and𝑚𝑎𝑥𝑀𝐶 (𝑆∗𝑖 , 𝑙) be the set of 𝑙 nodes with the 𝑙 largest

marginal coverage in R1 with respect to 𝑆∗𝑖 . Then,

Λ𝑢R1

(𝑆𝑜
𝑘
) = min

0≤𝑖≤𝑘
©«ΛR1

(𝑆∗𝑖) +
∑︁

𝑣∈𝑚𝑎𝑥𝑀𝐶 (𝑆∗
𝑖
,𝑘)

ΛR1
(𝑣 |𝑆∗𝑖)

ª®¬ .
2.3 RR Set Generation
Most of the above solutions (except SKIS) focus on reducing the number of random RR sets and are

identical in how random RR sets are generated. Instead of first generating the graph 𝑔 by flipping a

coin for each edge that incurs 𝑂 (𝑚) cost, the existing RR set generation algorithm for IC model, as

shown in Algorithm 2, starts a traversal from 𝑣 following the reverse directions of its edges. Such

an approach only examines the in-coming edges of nodes in 𝑅, and thus significantly reduces the

running cost for generating an RR set. We refer readers to [46] on how to generate a random RR

set under LT model. According to [9, 48], a random RR set can be constructed in 𝑂 (𝑚
𝑛
· IC (𝑣∗))

expected time, where IC (𝑣∗) is the expected influence of a node 𝑣∗ sampled from 𝑉 where each 𝑣 is

sampled with a probability of 𝑑𝑖𝑛 (𝑣)/𝑚.

Among existing solutions, SKIS is the only work which improves the efficiency of the IM problem

by optimizing the RR set generation phase: it pre-computes the influence contribution of the

singular RR sets for each node 𝑣 in advance, and thus when estimating the influence of a seed set,

what SKIS needs to do is to sample the non-singular RR sets via importance sampling, accelerating

the RR set generation. However, the generation for the non-singular RR sets is still the same as

existing solutions, limiting its effectiveness. In addition, as we mentioned in Section 2.2, SKIS

disallows the efficient implementation of the greedy algorithm, which also degrades the overall

performance of the SKIS-based solutions.

In this paper, we will present a theoretical study on the RR set generation phase to improve the

efficiency of the IM problem. Our proposed solution is from an orthogonal perspective against SKIS

and it can be applied to any RR set, no matter whether the RR set is non-singular or not.

3 SUBSIM
This section presents our SUBSIM (Subset Sampling with Influence Maximization) framework for

IM. We present an efficient RR set generation scheme under WC and Uniform IC model in Section

3.1 and show improved theoretical results on IM algorithms with this new scheme in Section 3.2.

We extend our SUBSIM to general IC model in Section 4.

3.1 A New RR set Generation Scheme
In the existing RR set generation algorithm (Algorithm 2), an expensive step is that when a node

gets activated, it examines all of its in-neighbors and tries to activate each of them once (Algorithm

2 Line 6). In particular, it generates a random number for each incoming edge to determine if each

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 3: SUBSIM(𝐺)

1 Randomly sample a node 𝑣 ∈ 𝑉 and set 𝑅 as {𝑣};
2 Add 𝑣 to queue 𝑄 and mark 𝑣 as activated;

3 while 𝑄 is not empty do
4 Let 𝑢 be the top element of 𝑄 . Pop it from 𝑄 ;

5 Let 𝑢 [𝑖] (𝑖 = 1, 2, . . .) be the 𝑖th in-neighbor of 𝑢;

6 𝑝 ← 1

𝑑𝑖𝑛 (𝑢) under WC;

7 𝑖 ← ⌈log(𝑟𝑎𝑛𝑑 ())/log(1 − 𝑝)⌉;
8 while 𝑖 ≤ 𝑑𝑖𝑛 (𝑢) do
9 𝑤 ← 𝑢 [𝑖];

10 if 𝑤 is not activated then
11 Add𝑤 to 𝑅;

12 Add𝑤 to queue 𝑄 and mark𝑤 as activated;

13 𝑖 += ⌈log(𝑟𝑎𝑛𝑑 ())/log(1 − 𝑝)⌉;
14 return 𝑅;

of its in-coming neighbors will be activated or not. That is actually why the time complexity of

existing IM algorithms depends on the average degree, i.e.,𝑚/𝑛. With subset sampling, we show

that the expected cost to sample an edge 𝑒 under IC model can be reduced to 𝑂 (𝑝 (𝑒)).
Connection with Subset Sampling.We make a connection between subset sampling with the

selection of in-neighbors. Given a set 𝑆 = {𝑥1, 𝑥2, 𝑥3, · · · , 𝑥ℎ} of ℎ elements, and each with a weight

0 ≤ 𝑝 (𝑥𝑖) ≤ 1. Denote ` as the sum of all the weights, i.e., ` =
∑ℎ
𝑖=1
𝑝 (𝑥𝑖). The independent

subset sampling problem asks to sample a random subset 𝑋 such that each element 𝑥𝑖 in 𝑆 will be

independently added to set 𝑅 with probability 𝑝 (𝑥𝑖). The problem of activating the in-neighbors of

a node 𝑣 can be directly mapped to the subset sampling problem. We first consider the case where

all weights are equal and denote this weight as 𝑝 , which covers the scenarios of WC, where the

weights of the incoming edges of the same node 𝑣 are 1/𝑑𝑖𝑛 (𝑣), and Uniform IC where all edges

have the same weight 𝑝 .

When the probabilities are the same, the subset sampling can be effectively solved with geometric

distribution sampling. In particular, we are interested in the event that we successfully sample

the first element from 𝑆 after 𝑋 trials. The probability distribution of 𝑋 follows the geometric

distribution G(𝑝) and the probability is given as follows:

Pr[𝑋 = 𝑖] = (1 − 𝑝)𝑖−1 · 𝑝,

where 𝑖 = 1, 2, 3, · · · . If 𝑖 > ℎ, it indicates that no element is sampled from set 𝑆 . Notice that in

distribution G(𝑝), all trials are assumed to be independent, and therefore it still guarantees that the

sampling of each in-neighbor should be independent. This leads to our RR set generation algorithm

for WC and Uniform IC model as shown in Algorithm 3. The main difference from Algorithm 2 is

Lines 7 and 13, where the algorithm jumps to skip nodes that are not sampled, saving computational

costs. Assume that an ℎ′ ≤ ℎ is sampled from distribution G(𝑝), the first ℎ′−1 elements are skipped

and it directly jumps to the ℎ′-position, sampling element 𝑥ℎ′ . Then, it continues to sample the

first element from the remaining ℎ − ℎ′ nodes. This process is repeated until the sampled ℎ′ is
larger than the number of remaining elements. Note that there exist constant time solutions [31]

to sample from distribution G(𝑝): Given a 𝑈 generated uniformly at random from (0, 1), we can

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

sample ℎ′ from G(𝑝) as
ℎ′ = ⌈log𝑈 /log(1 − 𝑝)⌉ .

To explain, ℎ′ = 𝑖 if and only if𝑈 ∈ [(1−𝑝)𝑖 , (1−𝑝)𝑖−1), which has a probability of (1−𝑝)𝑖−1− (1−
𝑝)𝑖 = (1 − 𝑝)𝑖−1 · 𝑝 , i.e., following distribution G(𝑝). Therefore, the expected cost of the sampling

phase only depends on the number of times we do geometric sampling.

Lemma 3. Given a set 𝑆 of ℎ elements each to be sampled independently with probability 𝑝 , then
the expected cost for sampling a subset 𝑅 is 𝑂 (1 + `), where ` = ℎ · 𝑝 .

Proof. Based on the new sampling strategy, each record is sampled with probability 𝑝 . For all ℎ

records, the probability to sample each edge is ℎ · 𝑝 . Since we need to generate at least one random

number, the cost is 𝑂 (1 + ℎ · 𝑝) = 𝑂 (1 + `). □

Given above results, new bounds can be derived for IM.

3.2 Influence Maximization: A New Bound
With SUBSIM for the RR set generation, we show that the time complexity of existing IM algorithms

can be tightened. We first analyze the running cost of SUBSIM for the RR set generation. The

running cost can be bounded by the number of edges examined during the RR set generation. Denote

\ (𝑥) as a function depending only on 𝑥 , and then we give the following lemma to bound the

running cost of SUBSIM.

Lemma 4. If \ is a concave function and for any node 𝑣 ,
∑
(𝑢,𝑣) ∈𝐸 𝑝 (𝑢, 𝑣) ≤ \ (𝑑𝑖𝑛 (𝑣)), the cost to

generate a random RR set under WC and Uniform IC model can be bounded by \ (𝑚/𝑛) · IC ({𝑣∗}),
where 𝑣∗ is sampled from a distribution where node 𝑣 has \ (𝑑𝑖𝑛 (𝑣))∑

𝑤∈𝑉 \ (𝑑𝑖𝑛 (𝑤)) probability to be sampled.

Proof. We first consider the cost to generate an RR set with a fixed target node 𝑣 . Let Pr[𝑣 𝑅−→ 𝑢]
denote the probability that 𝑢 is included in the RR set, i.e., 𝑢 is activated in the reverse stochastic

traverse from 𝑣 ; let Pr[𝑣 𝑅−→ (𝑤,𝑢)] indicate the probability that (𝑤,𝑢) is examined. Then, (𝑤,𝑢) is
examined if and only if these two events both happen: (a) 𝑢 is activated in the reverse stochastic

traverse from 𝑣 ; (b) edge (𝑤,𝑢) is selected by geometric sampling. With the fact that the expected

cost to examine (𝑤,𝑢) is actually 𝑝 (𝑤,𝑢) under geometric sampling, we can derive the expected

cost E[𝑣 𝑅−→ (𝑤,𝑢)] of edge (𝑤,𝑢) to be:

E[𝑣 𝑅−→ (𝑤,𝑢)] = Pr[𝑣 𝑅−→ (𝑤,𝑢)] = Pr[𝑣 𝑅−→ 𝑢] · 𝑝 (𝑤,𝑢).
The expected cost to generate an RR set with respect to target node 𝑣 , denoted as E[𝐶𝑅 (𝑣)], is:

E[𝐶𝑅 (𝑣)] = E

∑︁
(𝑤,𝑢) ∈𝐸

𝑣
𝑅−→ (𝑤,𝑢)

 =
∑︁
(𝑤,𝑢) ∈𝐸

E
[
𝑣
𝑅−→ (𝑤,𝑢)

]
(by linearity of expectation)

=
∑︁
(𝑤,𝑢) ∈𝐸

Pr[𝑣 𝑅−→ (𝑤,𝑢)] =
∑︁
(𝑤,𝑢) ∈𝐸

Pr[𝑣 𝑅−→ 𝑢] · 𝑝 (𝑤,𝑢)

=
∑︁
𝑢∈𝑉

Pr[𝑣 𝑅−→ 𝑢] ·
∑︁
(𝑤,𝑢) ∈𝐸

𝑝 (𝑤,𝑢) ≤
∑︁
𝑢∈𝑉

\ (𝑑𝑖𝑛 (𝑢)) · Pr[𝑣 𝑅−→ 𝑢] .

Now consider the cost of a random RR set, denoted as 𝐸𝑅 .

𝐸𝑅 =
1

𝑛

∑︁
𝑣∈𝑉
E[𝐶𝑅 (𝑣)] ≤

1

𝑛

∑︁
𝑣∈𝑉

∑︁
𝑢∈𝑉

\ (𝑑𝑖𝑛 (𝑢)) · Pr[𝑣 𝑅−→ 𝑢] .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Further observe that Pr[𝑣 𝑅−→ 𝑢] is equal to the probability that 𝑢 can influence 𝑣 , denoted as

Pr[𝑢 → 𝑣]. Let \ (𝑉) = ∑
𝑤∈𝑉 \ (𝑑𝑖𝑛 (𝑤)). Then, we can derive that:

𝐸𝑅 ≤
\ (𝑉)
𝑛

∑︁
𝑣∈𝑉

∑︁
𝑢∈𝑉

\ (𝑑𝑖𝑛 (𝑢))
\ (𝑉) · Pr[𝑢 → 𝑣]

=
\ (𝑉)
𝑛

∑︁
𝑢∈𝑉

\ (𝑑𝑖𝑛 (𝑢))
\ (𝑉)

∑︁
𝑣∈𝑉

Pr[𝑢 → 𝑣] .

Notice that

∑
𝑣∈𝑉 Pr[𝑢 → 𝑣] indicates the expected influence of node 𝑢. Further let node 𝑣∗ be a

node sampled from a distribution where each node 𝑣 is sampled with probability
\ (𝑑𝑖𝑛 (𝑣))
\ (𝑉) . We can

further derive that:

𝐸𝑅 ≤
\ (𝑉)
𝑛

∑︁
𝑢∈𝑉

\ (𝑑𝑖𝑛 (𝑢))
\ (𝑉) IC ({𝑢})

=
\ (𝑉)
𝑛
· IC ({𝑣∗}) ≤ \ (𝑚/𝑛) · IC ({𝑣∗})

(3)

where the last inequality is due to the concavity of the function \ . This finishes the proof. □

Theorem 1. If \ is a concave function and for any node 𝑣 ,
∑
(𝑢,𝑣) ∈𝐸 𝑝 (𝑢, 𝑣) ≤ \ (𝑑𝑖𝑛 (𝑣)), the time

complexity of IM algorithms under WC and Uniform IC model to provide a (1 − 1/𝑒 − 𝜖)-approximate
solution with 1 − 1/𝑛 probability can be bounded by 𝑂 (𝑘 · \ (𝑚/𝑛) · 𝑛 · log𝑛/𝜖2).

Proof. Note from [47] that, the number of RR sets can be bounded by 𝑂 (𝑘 ·𝑛 ·log𝑛

𝑂𝑃𝑇𝑘 ·𝜖2
), where

𝑂𝑃𝑇𝑘 is the largest expected influence among all seed sets with size no more than 𝑘 . Then, since

IC ({𝑣∗}) ≤ 𝑂𝑃𝑇𝑘 , we know that 𝐸𝑅 = 𝑂 (\ (𝑚/𝑛) ·𝑂𝑃𝑇𝑘). Combining them together, we have:

𝑂 (𝑘 · 𝑛 · log𝑛

𝑂𝑃𝑇𝑘 · 𝜖2
· 𝐸𝑅) = 𝑂 (𝑘 · \ (𝑚/𝑛) · 𝑛 · log𝑛/𝜖2).

This finishes the proof. □

With Theorem 1, we immediately have the following conclusions for three useful cases.

• Case 1: 𝜽 (𝒙) = 𝑶 (1). WC model falls into this case, and the time complexity becomes 𝑂 (𝑘 · 𝑛 ·
log𝑛/𝜖2), improving over existing solutions by 𝑂 (𝑚/𝑛).
• Case 2: 𝜽 (𝒙) = 𝑶 (log(𝒙)). The time complexity becomes 𝑂 (𝑘 · log(𝑚/𝑛) · 𝑛 · log𝑛/𝜖2), which
still improves over existing solutions by 𝑂 (𝑚/𝑛/log(𝑚/𝑛)).
• Case 3: 𝜽 (𝒙) = 𝑶 (𝒑 · 𝒙). Uniform IC falls into this case, and the time complexity becomes

𝑂 (𝑝 · 𝑘 · (𝑚 + 𝑛) · log𝑛/𝜖2), improving over existing solutions by 𝑂 (𝑝).

Extensions to LT model. Notice that under LT model, the cost to sample an edge is also propor-

tional to its weight [46, 47], and it naturally holds that

∑
𝑢∈𝐼𝑁 (𝑣) 𝑝 (𝑢, 𝑣) ≤ 1, where 𝐼𝑁 (𝑣) is the set

of the in-neighbors of 𝑣 . By following the proof of Lemma 4 and Theorem 1, it can be derived that

the time complexity of existing IM algorithms under LT model can be reduced to𝑂 (𝑘 ·𝑛 · log𝑛 ·𝜖−2).

4 EXTENSION TO GENERAL IC MODEL
In Section 3.1, we only discuss WC and Uniform IC, where the weights of the incoming edges

of the same node are equal. However, in practice, the weights might be skewed, e.g., following

exponential distribution, Weibull distribution [47], or by learning from data [22, 23]. In this section,

we discuss how to handle general IC model.

The rest of this section is organized as follows. In Section 4.1, we propose an algorithm, Index-

based Subset Sampling (ISS), which achieves the same time complexity as the WC and Uniform IC

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 4: ISS

1 Input: Buckets 𝐵𝑘 (0 ≤ 𝑘 ≤ 𝐿) and probability table 𝑇 ;

2 Output: A subset 𝑆 sampled from probability distribution {𝑝𝑖 };
3 𝐾 ← ∅;
4 𝑘 ← aliasSampling(𝑇 [0, :]);
5 while 𝑘 ≤ 𝐿 do
6 𝐾 ← 𝐾 ∪ {𝑘};
7 𝑘 ← aliasSampling(𝑇 [𝑘 + 1, :]); ⊲ the (𝑘 + 1)-th row of 𝑇

8 𝑆 ← ∅;
9 for 𝑘 ∈ 𝐾 do
10 𝑝 ← 2

−𝑘
;

11 𝑟 ← 𝑟𝑎𝑛𝑑 ((1 − 𝑝) |𝐵𝑘 |, 1.0); ⊲ random number from ((1 − 𝑝) |𝐵𝑘 |, 1.0)
12 𝑖 ← ⌈log(𝑟)/log(1 − 𝑝)⌉; ⊲ 𝑖 ∈ {1, . . . , |𝐵𝑘 |}
13 do
14 if rand() < 𝑝𝑖/𝑝 then
15 𝑆 ← 𝑆 ∪ {𝑥𝑖 };
16 𝑖 ← 𝑖 + ⌈log(𝑟𝑎𝑛𝑑 ())/log(1 − 𝑝)⌉; ⊲ geometric distribution sampling

17 while 𝑖 <= |𝐵𝑘 |;
18 return S;

19 Preprocessing:
20 𝐿 ← ⌈log

2
ℎ⌉;

21 Divide the set 𝑋 of elements 𝑥𝑖 into 𝐿 buckets: 𝐵𝑘 = {𝑝𝑖 |2−𝑘 ≥ 𝑝𝑖 ≥ 2
−𝑘−1 |} where

0 ≤ 𝑘 ≤ 𝐿 − 1 and 𝐵𝐿 = {𝑝𝑖 |2−𝐿 ≥ 𝑝𝑖 };
22 Create the probability table 𝑇 where 𝑇 [𝑖, 𝑗] stores the probability that 𝐵𝑖 is the current

sample bucket and 𝐵 𝑗 is the next bucket that will be sampled;

cases, at a cost of additional preprocessing indices. In Sections 4.2 and 4.3, we present two index-free

online solutions for the sorted subset sampling problem. In particular, in Section 4.2 we review a

bucket-based solution proposed in [11]. For ease of explanation, we name it BUCKET. In Section

4.3 we present the algorithm SKIP, of which the time complexity achieves the asymptotically tight

bound of the sorted subset sampling problem.

4.1 ISS Algorithm
In this subsection, we provide an index-based solution ISS to handle general IC model. We still map

the selection of in-neighbors to subset sampling and have the following lemma from [11] to bound

its expected cost.

Lemma 5. Given a set 𝑆 = {𝑥1, 𝑥2, · · · , 𝑥ℎ} of ℎ elements where 𝑥𝑖 is independently sampled with 𝑝𝑖
probability, the expected running time to sample a subset 𝑋 can be bounded by 𝑂 (1 + `) with 𝑂 (ℎ)
preprocessing time, where ` =

∑ℎ
𝑖=1
𝑝𝑖 .

The main idea of Lemma 5 is to first divide the probability into different buckets such that 𝑝𝑖
falls into a bucket 𝐵𝑘 if 2

−𝑘 ≥ 𝑝𝑖 ≥ 2
−𝑘−1

(resp. 2
−𝑘 ≥ 𝑝𝑖), where 0 ≤ 𝑘 ≤ ⌈log

2
ℎ⌉ − 1 (resp.

𝑘 = ⌈log
2
ℎ⌉). Then, in each bucket 𝐵𝑘 , we first treat all probability in the bucket to be 2

−𝑘
, and then

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 5: BUCKET

1 Input: A set 𝑋 of elements {𝑥𝑖 } with probability {𝑝𝑖 } in decending order.

2 Output: A subset 𝑆 sampled from probability distribution {𝑝𝑖 }.
3 𝑆 ← ∅; ℎ ← |𝑋 |; 𝐿 ← ⌊log𝛽 ℎ⌋;
4 for 𝑘 = 0 to 𝐿 do
5 𝑝 ← 𝑝𝛽𝑘 ;

6 𝑖 ← 𝛽𝑘 + ⌈log(𝑟𝑎𝑛𝑑 ())/log(1 − 𝑝)⌉ − 1;

7 while 𝑖 < min(𝛽𝑘+1, ℎ + 1) do
8 if rand() < 𝑝𝑖/𝑝 then
9 𝑆 ← 𝑆 ∪ {𝑥𝑖 };

10 𝑖 ← 𝑖 + ⌈log(𝑟𝑎𝑛𝑑 ())/log(1 − 𝑝)⌉;

11 return S;

apply geometric sampling to sample a position ℎ′. When ℎ′ ≤ |𝐵𝑘 |, we skip ℎ′ − 1 elements (like

Algorithm 3) and try to sample the ℎ′-th element in 𝐵𝑘 . However, we further generate a random

variable𝑈 and successfully sample the ℎ′-th element only if𝑈 is no larger than 𝑝ℎ′/2−𝑘 where 𝑝ℎ′
is the probability of the ℎ′-th element in 𝐵𝑘 . By this strategy, the ℎ′-th element is still guaranteed

to be sampled with 2
−𝑘 · 𝑝ℎ′/2−𝑘 = 𝑝ℎ′ probability. For each bucket, the expected sampling cost

increases by at most twice (For the last bucket, it increases to at most 1/ℎ). Therefore, the total
expected cost can be bounded by 𝑂 (1 + ` + logℎ), where the logℎ term comes from sampling in

𝑂 (logℎ) buckets.
Next, we show how to further reduce the logℎ term. Firstly, we calculate the probability to

do at least one geometric sampling from each bucket. Since each bucket 𝐵𝑘 includes at least one

geometric sampling can be calculated as 𝑝 ′
𝑘
= 1− (1− 2

−𝑘) |𝐵𝑘 | . This can be calculated with𝑂 (logℎ)

time as it includes𝑂 (logℎ) bucket. Then, the problem becomes a new subset set sampling problem,

where we are independently sampling each bucket 𝐵𝑘 with probability 𝑝 ′
𝑘
. To avoid testing for each

bucket, an 𝐿 × 𝐿 table can be maintained where𝑇 [𝑖, 𝑗] records the probability that 𝐵𝑖 is the current

sampled bucket and 𝐵 𝑗 (𝑖 < 𝑗) is the next bucket after 𝑖 that will be sampled. We can calculate the

probability of table 𝑇 in 𝑂 (𝐿2) = 𝑂 (log
2 ℎ) time. Also, given a current position 𝑖 , we can sample

according to the probability 𝑇 [𝑖, 𝑖 + 1],𝑇 [𝑖, 𝑖 + 2], · · ·𝑇 [𝑖, ℎ] in 𝑂 (1) time using alias sampling [50].

Then, we can sample the buckets first with 𝑂 (1 + `) time, and sample within each bucket next.

The total cost to sample in each bucket can be bounded by 𝑂 (1 + `) time. Hence, the total cost to

sample a subset 𝑋 from set 𝑆 can be bounded by 𝑂 (1 + `). Algorithm 4 shows the pseudocode of

the above mentioned algorithm.

By Lemma 5 and Theorem 1, we have the following theorem.

Theorem 2. If \ is a concave function and for any node 𝑣 ,
∑
(𝑢,𝑣) ∈𝐸 𝑝 (𝑢, 𝑣) ≤ \ (𝑑𝑖𝑛 (𝑣)), the time

complexity of IM algorithms under general IC model can be bounded by 𝑂 (𝑘 · \ (𝑚/𝑛) · 𝑛 · log𝑛/𝜖2)
so as to provide a (1 − 1/𝑒 − 𝜖)-approximate solution with 1 − 1/𝑛 probability.

However, to achieve 𝑂 (1 + `) expected running time, ISS requires the two-dimensional index

structure, which is quite complicated. It may suffer from cache efficiency issues, especially for

those low-degree nodes, thus giving undesirable practical performance. To tackle this deficiency,

we present index-free subset sampling solutions in the following subsections, which only require

the incoming edges to be sorted in descending order of their probabilities.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 6: SKIP

1 Input: A set 𝑋 of elements 𝑥𝑖 with probability {𝑝𝑖 } in descending order

2 Output: A subset 𝑆 sampled from probability distribution {𝑝𝑖 }
3 𝑆 ← ∅ ;
4 𝑖 ← 1;

5 while 𝑖 ≤ ℎ do
6 𝑗 ← 𝑖 + ⌊log(𝑟𝑎𝑛𝑑 ())/log(1 − 𝑝𝑖)⌋;
7 if 𝑗 > ℎ then
8 return 𝑆 ;

9 if 𝑟𝑎𝑛𝑑 () ≤ 𝑝 𝑗/𝑝𝑖 then
10 𝑆 ← 𝑆 ∪ {𝑥 𝑗 };
11 𝑖 ← 𝑗 + 1;

4.2 BUCKET Algorithm
In this subsection, we review the algorithm BUCKET (Algorithm 5) proposed in [11], and show its

time complexity if we are granted additional prior knowledge. This outcome will play a key role on

deriving the time complexity of our algorithm SKIP. That is why we include it here.

According to [11], if the elements 𝑥1, 𝑥2, · · · , 𝑥ℎ of set 𝑋 are sorted in descending order of their

probabilities (𝑝1, 𝑝2, · · · , 𝑝ℎ , respectively), subset sampling could be efficiently conducted based on

a bucketing technique. Specfically, we do bucketing by their sorted positions such that elements

whose positions fall into the range [𝛽𝑘 , 𝛽𝑘+1) belong to bucket 𝐵𝑘 . Then, we exploit geometric

distribution sampling with rejection (similar with ISS) to sample all the buckets. Note from [11]

that, the total expected cost to sample from all buckets is bound to 𝑂 (1 + 𝛽` + log𝛽 ℎ), where the
log𝛽 ℎ term comes from the number of buckets. The asymptotically tight bound of the sorted subset

sampling problem is as follows:

Lemma 6. [11] There exists an online algorithm for sorted subset sampling with expected time𝑂 (`)
if ` ≥ 1

2
logℎ, and 𝑂

(
1 + logℎ

log((logℎ)/`)

)
otherwise. The bound is asymptotically tight for any fixed `.

If we have knowledge of the value ` =
∑ℎ
𝑖=1
𝑝𝑖 , it is possible for BUCKET to achieve the asymp-

totically tight bound, by assigning 𝛽 with a suitable value. If ` ≥ 1

2
logℎ, the setting 𝛽 = 2 yields

a time complexity of 𝑂 (1 + 𝛽` + log𝛽 ℎ) = 𝑂 (`). Otherwise, we minimize the time complexity by

solving the following equation,

1 + 𝛽` = log𝛽 ℎ, (4)

It turn out to be 𝛽 = Θ
(

logℎ

`
/log

(
logℎ

`

))
. Then, by plugging in 𝛽 , we obtain a time complexity of

𝑂 (1 + 𝛽` + log𝛽 ℎ) = 𝑂
(
1 + logℎ

log((logℎ)/`)

)
.

Hence, the actual time complexity of BUCKET depends on 𝛽 , which should be decided according

to the probability summation ` of the input sequence. However, the requirement of prior knowledge

of ` is not always met, imposing much limitation on its application scenarios. If there exists no

prior knowledge of `, one common implementation is 𝛽 = 2. As a result, BUCKET fails to achieve

the asymptotically tight time complexity if ` is not Θ(logℎ).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

4.3 SKIP Algorithm
In this subsection, we present our solution SKIP, of which the time complexity is asymptotically

tight. The name SKIP comes from the activity Stone Skipping, since our algorithm acts in a similar

manner: landing and immediately bouncing at a nearby place.

Its pseudocode is shown in Algorithm 6. Similar with BUCKET, it also utilize the geometric

distribution sampling (Line 6) to get the potentially sampled elements, and then use rejection

(Lines 9-10) to guarantee the correctness of sampling probability. The crux of SKIP is that it keeps

updating the success probability of geometric distribution with the probability of the currently

visiting element. To explain, if we arrive at position 𝑖 − 1 in the current sampling trial (no matter

whether the element 𝑥𝑖−1 are finally sampled or rejected), then the success probability of the next

sampling trial is 𝑝𝑖 , the probability of the element 𝑥𝑖 (see 𝑝𝑖 in Line 6). Intuitively, this strategy is

more efficient since SKIP adjusts the success probability in a timely fashion: following the actual

probability distribution of the input sequence. In contrast, BUCKET fixes the probability of the first

element as the success probability, and then goes through the whole bucket.

Correctness of SKIP. Next, we prove the following lemma to show the correctness of SKIP; that

is, the output of SKIP follows the definition of sorted subset sampling.

Theorem 3. Let Y be an output random variable of SKIP. Then given any subset 𝑆 , it holds that

Pr[𝑌 = 𝑆] =
(∏
𝑖∉𝑆

(1 − 𝑝𝑖)
)
·
(∏
𝑗 ∈𝑆

𝑝 𝑗

)
(5)

where the right-hand side is the definition of sorted subset sampling.

Proof. Let 𝑆 = {𝑥 𝑗1 , 𝑥 𝑗2 , . . . , 𝑥 𝑗𝑚 } with 𝑗1 < 𝑗2 < · · · < 𝑗𝑚 , where𝑚 = |𝑆 |. Then we can rewrite

the probability expression (5) as the following formatting:

Pr[𝑌 = 𝑆] =
(
𝑝 𝑗1

𝑗1−1∏
𝑖=1

(1 − 𝑝𝑖)
)
·
(
𝑝 𝑗2

𝑗2−1∏
𝑖=𝑗1+1

(1 − 𝑝𝑖)
)
· · ·

(
𝑝 𝑗𝑚

𝑗𝑚−1∏
𝑖=𝑗𝑚−1+1

(1 − 𝑝𝑖)
)
·
(

ℎ∏
𝑖=𝑗𝑚+1

(1 − 𝑝𝑖)
)
. (6)

Let 𝑍𝑖s be random variables of the indices of the sampled elements by SKIP, where 𝑖 = 1, 2, . . . ,𝑚.

Besides, in order to analyze the sampling behavior from 𝑥 𝑗𝑚 to 𝑥ℎ , we append infinite dummy

elements to the end of the input sequence, each with the same sampling probability 𝑝ℎ (i.e.,

𝑝ℎ = 𝑝ℎ+1 = 𝑝ℎ+2 = · · ·). The SKIP algorithm is also slightly modified: when 𝑗 exceeds the last

element 𝑥ℎ of 𝑋 (see Line 7), keep sampling until we obtain the (𝑚 + 1)-th successfully sampled

element 𝑥 𝑗𝑚+1 (clearly 𝑥 𝑗𝑚+1 is a dummy element). Let 𝑍𝑚+1 be a random variable of the index of

this dummy element. If we can prove the conditional probability distribution of 𝑍𝑖 with respect to

𝑍𝑖−1 (𝑖 = 1, 2, . . . ,𝑚) satisfies

Pr[𝑍𝑖 = 𝑗𝑖 |𝑍𝑖−1 = 𝑗𝑖−1] =
𝑗𝑖−1∏

𝑖=𝑗𝑖−1+1
(1 − 𝑝𝑖) · 𝑝 𝑗𝑖 , (7)

and the conditional probability of the event 𝑍𝑚+1 > ℎ given 𝑍𝑚 = 𝑗𝑚 satisfies

Pr[𝑍𝑚+1 > ℎ |𝑍𝑚 = 𝑗𝑚] =
ℎ∏

𝑖=𝑗𝑚+1
(1 − 𝑝𝑖), (8)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

then we can prove (6) as follows:

Pr[𝑌 = 𝑆] = Pr[𝑍1 = 𝑗1, 𝑍2 = 𝑗2, . . . , 𝑍𝑚 = 𝑗𝑚, 𝑍𝑚+1 > ℎ]
= Pr[𝑍1 = 𝑗1] · Pr[𝑍2 = 𝑗2 |𝑍1 = 𝑗1] · · · Pr[𝑍𝑚 = 𝑗𝑚 |𝑍𝑚−1 = 𝑗𝑚−1] · Pr[𝑍𝑚+1 > ℎ |𝑍𝑚 = 𝑗𝑚]
= the r.h.s. of (6) .

Next, we try to prove the conditional probability distribution (7) by induction. We only give the

proof for the case of 𝑖 = 1; that is,

Pr[𝑍1 = 𝑗] = 𝑝 𝑗
𝑗−1∏
𝑖=1

(1 − 𝑝𝑖), (9)

where we replace 𝑗1 with 𝑗 for simplicity. It is easy to extend other values of 𝑖 .

For 𝑗 = 1, it implies that the random number 𝑈 = 𝑟𝑎𝑛𝑑 () (Line 6 in Algorithm 6) falls into the

range [1 − 𝑝1, 1). This event happens with a probability 𝑝1.

Suppose that the conclusion is still true for 𝑗 = 𝑘 . Note that the sampling trial which successfully

samples 𝑥𝑘 could start from position 1, 2, . . . , 𝑘 (that is, the 𝑖 in Line 6 could be 1, 2, . . . , 𝑘). Let 𝐸𝑘𝑖 be

the event that the successful sampling of 𝑥𝑘 is from position 𝑖 , where 𝑖 = 1, 2, . . . , 𝑘 . Obviously, any

two 𝐸𝑘𝑖 s are mutually exclusive. Besides, the event 𝑍1 = 𝑘 is the union of all 𝐸𝑘𝑖 s. Then we rewrite

the probability of 𝑍1 = 𝑘 as follows:

Pr[𝑍1 = 𝑘] = Pr[𝐸𝑘
1
] + Pr[𝐸𝑘

2
] + · · · + Pr[𝐸𝑘

𝑘
]

= 𝛼1 (1 − 𝑝1)𝑘−1𝑝1 ·
𝑝𝑘

𝑝1

+ 𝛼2 (1 − 𝑝2)𝑘−2𝑝2 ·
𝑝𝑘

𝑝2

+ · · · + 𝛼𝑘𝑝𝑘

=

(
𝑘∑︁
𝑖=1

𝛼𝑖 (1 − 𝑝𝑖)𝑘−𝑖
)
· 𝑝𝑘 = 𝑝𝑘

𝑘−1∏
𝑖=1

(1 − 𝑝𝑖) (from assumption)

where 𝛼𝑖 is the probability that SKIP has arrived at position (𝑖 − 1) but no element is successfully

sampled (that is, the If condition turns out to be false in Line 9).

Now we show the expression (9) still holds for 𝑗 = 𝑘 + 1. Following the above discussion of the

case 𝑗 = 𝑘 , we have

Pr[𝑍1 = 𝑘 + 1] = Pr[𝐸𝑘+1
1
] + Pr[𝐸𝑘+1

2
] + · · · + Pr[𝐸𝑘+1

𝑘+1]

= 𝛼1 (1 − 𝑝1)𝑘𝑝1 ·
𝑝𝑘+1
𝑝1

+ 𝛼2 (1 − 𝑝2)𝑘−2𝑝2 ·
𝑝𝑘+1
𝑝2

+ · · · + 𝛼𝑘+1𝑝𝑘+1

=

(
𝑘∑︁
𝑖=1

𝛼𝑖 (1 − 𝑝𝑖)𝑘+1−𝑖
)
· 𝑝𝑘+1 + 𝛼𝑘+1 · 𝑝𝑘+1.

On the other hand, the value 𝛼𝑘+1 is the probability that SKIP arrives at position 𝑘 , but fails to

sample 𝑥𝑘 . We can compute it as follows:

𝛼𝑘+1 =
𝑘∑︁
𝑖=1

𝛼𝑖 (1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 · (1 −
𝑝𝑘

𝑝𝑖
)

=

𝑘∑︁
𝑖=1

𝛼𝑖 (1 − 𝑝𝑖)𝑘−𝑖 · (𝑝𝑖 − 𝑝𝑘)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Therefore, plugging the expression of 𝛼𝑘+1 into Pr[𝑍1 = 𝑘 + 1], we obtain that

Pr[𝑍1 = 𝑘 + 1] =
(
𝑘∑︁
𝑖=1

𝛼𝑖 (1 − 𝑝𝑖)𝑘+1−𝑖
)
· 𝑝𝑘+1 +

(
𝑘∑︁
𝑖=1

𝛼𝑖 (1 − 𝑝𝑖)𝑘−𝑖 · (𝑝𝑖 − 𝑝𝑘)
)
· 𝑝𝑘+1

=

(
𝑘∑︁
𝑖=1

𝛼𝑖 (1 − 𝑝𝑖)𝑘−𝑖
)
· (1 − 𝑝𝑘)𝑝𝑘+1

= 𝑝𝑘+1

𝑘∏
𝑖=1

(1 − 𝑝𝑖).

By induction, the probability distribution (9) holds for all elements in the input sequence. This

completes the poof of the conditional probability distribution (7).

Then we show how to prove the expression (8). In fact, it is rather straightforward if we utilize

the above result of the conditional distribution. The event 𝑍𝑚+1 > ℎ given 𝑍𝑚 = 𝑗𝑚 implies that all

the elements 𝑗𝑚 + 1, 𝑗𝑚 + 2, . . . , ℎ are not sampled. Thus, we compute the probability as follows:

Pr[𝑍𝑚+1 > ℎ |𝑍𝑚 = 𝑗𝑚] = 1 − (Pr[𝑍𝑚+1 = 𝑗𝑚 + 1|𝑍𝑚 = 𝑗𝑚] + · · · + Pr[𝑍𝑚+1 = 𝑗𝑚 + 1|𝑍𝑚 = 𝑗𝑚])

= 1 −
(
𝑝𝑚+1 + (1 − 𝑝𝑚+1)𝑝𝑚+2 + · · · +

ℎ−1∏
𝑖=𝑗𝑚+1

(1 − 𝑝𝑖) · 𝑝ℎ

)
=

ℎ∏
𝑖=𝑗𝑚+1

(1 − 𝑝𝑖).

Putting together all the above results, we finally complete the proof of Lemma 3, providing a

guarantee for the correctness of SKIP. □

Time Complexity of SKIP. We will show the optimality of SKIP, in the sense that it achieves the

asymptotically tight time complexity in [11].

Theorem 4. The algorithm SKIP takes an expected time of 𝑂 (`) if ` ≥ 1

2
logℎ, and

𝑂

(
1 + logℎ

log((logℎ)/`)

)
otherwise.

Proof. Here we only give a proof sketch for Lemma 4. A formal proof is included in the appendix.

To prove the lemma, we make a claim that SKIP takes no more sampling trials (i.e., the number of

geometric distribution samplings) than BUCKET with any fixed 𝛽 , given a fixed input sequence. If

the claim is correct, we immediately obtain the lemma since for any `, there exists some 𝛽 such

that BUCKET achieves the asymptotically tight time complexity as discussed in Section 4.2.

Fortunately, the claim does hold. For BUCKET, the success probability of the geometric distri-

bution sampling is fixed as 𝑝𝛽𝑘 for bucket 𝐵𝑘 (𝑘 = 0, 1, 2, . . .). In contrast, for SKIP the geometric

distribution sampling from position 𝑖 ∈ [𝛽𝑘 , 𝛽𝑘+1) (i.e., inside bucket 𝐵𝑘) has a success probability
𝑝𝑖 ≤ 𝑝𝑘𝛽 , as the input sequence is in descending order. Note that the expectation of a geometrically

distributed random variable with success probability 𝑝 is known as 1/𝑝 . Therefore, the expectation
of the sampling outcome of SKIP in each bucket is not smaller than that of BUCKET. Besides, for

each bucket 𝐵𝑘 , BUCKET has to start sampling from the first element (namely 𝛽𝑘), whereas SKIP

starts sampling from position 𝑖 > 𝛽𝑘 , which follows the last sampling trial in bucket 𝐵𝑘−1. Based on

these two observations, it is straightforward to conclude that SKIP takes no more sampling trials

than BUCKET. Thus, we complete the proof of Theorem 4. □

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 7: HIST(𝐺,𝑘, 𝜖, 𝛿)

1 𝜖1 = 𝜖2 = 𝜖/2, 𝛿1 = 𝛿2 = 𝛿/2;
2 𝑆∗

𝑏
= SentinelSet(𝐺,𝑘, 𝜖1, 𝛿1);

3 𝑆∗
𝑘
= IM-Sentinel(𝐺,𝑘, 𝜖, 𝑆∗

𝑏
, 𝜖2, 𝛿2) ;

4 return 𝑆∗
𝑘
;

Time Complexity under General IC Model. Next we are going to show the time complexity

bound of SUBSIM under general IC model with SKIP. The time complexity function
logℎ

log((logℎ)/`)
is associated with the value `, which brings us some difficulties in analyzing computational cost.

Here we only consider two common cases: ` = 𝑂 (1) and ` = Θ(logℎ).

Case 1: 𝝁 = 𝑶 (1). The time complexity of SKIP becomes𝑂

(
1 + logℎ

log logℎ

)
. Define \ (𝑥) = log𝑥

log log𝑥
. To

follow a similar derivation of Theorem 1, the concavity of \ (𝑥) is required. The following lemma is

used to prove the concavity of \ (𝑥).

Lemma 7. [10] Let 𝑓 be a concave function and 𝑔 a non-decreasing and concave function. Assume
that 𝑓 and 𝑔 are twice-differentiable. Define the function 𝑓 by \ (𝑥) = 𝑔(𝑓 (𝑥)) for all 𝑥 . Then \ (𝑥) is
concave.

Let 𝑓 (𝑥) = log(𝑥) and 𝑔(𝑥) = 𝑥
log𝑥

. Then we have \ (𝑥) = 𝑔(𝑓 (𝑥)). Obviously 𝑓 is a concave

function for 𝑥 > 0. Besides, since 𝑔′(𝑥) = ln 2 · ln𝑥−1

ln
2 𝑥
≥ 0 and 𝑔′′(𝑥) = ln 2 · (2−ln𝑥)

𝑥 ln
3 𝑥
≤ 0 for 𝑥 ≥ 𝑒2

,

it is obtained that 𝑔(𝑥) is non-decreasing and concave. According to Lemma 7, we can draw the

conclusion that \ (𝑥) is concave for 𝑥 ≥ 𝑒𝑒2

.

Since \ (𝑥) is concave, then we follow a similar derivation in Section 3.2, and conclude that the

time complexity of SUBSIM under general IC model is𝑂

(
𝑘 · log(𝑚/𝑛)

log log(𝑚/𝑛) · 𝑛 · log𝑛 · 𝜖−2

)
. It improves

existing solution by 𝑂

(
𝑚
𝑛
· log log(𝑚/𝑛)

log (𝑚/𝑛)

)
.

Case 2: 𝝁 = 𝚯(log𝒉). In this setting, the expected cost of SKIP is 𝑂 (logℎ) according to

Theorem 4. Therefore, the time complexity of SUBSIM under general IC model becomes

𝑂
(
𝑘 · log(𝑚/𝑛) · 𝑛 · log𝑛 · 𝜖−2

)
, improving existing solutions by 𝑂

(
𝑚
𝑛
· 1

log(𝑚/𝑛)

)
.

5 HIGHLY INFLUENTIAL SCENARIOS
In highly influential scenarios, i.e., high influence networks, one of the biggest challenges of existing

RR-set-based solutions is that the average size of random RR sets is usually very large, which incurs

high running time and memory consumption. Therefore, one natural question is: can we reduce the

average size of random RR sets? If the answer is yes, then such a new solution might outperform

existing solutions. Motivated by this, we propose Hit-and-Stop (HIST) algorithm to overcome the

weakness of existing RR-set-based IM algorithms by dramatically decreasing the average size of

random RR sets. In particular, a sentinel set 𝑆∗
𝑏
is selected in the first phase, and with the help of 𝑆∗

𝑏
,

subsequent RR sets can be generated efficiently in the second phase since the generation of an RR

set can stop as soon as it reaches any node in 𝑆∗
𝑏
. We denote this RR set generation algorithm to

terminate when it reaches a sentinel set as RR set-with-Sentinel algorithm (Algorithm 8).

At a high level, HIST consists of two phases as follows:

• Sentinel Set Selection. This phase seeks for a size-𝑏 node set 𝑆∗
𝑏
that satisfies IC (𝑆∗𝑏) ≥ (1 − (1 −

1/𝑘)𝑏 − 𝜖1) · IC (𝑆𝑜𝑘) with high probability, where 𝑆𝑜
𝑘
is the optimal seed set.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 8: RR set-with-Sentinel(𝐺, 𝑆∗
𝑏
)

1 The steps are similar to that of Algorithm 2 except that it terminates the traversal and

returns the RR set when a node 𝑣 ∈ 𝑆∗
𝑏
is activated.

• IM-Sentinel. This phase computes a size-(𝑘 − 𝑏) seed set 𝑆∗
𝑘−𝑏 , and returns 𝑆∗

𝑘−𝑏 ∪ 𝑆
∗
𝑏
as the final

result 𝑆∗
𝑘
.

In the sentinel set selection phase, we aim to use only a small number of samples to find a sentinel

set 𝑆∗
𝑏
of 𝑏 nodes. When 𝑏 = 𝑘 , the sentinel set selection phase falls into existing IM algorithms that

provide a (1 − (1 − 1/𝑘)𝑘 − 𝜖) (≈ 1 − 1/𝑒 − 𝜖) approximate solution. When 𝑏 < 𝑘 , even though the

sentinel set selection phase cannot provide a 1 − 1/𝑒 − 𝜖 approximate solution, it can still provide

1 − (1 − 1/𝑘)𝑏 − 𝜖 approximate solution (as we will prove in Lemma 8). When 𝑏 is sufficiently

small (much smaller than 𝑘), we only need to provide a very loose approximation for set 𝑆∗
𝑏
, and it

allows us to use a much smaller number of random RR sets to find a size-𝑏 seed set that provides

1 − (1 − 1/𝑘)𝑏 − 𝜖 approximate solution compared to solving the IM problem. As we will see, with

such a loose approximation on 𝑆∗
𝑏
, we can still provide approximation guarantee after the second

phase, i.e., the IM-sentinel phase. To explain, we will compensate the first phase by sampling more

random RR sets in the second phase. However, in the second phase, the generation of a random

RR set can terminate as soon as any node in sentinel set 𝑆∗
𝑏
is hit. Therefore, the cost to generate

a random RR set can be significantly reduced. Our HIST achieves up to 2 orders of magnitude

speedup over existing solutions, which shows the effectiveness of our proposed solution. The

pseudocode of the HIST algorithm is shown in Algorithm 7, which is self-explanatory. Notice that

we set 𝜖1 = 𝜖2 = 𝜖/2 so that the final error can be bounded by 1 − 1/𝑒 − 𝜖1 − 𝜖2 = 1 − 1/𝑒 − 𝜖 .
Similarly, we set 𝛿1 = 𝛿2 = 𝛿/2 since both phases have a failure probability of 𝛿/2, and by taking a

union bound, the failure probability of the HIST algorithm is 𝛿1 + 𝛿2 = 𝛿 . Next, we present more

details of the two phases.

5.1 Sentinel Set Selection Phase
Algorithm 10 shows the pseudocode for the sentinel set selection phase. The main framework

is similar to existing IM algorithms in that we sample a certain number of RR sets to see if the

approximation ratio is satisfied. If not, we double the number of RR sets and continue the steps until

the bound holds. In each iteration, we select nodes with greedy algorithms and choose a sentinel

set 𝑆∗
𝑏
with proper size 𝑏.

Node selection with modified greedy. Algorithm 10 Lines 5-15 show the process of finding a

sentinel set. If the size 𝑏 is fixed, we will include the first 𝑏 nodes selected by the greedy algorithm

and make them as the candidate of the sentient set. If this candidate set provides the approximation

guarantee (Algorithm 10 Lines 11-12), we return it as the sentinel set.

Recap that the sentinel set we select will be used to facilitate the second phase. In particular, any

RR set in the second phase will terminate when it hits a node in the sentinel set. In the standard

greedy algorithm, however, it only cares about the marginal coverage (Ref. the definition in Section

2.2) in each iteration, and selects the node with the maximum marginal coverage with respect to

the set of nodes selected in previous iterations. This does not differentiate two nodes when they

share the same maximum marginal coverage but one node has a larger out-degree than the other.

However, in our case, the node with a larger out-degree is obviously more preferred since it is

more likely to be hit, especially when we only select a sentinel set with a small size. Therefore,

we modify the greedy algorithm slightly (Algorithm 9) so as to better achieve the goal. When two

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 9: Greedy-Degree(𝐺,R, 𝑘)

1 The steps are similar to that of Algorithm 1 except Line 3: if multiple nodes have maximum

marginal coverage, choose the one with the largest out-degree.

Algorithm 10: SentinelSet(𝐺,𝑘, 𝜖1, 𝛿1)

1 Set \0 = 3 · ln (1/𝛿1) and \𝑚𝑎𝑥 according to Eqn. 10;

2 Generate random RR sets R1 with |R1 | = \0;

3 𝑖𝑚𝑎𝑥 ← ⌈log
2

\𝑚𝑎𝑥

\0

⌉;
4 for 𝑖 = 1 to 𝑖𝑚𝑎𝑥 do
5 Generate a size-𝑘 seed set 𝑆∗

𝑘
by invoking Algorithm 9 with R1 as the input;

6 Estimate the lower bound
ˆI−
C
(𝑆∗𝑎) based on the result of Line 5, where 𝑎 ∈ {1 . . . 𝑘};

7 Compute I+
C
(𝑆𝑜
𝑘
) by Eqn. 2, setting 𝛿𝑢 =

𝛿1

3𝑖𝑚𝑎𝑥
;

8 Let 𝑏 be the maximum 𝑎 such that
ˆI−
C
(𝑆∗𝑎)/I+C (𝑆

𝑜
𝑘
) > (1 − (1 − 1

𝑘
)𝑎 − 𝜖1);

9 Generate a set R2 of random RR sets with |R2 | = |R1 | by invoking RR set-with-Sentinel ;

10 Compute I−
C
(𝑆∗
𝑏
) by Eqn. 1; set 𝛿𝑙 =

𝛿1

6𝑖𝑚𝑎𝑥
;

11 if I−
C
(𝑆∗
𝑏
)/I+
C
(𝑆𝑜
𝑘
) > (1 − (1 − 1

𝑘
)𝑏 − 𝜖1) then

12 return 𝑆∗
𝑏
;

13 Increase the size of R2 to 4|R1 | and compute I−
C
(𝑆∗
𝑏
) again;

14 if I−
C
(𝑆∗
𝑏
)/I+
C
(𝑆𝑜
𝑘
) > (1 − (1 − 1

𝑘
)𝑏 − 𝜖1) then

15 return 𝑆∗
𝑏
;

16 double the size of R1;

17 return 𝑆∗
𝑏
;

nodes share the same marginal coverage, we select the node with a larger out-degree. Notice that

this brings at most additional 𝑂 (𝑘 · 𝑛 · log𝑛) cost and does not affect the final time complexity of

the HIST algorithm. In this case, we are more likely to select influential nodes (that get hit it selects)

in Algorithm 9 compared to Algorithm 1 which regards all nodes with the same importance as long

as their marginal coverage is the same. In Section 8, we experimentally evaluate the effectiveness

of our Greedy-Degree algorithm. It is compared with the standard greedy algorithm and another

variant of the greedy algorithm, Greedy-Cost, which attempts to reduce the average size of RR sets

from a cost reduction perspective. Please see Appendix B for more details.

Choosing the sentinel set S∗b with proper size. A naive way to determine the size of the sentinel

set is to choose a constant and apply it to all choice of 𝑘 . However, such a strategy may not make

full use of the pruning power of the sentinel set. Therefore, we aim to automate the process of

the choice of 𝑏. Notice that there is a trade-off between the size 𝑏 and the speedup of the query

efficiency. On the one hand, if 𝑏 is too small, we have less chance to hit the sentinel set in the

second phase, providing inferior speedup. Hence, we hope that the size 𝑏 to be as large as possible.

On the other hand, if 𝑏 is too large, it is similar to solving the original IM problem. Hence, a small

sample size will not help provide the required approximation ratio. To get a good trade-off of these

two, i.e., the cost of sampling in the first phase and the benefit we can bring to the second phase,

we provide a solution to automatically find the choice of 𝑏 as large as possible that can satisfy

the constraint given the generated RR sets. To explain, given the set R1 of RR sets, we first apply

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 9 to select a seed set 𝑆∗
𝑘
, and we denote 𝑆∗𝑎 (1 ≤ 𝑎 ≤ 𝑘) as the set of nodes selected by the

first 𝑎 iterations in the modified greedy algorithm. Then, we apply Equation 2 to derive an upper

bound I+
C
(𝑆𝑜
𝑘
) for IC (𝑆𝑜𝑘). However, we can not use R1 to derive a lower bound of IC (𝑆∗𝑎). To explain,

the selected set 𝑆∗𝑎 depends on R1 and we cannot apply the concentration bounds to 𝑆∗𝑎 . Therefore,
we apply the concentration bound to derive an estimation of the lower bound on IC (𝑆∗𝑎), denoted
as

ˆI−
C
(𝑆∗𝑎), as if R1 and 𝑆

∗
𝑎 were independent. Then, we select the maximum 𝑎 (Algorithm 10 Line 8)

such that it satisfies:

ˆI−C (𝑆
∗
𝑎)/I+C (𝑆

𝑜
𝑘
) ≥ (1 − (1 − 1

𝑘
)𝑎 − 𝜖1),

and set 𝑏 to this maximum 𝑎. However, since this is only an estimation of the lower bound, we

generate another set R2 of RR set and R2 is independent of 𝑆
∗
𝑏
. Then, we can apply concentration

bound to derive the lower bound I−
C
(𝑆∗
𝑏
) using Equation 1. Given I−

C
(𝑆∗
𝑏
), we are able to check if 𝑆∗

𝑏

satisfies the approximation ratio (Algorithm 10 Line 11), i.e.,

I−C (𝑆
∗
𝑏
)/I+C (𝑆

𝑜
𝑘
) ≥ (1 − (1 − 1

𝑘
)𝑎 − 𝜖1).

If the approximation ratio is not satisfied, with the existing paradigm, we will simply double the

size of R1 and repeat above process. However, since now we are only to estimate the influence of

𝑆∗
𝑏
, we can stop when any node in this set is hit. Hence, the RR set-with-Sentinel algorithm can be

applied here and tends to save much time. To take this advantage, if we find that 𝑆∗
𝑏
violates the

approximation guarantee, we first increase the size of R2 and try to provide a tighter lower bound

I−
C
(𝑆∗
𝑏
) for 𝑆∗

𝑏
(Algorithm 10 Lines 13-15). We increase the size of R2 until |R2 | = 4 · |R1 | and stop

increasing afterwards since it actually indicates that 𝑆∗
𝑏
we selected is most likely not good enough

to provide the approximation ratio. Therefore, we select another set 𝑆∗
𝑏
by doubling the size of R1

(Algorithm 10 Line 16). We repeat the whole process until we find the seed set 𝑆∗
𝑏
satisfying the

required approximation ratio.

Stopping condition. We now give the following lemma to establish the stopping condition of

Algorithm 10. It provides a bound on the number of random RR sets required in R1 in the sentinel

set selection phase.

Lemma 8. Let R1 be the set of random RR sets generated by Algorithm 10 and 𝑆∗
𝑏
be a size-𝑏 node

set selected by Algorithm 9 on R1. Given 𝜖 ′ and 𝛿 ′, if the size of R1 satisfies

|R1 | ≥
2𝑛

(
(1 − 𝑥𝑏)

√︃
ln

2

𝛿′ +
√︃
(1 − 𝑥𝑏) (ln

(
𝑛
𝑏

)
+ ln

2

𝛿′)
)

2

𝜖 ′2 · IC (𝑆𝑜𝑘)
,

where 𝑥 = 1 − 1

𝑘
, then with at least 1 − 𝛿 ′ probability,

IC (𝑆∗𝑏) ≥ (1 − (1 − 1/𝑘)𝑏 − 𝜖 ′)IC (𝑆𝑜𝑘).

Further notice that the size of R2 solely depends on R1, and is only constant times the size of R1,

and therefore we omit its discussion. According to Lemma 8, by replacing IC (𝑆𝑜𝑘) with 𝑘 , ln

(
𝑛
𝑏

)
with

ln

(
𝑛
𝑘

)
, 1 − 𝑥𝑏 with 1, and setting 𝜖 ′ = 𝜖1, 𝛿

′ = 𝛿1/3, we define the maximum number of random RR

sets \𝑚𝑎𝑥 as follows:

\𝑚𝑎𝑥 =

2𝑛

(√︃
ln

6

𝛿1

+
√︃
(ln

(
𝑛
𝑘

)
+ ln

6

𝛿1

)
)

2

𝜖2

1
· 𝑘

. (10)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

That is, if the size of the set R1 is \𝑚𝑎𝑥 , the seed set 𝑆∗
𝑏
selected by Algorithm 9 guarantees

(1 − (1 − 1/𝑘)𝑏 − 𝜖1) approximation of IC (𝑆𝑜𝑘) with at least 1 − 𝛿1/3 probability. The reason of

choosing the probability of 1 − 𝛿1/3, rather than 1 − 𝛿1, will be explained shortly.

In terms of the initial setting, for a random variable in the range of [0, 1] with an expectation to

be `, the Monte-Carlo method requires at least 3 ln (1/𝛿)/`/𝜖2
[19] so as to provide an estimation

of ` with 𝜖-relative error guarantee. Hence, we set the initial number \0 to be 3 ln (1/𝛿1) (Algorithm
10 Line 1), which is the case when the random variable has an expectation of 1 and the relative

error is close to 1.

Failure probability.Here we explain why Algorithm 10 ensures (1−(1−1/𝑘)𝑏−𝜖1) approximation

with at least 1 − 𝛿1 probability. The algorithm has at most 𝑖𝑚𝑎𝑥 iterations. In the last iteration, no

matter whether I−
C
(𝑆∗
𝑏
)/I+
C
(𝑆𝑜
𝑘
) reaches the approximation threshold or not, it returns 𝑆∗

𝑏
as the

final seed set. As shown in Lemma 8, \𝑚𝑎𝑥 RR samples ensure that the failure probability of 𝑆∗
𝑏

being unqualified, i.e. IC (𝑆∗𝑏) < (1 − (1 − 1/𝑘)𝑏 − 𝜖1)IC (𝑆𝑜𝑘), is less than 𝛿1/3. In each of the first

𝑖𝑚𝑎𝑥 − 1 iterations, by the union bound, the failure probability that the algorithm terminates with

an unqualified set 𝑆∗
𝑏
is at most

𝛿1

3𝑖𝑚𝑎𝑥
+ 2 · 𝛿1

6𝑖𝑚𝑎𝑥
=

2𝛿1

3𝑖𝑚𝑎𝑥
(the lower bound is computed twice at

most). The total failure probability of the first 𝑖𝑚𝑎𝑥 − 1 iterations is at most 2𝛿1/3. Therefore, the
failure probability of Algorithm 10 is at most 𝛿1.

5.2 IM-Sentinel Phase
Algorithm 11 shows the pseudocode of the IM-Sentinel phase. In this phase, we apply Algorithm 8

to sample random RR sets and immediately terminate when the RR set reaches a node in 𝑆∗
𝑏
. For

the remaining parts, they are similar to that of the first phase. In particular, Algorithm 11 initializes

the sample size of the RR sets to be 3 ln (1/𝛿2) and set the maximum number of RR set according

to Equation 11 (Algorithm 11 Line 1). Then, in each iteration, it samples a set R1 and a set R2 of

random RR sets with equal size. It uses R1 to find the seed set 𝑆∗
𝑘
by invoking Algorithm 9 and

derives the upper bound I+
C
(𝑆𝑜
𝑘
) (Algorithm 11 Lines 5-8), and uses the other set R2 to derive the

lower bound I−
C
(𝑆∗
𝑘
) (Algorithm 11 Line 9). When the approximation ratio is satisfied, we return the

seed set 𝑆∗
𝑘
(Algorithm 11 Line 10-11). Otherwise, we double the size of R1 and R2 and then repeat

the above process.

The main difference is that, when generating R1 and R2, we can apply Algorithm 8 to effectively

reduce the size of a random RR set. Besides, when we feed R1 to Algorithm 9 to greedily select the

remaining 𝑘 − 𝑏 nodes, we remove the RR sets that hit any node in 𝑆∗
𝑏
since such RR sets will bring

zero marginal coverage to other nodes (Algorithm 11 Line 5).

Stopping condition. Here we provide another lemma to bound the size of R1 in Algorithm 11.

Lemma 9. Let 𝑆∗
𝑏
be the seed set returned by Algorithm 10. Given 𝜖 ′ and 𝛿 ′, if the size of R1 satisfies

|R1 | ≥
2𝑛 ·

(√︃
ln

3

𝛿′ +
√︃
(1 − 1/𝑒) (ln

(
𝑛−𝑏
𝑘−𝑏

)
+ ln

3

𝛿′)
)

2

IC (𝑆𝑜𝑘)𝜖 ′
2

,

then with at least 1 − 𝛿 ′ probability, the selected 𝑆∗
𝑘−𝑏 satisfies

IC (𝑆∗𝑏 ∪ 𝑆
∗
𝑘−𝑏) ≥ (1 − 1/𝑒 − 𝜖1 − 𝜖 ′)IC (𝑆𝑜𝑘).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Algorithm 11: IM-Sentinel(𝐺,𝑘, 𝜖, 𝑆∗
𝑏
, 𝜖2, 𝛿2)

1 Set \0 = 3 · ln (1/𝛿2) and \𝑚𝑎𝑥 according to Eqn. 11;

2 Generate R1 and R2 with |R1 | = |R2 | = \0 by utilizing RR set-with-Sentinel;

3 𝑖𝑚𝑎𝑥 ← ⌈log
2

\𝑚𝑎𝑥

\0

⌉;
4 for 𝑖 = 1 to 𝑖𝑚𝑎𝑥 do
5 R′

1
← {𝑅 : 𝑅 ∈ R1, 𝑅 ∩ 𝑆∗𝑏 = ∅};

6 Select a size-(𝑘 − 𝑏) seed set 𝑆∗
𝑘−𝑏 by invoking Algorithm 9 on R′

1
;

7 𝑆∗
𝑘
← 𝑆∗

𝑏
∪ 𝑆∗

𝑘−𝑏 ;

8 Compute I+
C
(𝑆𝑜
𝑘
) by Eqn. 2 with R1; set 𝛿𝑢 =

𝛿2

3𝑖𝑚𝑎𝑥
;

9 Compute I−
C
(𝑆∗
𝑘
) by Eqn. 1 with R2; set 𝛿𝑙 =

𝛿2

3𝑖𝑚𝑎𝑥
;

10 if I−
C
(𝑆∗
𝑘
)/I+
C
(𝑆𝑜
𝑘
) > (1 − 1/𝑒 − 𝜖) then

11 return 𝑆∗
𝑘
;

12 double the size of R1 and R2 by utilizing RR set-with-Sentinel;

13 return 𝑆∗
𝑘
;

According to Lemma 9, we replace IC (𝑆𝑜𝑘) with 𝑘 , set 𝛿
′ = 𝛿2/3, 𝜖 ′ = 𝜖2, and define the maximum

number of RR sets in the IM-Sentinel phase as

\𝑚𝑎𝑥 =

2𝑛 ·
(√︃

ln
9

𝛿2

+
√︃
(1 − 1/𝑒) (ln

(
𝑛−𝑏
𝑘−𝑏

)
+ ln

9

𝛿2

)
)

2

𝜖2

2
· 𝑘

. (11)

That is, if the size of R1 is \𝑚𝑎𝑥 , the seed set 𝑆∗
𝑘−𝑏 obtained in Algorithm 11 Line 6 guarantees

IC (𝑆∗𝑏 ∪ 𝑆
∗
𝑘−𝑏) ≥ (1 − 1/𝑒 − 𝜖1 − 𝜖2)IC (𝑆𝑜𝑘) with at least 1 − 𝛿2/3 probability.

Failure probability. Like the analysis of Algorithm 10, the total failure probability of the first 𝑖𝑚𝑎𝑥−
1 iterations is 2𝛿2/3. Taking the failure probability of 𝛿2/3 in the last iteration into consideration,

the failure probability of Algorithm 11 is 𝛿2.

Remark. By using multiple (more than two) phases, it is likely to have a smaller average size of

RR sets in the later phases since there exists a larger sentinel set. However, there is no free lunch

by bringing more phases. With multiple phases, it will introduce the following costs:

• If HIST consists of 𝑙 phases, the error threshold of each phase will be 𝜖/𝑙 . It implies that we

have to compute a more accurate result for each phase.

• The RR sets in the former phases cannot be reused in the subsequent phases, which may

cause heavy computational overhead.

Thus for ease of analysis, we take the simplest case in our HIST solution.

5.3 Theoretical Analysis
In this section, we provide the proofs of Lemma 8 and 9.

Proof of Lemma 8. We first give three lemmas that will be used in the proof of Lemma 8.

Lemma 10 ([32]). Let 𝑆∗
𝑏
be the seed set selected by Algorithm 9. Let 𝑥 = (1 − 1/𝑘), then ΛR (𝑆∗𝑏) ≥(

1 − 𝑥𝑏
)
ΛR (𝑆𝑜𝑘).

Denote the size of R as \ . Since 𝑛
\
ΛR (𝑆𝑜𝑘) is an unbiased estimator of IC (𝑆𝑜𝑘). If \ is large enough,

𝑛
\
ΛR (𝑆𝑜𝑘) should be close to IC (𝑆𝑜𝑘), as shown in the following lemma.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Lemma 11 ([47]). Given 𝛿 ′
1
, 𝜖 ′

1
, and \1 =

2𝑛 ·ln(1/𝛿′
1
)

IC (𝑆𝑜𝑘) ·𝜖
′
1

2
, if \ ≥ \1, 𝑛\ ΛR (𝑆

𝑜
𝑘
) ≥ (1 − 𝜖 ′

1
)IC (𝑆𝑜𝑘) holds

with 1 − 𝛿 ′
1
probability.

The proof of Lemma 11 is presented in [47] (Lemma 3). Here, if \ is large,
𝑛
\
ΛR (𝑆∗𝑏) is close to

IC (𝑆∗𝑏). Based on Lemmas 10-11, we have:

𝑛

\
· ΛR (𝑆∗𝑏) ≥

(
1 − 𝑥𝑏

)
(1 − 𝜖 ′

1
)IC (𝑆𝑜𝑘). (12)

Hence, it is possible for us to build a connection between IC (𝑆∗𝑏) and IC (𝑆
𝑜
𝑘
).

Lemma 12. Given 𝛿 ′
2
, 𝜖 ′

1
< 𝜖 ′, if Equation 12 holds and

\ > \2 =

2(1 − 𝑥𝑏) · 𝑛 ·
(
ln

(
𝑛
𝑏

)
+ ln

1

𝛿′
2

)
IC (𝑆𝑜𝑘) ·

(
𝜖 ′ − (1 − 𝑥𝑏) · 𝜖 ′

1

)
2
,

then with at least 1 − 𝛿 ′
2
probability, we have IC (𝑆∗𝑏) ≥ (1 − 𝑥

𝑏 − 𝜖 ′)IC (𝑆𝑜𝑘).

Proof. The proof follows similar steps as Lemma 4 in [47]. Let 𝑆𝑏 be an arbitrary size-𝑏 node

set selected from 𝑉 . We say 𝑆𝑏 is bad if IC (𝑆𝑏) < (1 − 𝑥𝑏 − 𝜖 ′)IC (𝑆𝑜𝑘). Define a random variable 𝑥𝑖
for each 𝑅𝑖 ∈ R, such that 𝑥𝑖 = 1 if 𝑅𝑖 ∩ 𝑆𝑏 ≠ ∅, and 𝑥𝑖 = 0 if otherwise. Define 𝑝 = IC (𝑆𝑏)/𝑛. By
definition, we have 𝑝 < (1 − 𝑥𝑏 − 𝜖 ′)IC (𝑆𝑜𝑘)/𝑛. Let 𝜖

′
2
= 𝜖 ′ − (1 − 𝑥𝑏) · 𝜖 ′

1
.

Pr

[𝑛
\
ΛR (𝑆𝑏) − IC (𝑆𝑏) ≥ 𝜖 ′2IC (𝑆𝑜𝑘)

]
= Pr

[
\∑︁
𝑖=1

𝑥𝑖 − \𝑝 ≥
𝜖 ′

2
IC (𝑆𝑜𝑘)
𝑛𝑝

· \𝑝
]

≤ exp

(
−

𝜖 ′
2

2IC (𝑆𝑜𝑘)
2

2𝑛2𝑝 + 2

3
𝜖 ′

2
𝑛IC (𝑆𝑜𝑘)

· \
)
≤ exp

(
−

𝜖 ′
2

2IC (𝑆𝑜𝑘)
2𝑛(1 − 𝑥𝑏 − 𝜖 ′) + 2

3
𝜖 ′

2
𝑛
· \

)
≤ exp

(
−
𝜖 ′

2

2IC (𝑆𝑜𝑘)
2𝑛(1 − 𝑥𝑏)

· \2

)
≤ 𝛿 ′

2
/
(
𝑛

𝑏

)
.

Hence, if \ > \2, the probability of bad 𝑆∗
𝑏
is at most 𝛿 ′

2
, since there exists only

(
𝑛
𝑏

)
size-𝑏 node sets

and each has at most 𝛿 ′
2
/
(
𝑛
𝑏

)
. That is, with at least 1 − 𝛿 ′

2
probability,

IC (𝑆∗𝑏) ≥
𝑛

\
· ΛR (𝑆∗𝑏) − 𝜖

′
2
IC (𝑆𝑜𝑘) ≥ (1 − 𝑥

𝑏 − 𝜖 ′)IC (𝑆𝑜𝑘).

Hence, the lemma follows. □

Now we give the proof of Lemma 8. Based on Lemma 11 and Lemma 12 and by the union bound,

if \ > max(\1, \2), it holds that IC (𝑆∗𝑏) ≥ (1 − 𝑥
𝑏 − 𝜖 ′)IC (𝑆𝑜𝑘) with at least 1 − 𝛿 ′

1
− 𝛿 ′

2
probability.

Set 𝛿 ′
1
= 𝛿 ′

2
= 𝛿 ′/2 and \1 = \2, denoted as \ ′, we have

\ ′ =

2𝑛

(
(1 − 𝑥𝑏)

√︃
ln

2

𝛿′ +
√︃
(1 − 𝑥𝑏) (ln

(
𝑛
𝑏

)
+ ln

2

𝛿′)
)

2

𝜖 ′2 · IC (𝑆𝑜𝑘)
.

Hence, if \ > \ ′, 𝑆∗
𝑏
satisfies IC (𝑆∗𝑏) ≥ (1 − 𝑥

𝑏 − 𝜖 ′)IC (𝑆𝑜𝑘) with at least 1 − 𝛿 ′ probability.
Proof of Lemma 9. We first give several lemmas that will be used in the proof of Lemma 9.

Lemma 13. Let 𝑆∗
𝑏
be the seed set returned by Algorithm 10. Let 𝑆∗

𝑘−𝑏 be the seed set generated in
Algorithm 11 Line 6 on a set R of random RR sets. Then we have ΛR (𝑆∗𝑏 ∪𝑆

∗
𝑘−𝑏) ≥ (1−𝑥

𝑘−𝑏)ΛR (𝑆𝑜𝑘) +
𝑥𝑘−𝑏ΛR (𝑆∗𝑏), where 𝑥 = 1 − 1/𝑘 .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Proof. Let 𝑆∗𝑗 (1 ≤ 𝑗 ≤ 𝑘−𝑏) be the set of nodes selected in the first 𝑗 iterations of the generation

of 𝑆∗
𝑘−𝑏 , and 𝑀 𝑗 (1 ≤ 𝑗 ≤ 𝑘 − 𝑏) be a union of 𝑆∗

𝑏
and 𝑆∗𝑗 , i.e. 𝑀 𝑗 = 𝑆

∗
𝑏
∪ 𝑆∗𝑗 . By the submodularity

property of coverage function ΛR (·),

ΛR (𝑆𝑜𝑘) ≤ ΛR (𝑆𝑜𝑘 ∪𝑀 𝑗) ≤ ΛR (𝑀 𝑗) +
∑︁

𝑣∈𝑆𝑜
𝑘
\𝑀𝑗

ΛR (𝑣 |𝑀 𝑗)

≤ ΛR (𝑀 𝑗) + 𝑘
(
ΛR (𝑀 𝑗+1) − ΛR (𝑀 𝑗)

)
.

Let 𝛾 𝑗 = ΛR (𝑆𝑜𝑘) − ΛR (𝑀 𝑗). Then we have: 𝛾 𝑗+1 ≤ (1 − 1

𝑘
)𝛾 𝑗 = 𝑥𝛾 𝑗 . Recursively, we have 𝛾𝑘−𝑏 ≤

𝑥𝑘−𝑏𝛾0 . By the definition of 𝛾 𝑗 and𝑀 𝑗 , we derive that:

𝛾0 = ΛR (𝑆𝑜𝑘) − ΛR (𝑆
∗
𝑏
), 𝛾𝑘−𝑏 = ΛR (𝑆𝑜𝑘) − ΛR (𝑆

∗
𝑏
∪ 𝑆∗

𝑘−𝑏).
Hence, it can be obtained that,

ΛR (𝑆∗𝑏 ∪ 𝑆
∗
𝑘−𝑏) ≥ (1 − 𝑥

𝑘−𝑏)ΛR (𝑆𝑜𝑘) + 𝑥
𝑘−𝑏ΛR (𝑆∗𝑏).

The lemma is proved. □

According to Lemma 11, given 𝛿 ′
1
, 𝜖 ′

1
, and \1 =

2𝑛 ln
1

𝛿′
1

IC (𝑆𝑜𝑘) ·𝜖
′
1

2
, if the size of R, denoted as \ , is larger

than \1, it follows that
𝑛
\
ΛR (𝑆𝑜𝑘) ≥ (1 − 𝜖

′
1
)IC (𝑆𝑜𝑘) with at least 1 − 𝛿 ′

1
probability. In fact, at this

moment (\ > \1),
𝑛
\
ΛR (𝑆∗𝑏) is close to IC (𝑆

∗
𝑏
). That is the following lemma.

Lemma 14. Given 𝜖 ′
1
and 𝛿 ′

1
, if \ > \1, it holds that 𝑛\ ΛR (𝑆

∗
𝑏
) ≥ IC (𝑆∗𝑏) − 𝜖

′
1
IC (𝑆𝑜𝑘) with at least

1 − 𝛿 ′
1
probability.

Proof. Define a random variable 𝑥𝑖 for each 𝑅𝑖 ∈ R, such that 𝑥𝑖 = 1 if 𝑆∗
𝑏
∩ 𝑅𝑖 ≠ ∅, and 𝑥𝑖 = 0 if

otherwise. Define 𝑝 = IC (𝑆∗𝑏)/𝑛. Obviously, IC (𝑆
𝑜
𝑘
) > IC (𝑆∗𝑏) = 𝑛𝑝 . We have

Pr

[𝑛
\
· ΛR (𝑆∗𝑏) − IC (𝑆

∗
𝑏
) ≤ −𝜖 ′

1
IC (𝑆𝑜𝑘)

]
= Pr

[
\∑︁
𝑖=1

𝑥𝑖 − \𝑝 ≤ −
𝜖 ′

1
IC (𝑆𝑜𝑘)
𝑛𝑝

\𝑝

]
≤ exp

(
−

(
𝜖 ′

1
IC (𝑆𝑜𝑘)
𝑛𝑝

)2

𝑝\1

2

)
≤ exp

(
−

(
𝜖 ′

1
IC (𝑆𝑜𝑘)
𝑛𝑝

)2

𝑝\1

2

)
≤ 𝛿 ′

1
.

The lemma follows. □

Combining Lemma 13 and 14, we have that:

Lemma 15. Given 𝛿 ′
1
and 𝜖 ′

1
, if \ > \1 and IC (𝑆∗𝑏) ≥ (1 − 𝑥

𝑏 − 𝜖1)IC (𝑆𝑜𝑘), then with at least 1 − 2𝛿 ′
1

probability, we have
𝑛

\
· ΛR (𝑆∗𝑏 ∪ 𝑆

∗
𝑘−𝑏) ≥ (1 − 1/𝑒 − 𝜖1 − 𝜖 ′1)IC (𝑆𝑜𝑘). (13)

Proof. Based on Lemma 13,

𝑛

\
· ΛR (𝑆∗𝑏 ∪ 𝑆

∗
𝑘−𝑏) ≥ (1 − 𝑥

𝑘−𝑏)ΛR (𝑆𝑜𝑘) + 𝑥
𝑘−𝑏ΛR (𝑆∗𝑏)

≥ (1 − 𝑥𝑘−𝑏) (1 − 𝜖 ′
1
)IC (𝑆𝑜𝑘) + 𝑥

𝑘−𝑏
(
(1 − 𝑥𝑏 − 𝜖1)IC (𝑆𝑜𝑘) − 𝜖

′
1
IC (𝑆𝑜𝑘)

)
= (1 − 𝑥𝑘 − 𝜖 ′

1
− 𝑥𝑘−𝑏𝜖1)IC (𝑆𝑜𝑘) ≥ (1 − 𝑥

𝑘 − 𝜖1 − 𝜖 ′1)IC (𝑆𝑜𝑘).
When \ > \1, both

𝑛
\
ΛR (𝑆𝑜𝑘) ≥ (1 − 𝜖

′
1
)IC (𝑆𝑜𝑘) and

𝑛
\
ΛR (𝑆∗𝑏) ≥ IC (𝑆

∗
𝑏
) − 𝜖 ′

1
IC (𝑆𝑜𝑘) hold with at least

1 − 𝛿 ′
1
probability. By union bound, the failure probability is 2𝛿 ′

1
. The lemma follows. □

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Let 𝜖 ′ be the error threshold in the IM-sentinel phase.

Lemma 16. Given 𝛿 ′
2
, 𝜖 ′

1
< 𝜖 ′, and

\2 =

2(1 − 1/𝑒) · 𝑛
(
ln

(
𝑛−𝑏
𝑘−𝑏

)
+ ln

1

𝛿′
2

)
IC (𝑆𝑜𝑘) (𝜖 ′ − 𝜖

′
1
)2 ,

if Equation 13 holds and \ > \2, then

IC (𝑆∗𝑏 ∪ 𝑆
∗
𝑘−𝑏) ≥ (1 − 1/𝑒 − 𝜖1 − 𝜖 ′)IC (𝑆𝑜𝑘).

Proof. Let 𝑆𝑘−𝑏 be an arbitrary size-(𝑘 −𝑏) node set selected from𝑉 \𝑆∗
𝑏
. We say that 𝑆𝑘−𝑏 is bad,

if IC (𝑆∗𝑏∪𝑆𝑘−𝑏) < (1−1/𝑒−𝜖1−𝜖 ′)IC (𝑆𝑜𝑘). Then, we can follow the proof steps in Lemma 12 to prove

the lemma. Define a random variable 𝑥𝑖 for each 𝑅𝑖 ∈ R, such that 𝑥𝑖 = 1 if 𝑅𝑖 ∩{𝑆∗𝑏 ∪𝑆𝑘−𝑏} ≠ ∅, and
𝑥𝑖 = 0 if otherwise. Define 𝑝 = IC (𝑆∗𝑏∪𝑆𝑘−𝑏)/𝑛. By definition, we have 𝑝 < (1−1/𝑒−𝜖1−𝜖 ′)IC (𝑆𝑜𝑘)/𝑛.
Let 𝜖 ′

2
= 𝜖 ′ − 𝜖 ′

1
. Following the proof steps in Lemma 12, we can prove that

Pr

[𝑛
\
ΛR (𝑆∗𝑏 ∪ 𝑆𝑘−𝑏) − IC (𝑆

∗
𝑏
∪ 𝑆𝑘−𝑏) ≥ 𝜖 ′2IC (𝑆𝑜𝑘)

]
= Pr

[
\∑︁
𝑖

𝑥𝑖 − \𝑝 ≥
𝜖 ′

2
IC (𝑆𝑜𝑘)
𝑛𝑝

· \𝑝
]
≤ exp

(
−

𝜖 ′
2

2IC (𝑆𝑜𝑘)
2

2𝑛2𝑝 + 2

3
𝜖 ′

2
𝑛IC (𝑆𝑜𝑘)

· \
)

≤ exp

(
−

𝜖 ′
2

2IC (𝑆𝑜𝑘)
2𝑛(1 − 1/𝑒 − 𝜖1 − 𝜖 ′) + 2

3
𝜖 ′

2
𝑛
· \

)
≤ exp

(
−
𝜖 ′

2

2IC (𝑆𝑜𝑘)
2𝑛(1 − 1/𝑒) · \2

)
≤ 𝛿 ′

2
/
(
𝑛 − 𝑏
𝑘 − 𝑏

)
.

Hence, if \ > \2, the probability of bad 𝑆∗
𝑘−𝑏 is at most 𝛿 ′

2
, since there exist only

(
𝑛−𝑏
𝑘−𝑏

)
size-(𝑘 − 𝑏)

node sets and each has at most 𝛿 ′
2
/
(
𝑛−𝑏
𝑘−𝑏

)
probability. That is, with at least 1 − 𝛿 ′

2
,

IC (𝑆∗𝑏 ∪ 𝑆
∗
𝑘−𝑏) ≥

𝑛

\
· ΛR (𝑆∗𝑏 ∪ 𝑆

∗
𝑘−𝑏) − 𝜖

′
2
IC (𝑆𝑜𝑘)

≥ (1 − 1/𝑒 − 𝜖1 − 𝜖 ′)IC (𝑆𝑜𝑘).

Hence, the lemma follows. □

Now we prove Lemma 9. Lemmas 15 and 16 hold with 1− 2𝛿 ′
1
and 1− 𝛿 ′

2
probability, respectively.

By union bound, if \ > max(\1, \2), with 1 − 2𝛿 ′
1
− 𝛿 ′

2
probability, we have that:

IC (𝑆∗𝑏 ∪ 𝑆
∗
𝑘−𝑏) ≥ (1 − 1/𝑒 − 𝜖1 − 𝜖 ′)IC (𝑆𝑜𝑘).

By setting 𝛿 ′
1
= 𝛿 ′

2
= 𝛿 ′/3, \1 = \2, denoted as \ ′, we have:

\ ′ =

2𝑛 ·
(√︃

ln
3

𝛿′ +
√︃
(1 − 1/𝑒) (ln

(
𝑛−𝑏
𝑘−𝑏

)
+ ln

3

𝛿′)
)

2

IC (𝑆𝑜𝑘)𝜖 ′
2

.

The lemma follows.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

6 FORWARD PROPAGATION
In the previous sections, we propose better solutions to find out a seed set for the IM problem

by means of the RR-set-based method. However, if we also hope to get fine-grained propagating

information, the RR-set-based approach may not be a good solution. For example, if we have

obtained a seed set 𝑆 , now we hope to estimate the probability that node 𝑣 is influenced with

respect to 𝑆 for all 𝑣 ∈ 𝐺 . One possible solution is sampling sufficient RR sets from each node in

the graph 𝐺 , which incurs prohibitive computations. On the other hand, we might conduct many

forward propagations, then the fraction of the simulations in which node 𝑣 is finally activated

could works as an unbiased estimator for the probability that seed set 𝑆 influences node 𝑣 . With the

subset sampling techniques developed in Section 4, the forward propagation approach might be

efficient, compared with the RR-set-based method. Motivated by this, we investigate this approach

and provide some new insights.

This section is organized as follows: in Section 6.1, we develop the time cost of conducting a

random forward propagation with subset sampling algorithms ISS and SKIP; in Section 6.2, we

propose a heuristic condition to indicate when the forward propagation should be chosen in terms

of estimating the expected influence of a given seed set.

6.1 Time Complexity
We provide a theorem to bound the expected cost of conducting a random forward propagation.

This theorem holds for both directed and undirected graphs.

Theorem 5. Given a graph 𝐺 = (𝑉 , 𝐸), a seed set 𝑆 , if it holds that ∑𝑢∈𝐼𝑁 (𝑣) 𝑝 (𝑢, 𝑣) ≤ 𝑐 for any
node 𝑣 ∈ 𝑉 where 𝑐 is a constant number, then the expected cost to conduct a forward propagation
is 𝑂 (IC (𝑆)) with ISS algorithm, and 𝑂 (log(𝑑𝑚𝑎𝑥) · IC (𝑆)) with SKIP algorithm where 𝑑𝑚𝑎𝑥 is the
maximum out-degree of the graph 𝐺 .

Proof. Let 𝑝 (𝑢, 𝑣) denote the propagating probability of the edge from node 𝑢 to node 𝑣 . Let

Pr[𝑆 → 𝑢] denote the probability that the seed set 𝑆 activates node 𝑢. Let 𝐼𝑁 (𝑢) be the set of 𝑢’s
in-neighbors and 𝑂𝑈𝑇 (𝑢) be the set of 𝑢’s out-neighbors.
Let 𝐸𝐶 (𝑆) be the set of edges being alive under the cascade process 𝐶 from 𝑆 . That is, given a

realization 𝜙 of the probabilistic graph𝐺 by the live/blocked edge approach, for the correspoinding

cascade 𝐶 from 𝑆 on 𝜙 , only the outgoing edges in 𝜙 from the activated nodes by 𝑆 are included in

𝐸𝐶 (𝑆), while other edges in 𝜙 , though being alive, are excluded. Let 𝑁𝐶 (𝑆) be the set of activated
nodes by 𝑆 under the cascade process 𝐶 . Then the expected cost 𝐸𝐹 (𝑆) of running a forward

propagation with ISS is given as follows:

𝐸𝐹 (𝑆) = IC (𝑆) + E𝐶∈C [|𝐸𝐶 (𝑆) |] .
The above equality is due to the fact that the ISS algorithm take 𝑂 (1) to sample a live edge, and

we have to take at least 𝑂 (1) for each activated node. Therefore, we charge 𝑂 (1) cost if an edge is

alive and charge no cost if the edge is not alive in the following proof.

We rewrite the expectation E𝐶∈C [|𝐸𝐶 (𝑆) |] as follows:

E𝐶∈C [|𝐸𝐶 (𝑆) |] = E𝐶∈C

∑︁
𝑣∈𝑉

∑︁
𝑢∈𝐼𝑁 (𝑣)

1𝐸𝐶 (𝑆) (𝑢, 𝑣)
 =

∑︁
𝑣∈𝑉
E𝐶∈C

∑︁

𝑢∈𝐼𝑁 (𝑣)
1𝐸𝐶 (𝑆) (𝑢, 𝑣)

where 1𝐸𝐶 (𝑆) (𝑢, 𝑣) is an indicator function such that 1𝐸𝐶 (𝑆) (𝑢, 𝑣) = 1 if edge (𝑢, 𝑣) ∈ 𝐸𝐶 (𝑆) and
1𝐸𝐶 (𝑆) (𝑢, 𝑣) = 0 otherwise.

Now for node 𝑣 ∈ 𝑉 with 𝑑𝑖𝑛 (𝑣) in-neighbors, we fix an order of these in-neighbors, and then we

partition C into 𝑑𝑖𝑛 (𝑣) + 1 disjoint sets C𝑣𝑖 for 𝑖 = 0, 1, . . . , 𝑑𝑖𝑛 (𝑣) such that C𝑣𝑖 is the set of cascades

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

where 𝑣 ’s 𝑖-th incoming edge is the first (i.e., smallest-indexed) edge being visited by the cascade

for 𝑖 ≥ 1, and C𝑣
0
is the set of cascades where none of the incoming edges is visited (i.e., 𝑣 is not

activated under the cascade). Let 𝑢𝑖 be the 𝑖-th incoming neighbor of 𝑣 . Then, for each 𝑣 ∈ 𝑉 ,

E𝐶∈C

∑︁

𝑢∈𝐼𝑁 (𝑣)
1𝐸𝐶 (𝑆) (𝑢, 𝑣)

 =

𝑑𝑖𝑛 (𝑣)∑︁
𝑖=1

©«E𝐶∈C𝑣𝑖

∑︁
𝑢∈𝐼𝑁 (𝑣)

1𝐸𝐶 (𝑆) (𝑢, 𝑣)
 · Pr

[
𝐶 ∈ C𝑣𝑖

]ª®¬
=

𝑑𝑖𝑛 (𝑣)∑︁
𝑖=1

©«E𝐶∈C𝑣𝑖
1 +

∑︁
𝑢∈𝐼𝑁 (𝑣)\{𝑢𝑖 }

1𝐸𝐶 (𝑆) (𝑢, 𝑣)
 · Pr

[
𝐶 ∈ C𝑣𝑖

]ª®¬ . (14)

Now we analyze the term E𝐶∈C𝑣
𝑖

[
1𝐸𝐶 (𝑆) (𝑢, 𝑣)

]
. Note that for cascade 𝐶 ∈ C𝑣𝑖 ,

• For 𝑡 = 1, 2, . . . , 𝑖 − 1, edge (𝑢𝑡 , 𝑣) is not alive by definition, and thus

∑𝑖−1

𝑡=1
1𝐸𝐶 (𝑆) (𝑢𝑡 , 𝑣) = 0;

• For 𝑡 = 𝑖 + 1, . . . , 𝑑𝑖𝑛 (𝑣), if 𝑢𝑡 is not activated, we have 1𝐸𝐶 (𝑆) (𝑢𝑡 , 𝑣) = 0;

• For 𝑡 = 𝑖 + 1, . . . , 𝑑𝑖𝑛 (𝑣), if 𝑢𝑡 is activated, we have 1𝐸𝐶 (𝑆) (𝑢𝑡 , 𝑣) = 1 with probability 𝑝 (𝑢𝑡 , 𝑣) ,
and 1𝐸𝐶 (𝑆) (𝑢𝑡 , 𝑣) = 0 with probability 1 − 𝑝 (𝑢𝑡 , 𝑣), due to independent propagation.

Therefore, we can obtain that

E𝐶∈C𝑣
𝑖

∑︁

𝑢∈𝐼𝑁 (𝑣)\{𝑢𝑖 }
1𝐸𝐶 (𝑆) (𝑢, 𝑣)

 = E𝐶∈C𝑣
𝑖

[
𝑑𝑖𝑛 (𝑣)∑︁
𝑡=𝑖+1

1𝐸𝐶 (𝑆) (𝑢𝑡 , 𝑣)
]

≤
𝑑𝑖𝑛 (𝑣)∑︁
𝑡=𝑖+1

𝑝 (𝑢𝑡 , 𝑣) ≤
∑︁

𝑢∈𝐼𝑁 (𝑣)\{𝑢𝑖 }
𝑝 (𝑢, 𝑣).

Therefore, from (14) and the constraint

∑
𝑢∈𝐼𝑁 (𝑣) 𝑝 (𝑢, 𝑣) ≤ 𝑐 , we have

E𝐶∈C

∑︁

𝑢∈𝐼𝑁 (𝑣)
1𝐸𝐶 (𝑆) (𝑢, 𝑣)

 ≤
𝑑𝑖𝑛 (𝑣)∑︁
𝑖=1

©«©«1 +
∑︁

𝑢∈𝐼𝑁 (𝑣)\{𝑢𝑖 }
𝑝 (𝑢, 𝑣)ª®¬ · Pr

[
𝐶 ∈ C𝑣𝑖

]ª®¬
≤ (1 + 𝑐)

𝑑𝑖𝑛 (𝑣)∑︁
𝑖=1

Pr

[
𝐶 ∈ C𝑣𝑖

]
= (1 + 𝑐) Pr[𝑆 → 𝑣] .

Finally, putting them together yields

𝐸𝐹 (𝑆) ≤ IC (𝑆) + (1 + 𝑐)
∑︁
𝑣∈𝑉

Pr[𝑆 → 𝑣] = (2 + 𝑐)IC (𝑆).

It completes the proof of the conclusion that the time complexity of a forward-propagation simula-

tion with ISS is bounded by 𝑂 (IC (𝑆)).
Let 𝐸 ′

𝐹
(𝑆) be the expected cost of conducting a forward propagation with SKIP. According to

Theorem 4, we know that SKIP takes a cost not more than 1 + 𝛽` + log𝛽 ℎ for any 𝛽 ≥ 2. Let 𝛽 = 2,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

and then, we have

𝐸 ′𝐹 (𝑆) =
∑︁
𝑢∈𝑉

Pr[𝑆 → 𝑢] ©«1 + 2

∑︁
𝑣∈𝑂𝑈𝑇 (𝑢)

𝑝 (𝑢, 𝑣) + log(𝑑𝑜𝑢𝑡 (𝑢))
ª®¬

= 2

∑︁
𝑢∈𝑉

Pr[𝑆 → 𝑢] ©«1 +
∑︁

𝑣∈𝑂𝑈𝑇 (𝑢)
𝑝 (𝑢, 𝑣)ª®¬ +

∑︁
𝑢∈𝑉
(log(𝑑𝑜𝑢𝑡 (𝑢)) − 1) Pr[𝑆 → 𝑢]

= 2𝐸𝐹 (𝑆) +
∑︁
𝑢∈𝑉
(log(𝑑𝑜𝑢𝑡 (𝑢)) − 1) Pr[𝑆 → 𝑢]

where 𝐸𝐹 (𝑆) =
∑
𝑢∈𝑉 Pr[𝑆 → 𝑢]

(
1 +∑

𝑣∈𝑂𝑈𝑇 (𝑢) 𝑝 (𝑢, 𝑣)
)
since ISS algorithm samples a live edge

with 𝑂 (1) cost. Note that 𝐸𝐹 (𝑆) ≤ (𝑐 + 2)IC (𝑆) and log(𝑑𝑜𝑢𝑡 (𝑢)) ≤ log(𝑑𝑚𝑎𝑥) for any 𝑢 ∈ 𝑉 . Then,

𝐸 ′𝐹 (𝑆) ≤ (2𝑐 + 3 + log(𝑑𝑚𝑎𝑥))IC (𝑆).

Hence, the time complexity of conducting a forward propagation with the SKIP algorithm is

bounded by 𝑂 (log(𝑑𝑚𝑎𝑥)IC (𝑆)).
□

6.2 Heuristic Condition
According to Lemma 1, the expected influence of an arbitrary seed set could be estimated by the

RR-set-based method. On the other hand, we could also run many forward propagations and take

the average as an estimator of influence. It is natural to ask this question: when should we use the

forward propagation approach to estimate its influence if a seed set is given? From Section 6.1,

we have learned that a random forward propagation is bound by 𝑂 (IC (𝑆)). Intuitively, when the

expected influence is low, the forward propagation approach should be used. In this subsection,

we first derive an upper bound for the time cost of generating a random RR set under WC model

on undirected graphs. Then with the aid of this bound, we are allowed to heuristically derive a

condition to answer the aforementioned question under WC model.

Upper bound for expected cost of a random RR set. According to [44], the following lemma

provides an upper bound on the expected influence of a given seed set.

Lemma 17. Given a WC model with an undirected graph𝐺 = (𝑉 , 𝐸) and a seed set 𝑆 ⊆ 𝑉 , we have
IC (𝑆) ≤ |𝐸 (𝑆,𝑉 \𝑆) | + |𝑆 |, where 𝐸 (𝑆,𝑉 \𝑆) is the set of edges between 𝑆 and 𝑉 \𝑆 .

The above lemma reveals that the expected influence of a given seed set 𝑆 is inherently bounded

by the size of 𝑆 plus the total number of the edges incident to 𝑆 , denoted as |𝐸 (𝑆,𝑉 \𝑆) |. It sets up a

connection between the expected influence of a seed set and its degree information. It is highly

informative such that we are allowed to further derive an upper bound for the expected cost of

generating a random RR set. The derivation is as follows: first, when 𝑆 includes only one single

seed (i.e., 𝑆 = {𝑢}), the upper bound in Lemma 17 becomes 𝑑 (𝑢) + 1, where 𝑑 (𝑢) is the degree of
node 𝑢; Then plugging it into the inequality (3) in Section 3.2:

𝐸𝑅 ≤
\ (𝑉)
𝑛

∑︁
𝑢∈𝑉

\ (𝑑𝑖𝑛 (𝑢))
\ (𝑉) IC ({𝑢}) ≤

1

𝑛

∑︁
𝑢∈𝑉
(𝑑 (𝑢) + 1) = 𝑑𝑎𝑣𝑔 + 1

where 𝑑𝑎𝑣𝑔 is the averaged degree over all the nodes in the graph.

Lemma 18. Given a WC model with an undirected graph 𝐺 = (𝑉 , 𝐸), the cost to generate a random
RR set on 𝐺 can be bounded by 𝑑𝑎𝑣𝑔 + 1.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Lemma 18 is remarkable, showing that generating a randomRR set underWCmodel on undirected

graphs is computationally efficient, with a cost of only 𝑑𝑎𝑣𝑔 + 1.

Heuristic condition. Now we are ready to give a heuristic condition. On one hand, Lemma 17

provides an upper bound (denoted as 𝑈) for the expected influence of a given seed set 𝑆 . Thus

according to Theorem 5, the running time cost of a random forward propagation is 𝑂 (𝑈). On the

other hand, according to Lemma 17, the expected cost of generating a random RR set is bounded

by 𝑑𝑎𝑣𝑔 + 1. Let 𝑁𝑓 be the number of forward propagations and 𝑁𝑟 be the number of the RR sets.

Thus, heuristically we should use the forward propagation approach if it holds that

𝑁𝑓 ·𝑈 ≤ 𝑁𝑟 · 𝑑𝑎𝑣𝑔 .
Here we approximate the cost of a forward propagation to be the upper bound𝑈 .

Note that both approaches should be able to provide the similar approximation guarantee. It

allows us to establish a relationship between𝑁𝑓 and𝑁𝑟 . We claim that to achieve a similar guarantee,

𝑁𝑓 and 𝑁𝑟 should satisfy

𝑁𝑓 =
𝛼 ·𝑈
𝑛

𝑁𝑟 (15)

where 𝛼 is a parameter taking value of 10. The derivation is presented in Section 6.3.

Therefore, by putting together the above results, we draw this condition: we should use the

forward propagation approach if the given seed set 𝑆 satisfies

𝛼 ·𝑈 2 ≤ 𝑛 · 𝑑𝑎𝑣𝑔 = 2𝑚. (16)

It implies that if we want to use the forward propagation approach, the total number of the edges

incident to the seed set 𝑆 should be much smaller than the edge number of the graph. It should

be pointed out that though this heuristic condition is derived from the properties of undirected

graphs, our experiments show it is also effective on directed graphs.

6.3 Theoretical Analysis
In this subsection, we present the derivation of Eq. (15) mentioned in the last subsection. Given a

seed set 𝑆 , let 𝑓𝑖 (𝑆) be the number of activated nodes in the 𝑖-th forward-propagating simulation

starting from 𝑆 where 𝑖 = 1, 2, . . . , 𝑁𝑓 . Without confusion, we denote it as 𝑓𝑖 for simplification. Let

𝑈 be the deterministic upper bound of influence for the given seed set 𝑆 according to Lemma 17.

Though the expectation IC (𝑆) of 𝑓𝑖 satisfies IC (𝑆) ≤ 𝑈 , the value of 𝑓𝑖 might be as large as |𝑉 |,
which makes applying the Chernoff bound unattractive.

To tackle this challenge, we define a variable
ˆ𝑓𝑖 by truncating 𝑓𝑖 with the threshold 𝛼 ·𝑈 , that is,

ˆ𝑓𝑖 =

{
𝑓𝑖 , if 𝑓𝑖 ≤ 𝛼𝑈
𝛼𝑈 , otherwise

(17)

where 𝛼 is a parameter. We choose 𝛼 = 10 such that the percentage of forward-propagating

simulation with influence larger than 𝛼𝑈 is less that 10%, which comes from the Markov inequality:

Pr[𝑋 ≥ 𝑎] ≤ 𝐸 [𝑋]
𝑎

,

where 𝑋 is a non-negative random variable and 𝑎 > 0. Let
ˆIC (𝑆) denote the expectation of

ˆ𝑓𝑖 .

Clearly it holds that IC (𝑆) ≥ ˆIC (𝑆).
The Chernoff bound is given as follows:

Lemma 19. [17] Let 𝑋1, . . . , 𝑋𝑛 be independently distributed in [0, 1]. Let 𝑋 =
∑𝑛
𝑖=1
𝑋𝑖 . Then for

_ > 0,

Pr [𝑋 − 𝐸 [𝑋] ≥ _] ≤ exp

(
− _2

2𝐸 [𝑋] + 2/3_

)
.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

For _ < 𝐸 [𝑋], then we have exp

(
− _2

2𝐸 [𝑋]+2/3_

)
≤ exp

(
− _2

3𝐸 [𝑋]

)
. Let 𝑁𝑓 be the number of

forward-propagating simulations. By applying the Chernoff bound, we have

Pr

𝑁𝑓∑︁
𝑖=1

ˆ𝑓𝑖

𝛼𝑈
− 𝑁𝑓

ˆIC (𝑆)
𝛼𝑈

≥ _𝑓
 ≤ exp

©«−
_2

𝑓

3

𝑁𝑓
ˆIC (𝑆)
𝛼𝑈

ª®¬ .
Let _𝑓 =

Δ𝑓 𝑁𝑓

𝛼𝑈
. Then it can be rewritten as

Pr

ˆIC (𝑆) ≤
1

𝑁𝑓

𝑁𝑓∑︁
𝑖=1

ˆ𝑓𝑖 − Δ𝑓
 ≤ exp

(
−

Δ2

𝑓
𝑁𝑓

3
ˆIC (𝑆)𝛼𝑈

)
. (18)

On the other hand, let 𝑁𝑟 be the number of RR sets and 𝑌𝑖 be a random variable for the RR set 𝑅𝑖
such that 𝑌𝑖 = 1 if 𝑆 ∩𝑅𝑖 ≠ ∅, and 𝑌𝑖 = 0 otherwise. According to Lemma 1 and the Chernoff bound,

Pr

[
𝑁𝑟∑︁
𝑖=1

𝑌𝑖 − 𝑁𝑟
IC (𝑆)
𝑛
≥ _𝑟

]
≤ exp

(
− _2

𝑟

3𝑁𝑟
IC (𝑆)
𝑛

)
,

where 𝑛 is the number of nodes in the graph. Let _𝑟 =
𝑁𝑟Δ𝑟

𝑛
, and then we can rewrite the above

inequality as follows,

Pr

[
IC (𝑆) ≤

𝑛

𝑁𝑟

𝑁𝑟∑︁
𝑖=1

𝑌𝑖 − Δ𝑟

]
≤ exp

(
− 𝑁𝑟Δ

2

𝑟

3𝑛 · IC (𝑆)

)
. (19)

Assume that the parameter 𝛼 = 10 is a favorable setting such that
ˆIC (𝑆) is close to IC (𝑆), (i.e.,

ˆIC (𝑆) ≈ IC (𝑆)). Then taking a comparison between (18) and (19), to achieve a similar lower bound

(i.e., Δ𝑓 ≈ Δ𝑟) with the same failure probability (i.e., exp

(
−

Δ2

𝑓
𝑁𝑓

3
ˆIC (𝑆)𝛼𝑈

)
= exp

(
− 𝑁𝑟Δ

2

𝑟

3𝑛 ·IC (𝑆)

)
), we have

𝑁𝑓

𝛼𝑈
=
𝑁𝑟

𝑛
.

Therefore, we finally obtain Eq. (15).

7 ADDITIONAL RELATEDWORK
There has been a large body of research on IM, e.g., [13–16, 18, 20, 23–25, 29, 30, 33, 34, 36, 43, 51],

in the literature. Kempe et al. [30] present the first seminal work on IM, and show that finding

𝑘 users that maximize the influence is NP-hard. They provide a greedy algorithm that provides

(1− 1/𝑒 − 𝜖)-approximate solution, which requires Ω(𝑘 ·𝑚 ·𝑛 · 𝑝𝑜𝑙𝑦 (1/𝜖)) running time, and is too

expensive on large social networks. A plethora of research works, e.g., [7, 14–16, 20, 24, 25, 29, 43],

study how to improve the efficiency of the IM problem. Most algorithms are heuristic and fail to

provide approximation guarantee. The states of the art are the RR set based solutions [9, 42, 46–48],

as discussed in Section 2.2, which provide superb efficiency and a strong theoretical guarantee.

Besides, a plethora of research work focuses on more practical scenarios rather than the classic

IM. For instance, topic-aware IM, by taking consideration of the topic propagated, is studied by

[34, 38]. Time-aware IM, which considers a time constraint during the diffusion process, is studied

in [21, 35]. Competitive IM [12, 36] considers the scenarios where several competitors spread their

influences in the same social networks simultaneously and their diffusion interferes with each

other. There also exist studies on IM under budget constraints [8, 38], constraint to user groups

[49], and under adaptive settings [27, 45]. These are orthogonal to our study.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Table 2. Summary of datasets (K = 103,M = 106,B = 109)
Dataset Type n m
Pokec directed 1.6M 30.6M

Orkut undirected 3.1M 117.2M

Twitter directed 41.7M 1.5B

Friendster undirected 65.6M 1.8B

Influence estimation with accuracy guarantee is also studied in the literature, e.g., [37, 41].

Lucier et al. [37] introduce the influence estimation method with accuracy guarantee, INFEST,

which is tailored for distributed settings. Nguyen et al. [41] propose the SIEA method to estimate

the influence spread with accuracy guarantee, which is built on two components: the important

sampling method IICP that only samples non-singular cascades, and the estimation method RSA

that can reduce the number of cascade samples required for desired accuracy guarantee.

8 EXPERIMENTS
This section evaluates our solutions against alternatives. All experiments are conducted on a Linux

machine with an Intel Xeon CPU clocked at 2.70GHz and 350 GB memory. We implement all of our

algorithms in C++ and compile all algorithms with full optimization. We repeat each algorithm five

times and report the average running time as the query performance.

Algorithms. For evaluating the effectiveness of SUBSIM, we compare our solutions against the

three state-of-the-art solutions, IMM, SSA and OPIM-C, which all adopt the vanilla RR set generation

algorithm (Algorithm 2). The C++ implementations of these solutions are available at [4], [6] and

[5], respectively. For our solution, we first implement based on the existing state-of-the-art OPIM-C

and integrate our SUBSIM framework for RR set generation. Moreover, we also integrate the

OPIM-C with the RR set generation method SKIS [40] for performance comparison, and name it

OPIM-C+SKIS to be distinguished from the OPIM-C with the vanilla RR set generation algorithm.

The algorithm SKIS is implemented according to the pseudocode in [40].

For evaluating the effectiveness of HIST under highly influential scenarios, we implement two

versions of HIST, one with vanilla RR set generation algorithm and one with SUBSIM framework

for RR set generation. To compare HIST with non-RR-set-based solutions, we include the snapshot-

based method PMC [43] as a competitor, whose C++ implementation can be found at [2].

In the experiments for forward propagation issues, we implement two versions of the forward

propagation, one with SKIP algorithm, and one with the vanilla subset sampling algorithm (that is,

flipping a biased coin once for each out-going edge). Besides, to evaluate the effectiveness of the

heuristic condition proposed in Section 6.2, we implement three estimators for influence estimation.

The first one is the forward propagation estimator with the SKIP sampling method (i.e., we conduct

the IC propagation simulations using the SKIP sampling method many times, and then take the

average), dubbed as FP-SKIP ; the second one is the forward propagation estimator with the IICP

sampling method [41], dubbed as FP-IICP ; the third one is the RR-set-based estimator, dubbed as

RRSE, which samples sufficient RR sets and then estimate the influence spread according to Lemma

1. The IICP sampling method is implemented according to the pseudocode in [41].

Datasets. We evaluate our experiments on four benchmark datasets that are publicly available at

[1, 3]. The summary of these datasets is shown in Table 2.

Parameter Settings. Recap that all the algorithms include an error parameter 𝜖 and a failure

probability parameter 𝛿 . Following previous work [46], we set 𝜖 = 0.1 and 𝛿 = 1/𝑛 for all solutions

in the experiments. To examine the effectiveness of our SUBSIM, we compare our SUBSIM against

the vanilla RR set generation algorithm under IC model with different distribution settings. We

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

first test on WC model, where the weight of an edge (𝑤,𝑢) is set as 1/𝑑𝑖𝑛 (𝑢). Then we test the

case when the weight of edges follows skewed distributions, in particular, exponential distribution

and Weibull distribution. For exponential distribution, the probability density function (PDF) is
𝑓 (𝑥) = _𝑒−_𝑥 . We set _ = 1 and sample the weight of each edge with this setting. For each node

𝑣 , we scale the sum of the weights of its incoming edges to 1. For Weibull distribution, the PDF

is 𝑓 (𝑥) = 𝑎
𝑏
·
(
𝑥
𝑏

)𝑎−1 · 𝑒−(𝑥/𝑏)𝑎 . Following previous studies [47], we sample 𝑎 and 𝑏 from [0, 10]
uniformly at random for each edge 𝑒 . For each node 𝑣 , we scale the sum of the probability weight

of its incoming edges to 1.

We then examine the effectiveness of HIST in high influence networks, where the average size

of random RR sets tends to be quite large. We design our experiments by varying the average

size of random RR sets under two settings. The first setting, dubbed as WC variant, is similar to

WC model except that we introduce a constant \ ≥ 1 such that the weight of an edge (𝑤,𝑢) is
set as min{1, \/𝑑𝑖𝑛 (𝑢)}. By changing \ , we are able to vary the average size of random RR sets.

We then vary \ on each dataset such that the average size of random RR sets is approximately

{50, 400, 1000, 4000, 8000, 32000}. We denote the setting as \50, \400, \1𝐾 , \4𝐾 , \8𝐾 , \32𝐾 , respectively.

The second setting is the Uniform IC setting where all edges have the same weight 𝑝 . We vary

the weight 𝑝 on each dataset such that the average size of random RR sets is approximately

{50, 400, 1000, 4000, 8000, 32000}. We denote the setting as 𝑝50, 𝑝400, 𝑝1𝐾 , 𝑝4𝐾 , 𝑝8𝐾 , 𝑝32𝐾 , respectively.

As for the baseline PMC [43], we set the parameter 𝑅 (i.e., the number of snapshots) as 200, following

the default setting in [43].

Accuracy Measure. To measure estimation accuracy when evaluating different influence estima-

tors, we compute the relative error and then take the average, which is expressed as
1

\

∑\
𝑖=1
|𝑥𝑖/𝑥𝑖−1|,

where 𝑥𝑖 and 𝑥𝑖 is the estimated and exact influence of the 𝑖-th seed set, respectively. The exact

expected influence is computed with guarantee that relative error is less than 0.1%.

8.1 Effectiveness of SUBSIM
In the first set of experiments, we examine the effectiveness of SUBSIM against IMM, SSA, OPIM-C,

and OPIM-C+SKIS under WC setting. Figure 1 reports the average running time on the four datasets.

The first observation is that SUBSIM consistently outperforms alternatives on all the tested datasets.

Compared to OPIM-C, even though we only modify the RR set generation algorithm, SUBSIM is

still up to 15x faster than OPIM-C on Twitter. SUBSIM further outperforms SSA (resp. IMM) by

up to an order (resp. three orders) of magnitude. Compared with OPIM-C+SKIS which combines

OPIM-C and SKIS, our SUBSIM also achieves a better performance by up to 20x on Twitter. It can

be explained with the fact that our SUBSIM optimizes the generation of both the singular and

non-singular RR-sets. The cost of singular RR set generation in SUBSIM is also much smaller than

the vanilla RR set generation algorithm which takes an expected cost proportional to the average

degree. For example, on the WC model, the cost of singular RR set generation takes only 𝑂 (1) cost
with our SUBSIM. Note that OPIM-C+SKIS fails to consistently beat the vanilla OPIM-C. To explain,

the greedy algorithm in SKIS (see Alg. 3 in [40]) iteratively selects a node 𝑣 having the largest

marginal influence gain which is float data type due to the importance sampling mechanism, and is

implemented using max heap. In contrast, OPIM-C with the vanilla RR set generation iteratively

pick a node 𝑣 with maximal marginal coverage which is represented with an integer value, and

thus could be implemented more efficiently with inverted list and lazy update.

In the second set of experiments, we consider the skewed distribution settings, i.e., when the

edges follow the exponential or Weibull distribution. We omit the results for IM algorithms since the

experimental result follows a similar trend. Instead, we focus on comparing the cost of the vanilla

RR set generation algorithm, denoted as vanilla, with that of our SUBSIM for RR set generation.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

IMMIMM SSASSA OPIM-COPIM-C SUBSIMSUBSIM OPIM-C+SKISOPIM-C+SKIS

10
-1

10
0

10
1

10
2

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

(a) Pokec (b) Orkut

10
-1

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
2

10
3

10
4

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

(c) Twitter (d) Friendster

Fig. 1. Varying 𝑘 : Running time of IM algorithms under WC model.

VanillaVanillaSUBSIM+BUCKETSUBSIM+BUCKETSUBSIM+SKIPSUBSIM+SKIP SUBSIM+ISSSUBSIM+ISS

10
0

10
1

10
2

10
3

Pokec Orkut Twitter Friendster

Running time (s)

10
0

10
1

10
2

10
3

10
4

10
5

Pokec Orkut Twitter Friendster

Running time (s)

(a) Exponential (b) Weibull

Fig. 2. Skewed distribution: RR set generation cost.

We implement SUBSIM with BUCKET with 𝛽 = 2 (denoted as SUBSIM + BUCKET), ISS (denoted as

SUBSIM + ISS), and SKIP (denoted as SUBSIM + SKIP), respectively. We generate 2
10 × 1000 random

RR sets with each of the four algorithms on each dataset, and report their running time. As shown

in Figure 2, SUBSIM + SKIP consistently keeps its advantage on all four tested datasets and achieves

up to 41x (resp. 43x) speedup over vanilla under exponential (resp. Weibull) distribution. Besides,

even though the ISS sampling method has the optimal time complexity of 𝑂 (1 + `) for the subset
sampling problem, however, SUBSIM+SKIP gives a better practical performance than SUBSIM+ISS,
and achieves up to 2.7x (resp. 2.8x) speedup under exponential (resp. Weibull) distribution. This

result can be explained by the fact that the ISS sampling method takes a two-dimensional index

structure, which is complicate and may hamper the cache efficiency. Compared with the vanilla RR

set generation algorithm, the ISS algorithm is still faster on three (Orkut, Twitter, and Friendster) out

of four tested datasets, and is up to an order of magnitude faster on Twitter datasets. Furthermore,

SUBSIM+SKIP consistently outperforms over SUBSIM+BUCKET on all four graphs, and achieves

by up to 1.4x (resp. 1.7x) speedup under exponential (resp. Weibull) distribution, which agrees with

the theoretical analysis that SKIP is optimal for the index-free sorted subset sampling problem.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HISTHISTHIST+SUBSIMHIST+SUBSIM OPIM-COPIM-C PMCPMC

10
0

10
1

10
2

10
3

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
0

10
1

10
2

10
3

10
4

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

(a) Pokec (b) Orkut

10
0

10
1

10
2

10
3

10
4

10
5

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

10
1

10
2

10
3

10
4

10
5

1 10 50 100 200 500 1000 1500 2000

Running time (s)

k

(c) Twitter (d) Friendster

Fig. 3. Varying 𝑘 : Running time under WC variant setting.

HISTHISTHIST+SUBSIMHIST+SUBSIM OPIM-COPIM-C PMCPMC

10
5

10
6

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

10
5

10
6

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

(a) Pokec (b) Orkut

10
6

10
7

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

10
5

10
6

10
7

1 10 50 100 200 500 1000 1500 2000

Expected Influence

k

(c) Twitter (d) Friendster

Fig. 4. Varying 𝑘 : Expected influence under WC variant setting.

8.2 Effectiveness of HIST
Our first set of experiments examines the performance of our HIST when 𝑘 varies un-

der WC variant setting. We fix \ and set it to \4𝐾 for each dataset, and vary 𝑘 with

{1, 10, 50, 100, 200, 500, 1000, 1500, 2000}. Figure 3 shows the average running time of HIST (with

vanilla RR set generation algorithm), HIST+SUBSIM (with SUBSIM for RR set generation), OPIM-C,

and PMC. We observe that with the increase of size 𝑘 , the benefit of applying our HIST algo-

rithm becomes more significant, and HIST is at least an order of magnitude faster than OPIM-C.

HIST+SUBSIM further achieves up to an order of magnitude speedup over HIST since HIST+SUBSIM

adopts SUBSIM for RR set generation. We omit the result of PMC on dataset Friendster since it runs

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HISTHISTHIST+SUBSIMHIST+SUBSIM OPIM-COPIM-C PMCPMC

10
0

10
1

10
2

10
3

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

10
0

10
1

10
2

10
3

10
4

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

(a) Pokec (b) Orkut

10
0

10
1

10
2

10
3

10
4

10
5

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

10
2

10
3

10
4

θ
50

θ
400

θ
1K

θ
4K

θ
8K

θ
32K

Running time (s)

θ

(c) Twitter (d) Friendster

Fig. 5. Varying \ : Running time under WC variant setting.

out of memory on our machine (due to the same reason, we also omit the result of PMC in the later

experiments). Note that the RR-set-based solutions outperform PMC by a large margin among all

three datasets under WC variant model. With the size 𝑘 of the seed set increasing, the gap between

OPIM-C and PMC gets smaller. In contrast, this situation does not happen to our solutions HIST

and HIST+SUBSIM. Figure 4 shows the expected influence when we increase 𝑘 from 1 to 2000 with

\4𝑘 setting. The expected influence gains a significant increase when we increase 𝑘 from 1 to 2000

on all four datasets.

In our second set of experiments, we vary the average size of random RR sets under WC variant

setting. We fix 𝑘 = 200 and vary \ with \50, \400, \1𝐾 , \4𝐾 , \8𝐾 , \32𝐾 on each dataset. Figure 5 shows

the running time of our solutions against OPIM-C. We can observe that even when the average

size of random RR sets is around 50, our HIST is already as competitive as OPIM-C. When the size

of random RR sets further increases, HIST shows a more significant advantage and is up to two

orders of magnitude faster than OPIM-C when \ = \32𝐾 . Besides, HIST+SUBSIM is always two

orders of magnitude faster than OPIM-C when \ = \32𝐾 . Compared with PMC, the RR-set-based

solutions OPIM-C, HIST, and HIST+SUBSIM are faster. Observe that as the average size of random

RR sets is gradually increasing, the advantage of HIST/HIST+SUBSIM over PMC keeps relatively

stable, whereas the curve of OPIM-C becomes closer to that of PMC.

In our third set of experiments, we vary the average size of random RR sets under Uniform IC

setting. We fix 𝑘 = 200 and vary 𝑝 with {𝑝50, 𝑝400, 𝑝1𝐾 , 𝑝4𝐾 , 𝑝8𝐾 , 𝑝32𝐾 }. Figure 6 shows the running
time of all three algorithms. We can see that even when the average size of RR sets is around 50,

HIST is already several times faster than OPIM-C. When 𝑝 is set to 𝑝32𝐾 , HIST (resp. HIST+SUBSIM)

is at least an order (resp. two orders) of magnitude faster than OPIM-C. Our HIST and HIST-SUBSIM

also maintain a significant advantage compared with PMC. Note that under Uniform IC model,

when 𝑝 is large (say larger than 𝑝400), PMC gives a better performance than OPIM-C on datasets

Orkut and Twitter. We also examine the effectiveness of our solutions when 𝑘 varies under Uniform

IC setting. The result is similar to our findings under WC variant setting and is omitted.

In our forth set of experiments, we run HIST (without SUBSIM) and OPIM-C with various error

thresholds 𝜖 under WC variant model. We fix 𝑘 = 200, \ = \4𝐾 , and vary 𝜖 with {0.5, 0.25, 0.1, 0.01}.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HISTHISTHIST+SUBSIMHIST+SUBSIM OPIM-COPIM-C PMCPMC

10
0

10
1

10
2

10
3

p50 p400 p1K p4K p8K p32K

Running time (s)

p

10
0

10
1

10
2

10
3

10
4

p50 p400 p1K p4K p8K p32K

Running time (s)

p

(a) Pokec (b) Orkut

10
0

10
1

10
2

10
3

10
4

10
5

p50 p400 p1K p4K p8K p32K

Running time (s)

p

10
1

10
2

10
3

10
4

10
5

p50 p400 p1K p4K p8K p32K

Running time (s)

p

(c) Twitter (d) Friendster

Fig. 6. Varying 𝑝 : Running time under Uniform IC setting.

HISTHIST OPIM-COPIM-C

2.0×10
5

2.2×10
5

2.4×10
5

2.6×10
5

10
0

10
1

10
2

Influence Spread

Running Time

2.4×10
5

2.8×10
5

3.2×10
5

3.6×10
5

4.0×10
5

10
0

10
1

10
2

10
3

Influence Spread

Running Time

(a) Pokec (b) Orkut

1.2×10
7

1.3×10
7

1.4×10
7

1.5×10
7

1.6×10
7

10
1

10
2

10
3

Influence Spread

Running Time

1.6×10
6

1.7×10
6

1.8×10
6

1.9×10
6

2.0×10
6

10
2

10
3

10
4

Influence Spread

Running Time

(c) Twitter (d) Friendster

Fig. 7. Varying 𝜖 : Running time vs Empirical influence under WC variant setting.

Figure 7 shows the running time and its empirical influence. Observe that when achieving a roughly

identical empirical influence, HIST takes a much smaller running time compared with OPIM-C. It

implies that HIST does improve the trade-off between the running time and empirical influence.

In the fifth set of experiments, we report some statistics of RR sets with our HIST under WC

variant setting with 𝑘 = 2000 and \ = \4𝐾 . Figure 8(a) reports the number of RR sets generated in

the sentinel set selection phase of HIST. We compare with the number of RR sets generated by

OPIM-C and we observe that the number of random RR sets required by our HIST is two orders of

magnitude smaller than that required by OPIM-C in most datasets. Figure 8(b) reports the average

size of random RR sets generated by our HIST against OPIM-C. Observe that the average size of

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

OPIM-CHIST

10
1

10
2

10
3

10
4

10
5

10
6

Pokec Orkut Twitter Friendster

Number of RR sets

10
0

10
1

10
2

10
3

10
4

Pokec Orkut Twitter Friendster

Average Size of RR sets

(a) Number of RR sets (b) Average size of RR sets

Fig. 8. Statistics of RR sets.

Table 3. Average size of RR sets with the sentinel set

Alg
Dataset

Pokec Orkut Twitter Friendster

Greedy-Degree 39.8 61.1 18.5 197.0

Greedy-Cost 78.8 134.2 57.01 324.1

standard greedy 82.7 137.3 32.2 404.3

random RR sets with HIST is reduced by up to 700x. To explain, when a node in the sentinel set is

met, the RR set generation with HIST can immediately stop, reducing the size of RR sets.

In the last set of experiments, we examine the effectiveness of our revised greedy algorithm,

Greedy-Degree (see Alg. 9), against standard greedy and Greedy-Cost (see Appendix B) under WC

variant seting with \ = \4𝐾 and 𝑘 = 2000. The experiment is designed as follows: we generate a

collection R of RR sets, then respectively apply these three greedy algorithms to get a sentinel set,

and finally report the average size of RR sets with each obtained sentinel set. Since the average size

of RR sets with a sentinel set might be affected by the size of the sentinel set, we fix 𝑏 = 200, which

is roughly equal to the size of 𝑆∗
𝑏
obtained by our HIST when 𝑘 = 2000. Besides, because a larger R

can improve the quality of the sentinel set, thus for fair comparison, we fix the size of R on each

dataset. We set the size of R as 1000, 1000, 100, and 10000 on datasets Pokec, Orkut, Twitter, and

Friendster, respectively, such that it is similar as the number used in the sentinel set selection phase

of HIST which is reported in Figure 8(a). We repeat the experiment 20 times and take the average.

Table 3 reports the average size of RR sets with the sentinel set 𝑆∗
200

. We observe that the average

size of the RR sets with the sentinel set obtained by Greedy-Degree is much smaller, compared with

its competitors, standard greedy and Greedy-Cost. Note that Greedy-Cost gives a smaller average

size of RR sets than standard greedy, except on Twitter. It is explained that the performance of

Greedy-Cost relies on the size of R, and a larger R can better capture the probability space of RR

sets, while on dataset Twitter, the number of RR sets is only 100.

In summary, the result indicates that the larger the average size of random RR sets are, the more

effective our HIST and HIST+SUBSIM are. In high influence networks, the average size of random

RR sets tends to be large and our proposed solutions are preferred choices.

8.3 Forward Propagation
In the first set of experiments, we examine the effectiveness of SKIP in forward propagation under

WC setting. We first invoke SUBSIM with 𝑘 = 10, 50, 100 to get a seed set 𝑆 , and then run each

version (i.e., SKIP and vanilla) of the forward propagation starting from 𝑆 1000 times. We repeat this

process 10 times and take the average. Figure 9 shows the running time of forward propagations

on four datasets. We can see that on all four datasets, the SKIP version of the forward propagation

consistently run faster than the vanilla version. Specifically, the SKIP version yields approximately

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

VanillaSKIP

5

10

15

20

25

10 50 100

Running time (s)

k

0

25

50

75

100

125

150

10 50 100

Running time (s)

k

(a) Pokec (b) Orkut

0

1000

2000

3000

4000

5000

10 50 100

Running time (s)

k

0

50

100

150

200

10 50 100

Running time (s)

k

(c) Twitter (d) Friendster

Fig. 9. Running time of forward propagations.

RRSERRSEFP-IICPFP-IICPFP-SKIPFP-SKIP

10
-3

10
-2

10
-1

1 2 4 8 16 32

mean relative error

Running Time (s)

10
-3

10
-2

10
-1

1 2 4 8 16 32

mean relative error

Running Time (s)

(a) Pokec (b) Orkut

10
-2

10
-1

10
0

1 2 4 8 16 32

mean relative error

Running Time (s)

10
-2

10
-1

10
0

1 2 4 8 16 32

mean relative error

Running Time (s)

(c) Twitter (d) Friendster

Fig. 10. Varying Running time: mean relative error of three influence estimators.

2x speed up on the datasets Orkut, Twitter and Friendster. Note that the performance of the SKIP

algorithm in forward propagation is not as remarkble as that in RR set generation, which is up to

43x (see Figure 2). It could be explained that the forward propagation process visits a large number

of nodes with low degree, which is unfavourable for SKIP.

In the second set of experiments, to evaluate the effectiveness of our proposed condition (see

Inequality (16)) under WC setting, we randomly generate 200 seed sets, each of which has 100 seeds

and satisfies the heuristic condition. We vary running time with {1, 2, 4, 8, 16, 32} seconds, and then

compare the estimation accuracy of FP-SKIP, FP-IICP, and RRSE. Figure 10 reports their mean

relative error performance. Note that both forward-propagation-based estimators (i.e., FP-SKIP and

FP-IICP) demonstrate better estimation accuracy than RRSE on all four datasets. In particular, on

Pokec (Friendster, resp.), FP-SKIP achieves a mean relative error of 1.0% (6.9%, resp.) with only one

second running cost, whereas RRSE has to take 32 seconds to get a inferior score, 2.4% (12%, resp.).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

In spite of the fact that the heuristic condition is obtained from undirected graphs, the experimental

results demonstrate that it can also be applied to directed graphs. Furthermore, our FP-SKIP gives a

more accurate estimation since the SKIP sampling method is efficient such that we can generate

more simulations with the same running time, compared with the IICP method.

9 CONCLUSION
This paper presents SUBSIM, an efficient framework for RR set generation. We develop an index-free

algorithm SKIP for the sorted subset sampling problem. We further present HIST to further tackle

the challenging scalability issues in high influence networks. Furthermore, we present the time

complexity of the forward propagation and a heuristic condition for estimator choice.

REFERENCES
[1] 2013. KONECT Datasets. http://konect.uni-koblenz.de/.

[2] 2014. PMC code. https://github.com/todo314/pruned-monte-carlo.

[3] 2014. SNAP Datasets. http://snap.stanford.edu/data.

[4] 2015. IMM code. https://sourceforge.net/projects/im-imm/.

[5] 2017. OPIM-C code. https://github.com/tangj90/OPIM.

[6] 2017. SSA code. https://github.com/hungnt55/Stop-and-Stare.

[7] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. 2017. Debunking the Myths of Influence Maximization: An In-Depth

Benchmarking Study. In SIGMOD. 651–666.
[8] Song Bian, Qintian Guo, Sibo Wang, and Jeffrey Xu Yu. 2020. Efficient Algorithms for Budgeted Influence Maximization

on Massive Social Networks. Proc. VLDB Endow. 13, 9 (2020), 1498–1510.
[9] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan Lucier. 2014. Maximizing Social Influence in

Nearly Optimal Time. In SODA. 946–957.
[10] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.

[11] Karl Bringmann and Konstantinos Panagiotou. 2017. Efficient Sampling Methods for Discrete Distributions. Algorith-
mica 79, 2 (2017), 484–508.

[12] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. 2011. Limiting the spread of misinformation in social networks.

In WWW. 665–674.

[13] Shuo Chen, Ju Fan, Guoliang Li, Jianhua Feng, Kian-Lee Tan, and Jinhui Tang. 2015. Online Topic-Aware Influence

Maximization. PVLDB 8, 6 (2015), 666–677.

[14] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization for prevalent viral marketing in

large-scale social networks. In SIGKDD. 1029–1038.
[15] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in social networks. In SIGKDD. 199–208.
[16] Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi Cheng. 2014. IMRank: influence maximization via

finding self-consistent ranking. In SIGIR. 475–484.
[17] Fan R. K. Chung and Lincoln Lu. 2006. Survey: Concentration Inequalities and Martingale Inequalities: A Survey.

Internet Math. 3, 1 (2006), 79–127.
[18] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. 2014. Sketch-based Influence Maximization and

Computation: Scaling up with Guarantees. In CIKM. 629–638.

[19] Paul Dagum, Richard M. Karp, Michael Luby, and Sheldon M. Ross. 1995. An Optimal Algorithm for Monte Carlo

Estimation (Extended Abstract). In FOCS. 142–149.
[20] Sainyam Galhotra, Akhil Arora, and Shourya Roy. 2016. Holistic Influence Maximization: Combining Scalability and

Efficiency with Opinion-Aware Models. In SIGMOD. 743–758.
[21] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf. 2011. Uncovering the Temporal Dynamics of

Diffusion Networks. In ICML. 561–568.
[22] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2010. Learning influence probabilities in social networks.

In WSDM. 241–250.

[23] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2011. A Data-Based Approach to Social Influence

Maximization. PVLDB 5, 1 (2011), 73–84.

[24] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. 2011. CELF++: optimizing the greedy algorithm for influence

maximization in social networks. InWWW. 47–48.

[25] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. 2011. SIMPATH: An Efficient Algorithm for Influence Maximization

under the Linear Threshold Model. In ICDM. 211–220.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://konect.uni-koblenz.de/
https://github.com/todo314/pruned-monte-carlo
http://snap.stanford.edu/data
https://sourceforge.net/projects/im-imm/
https://github.com/tangj90/OPIM
https://github.com/hungnt55/Stop-and-Stare

[26] Qintian Guo, Sibo Wang, Zhewei Wei, and Ming Chen. 2020. Influence Maximization Revisited: Efficient Reverse

Reachable Set Generation with Bound Tightened. In SIGMOD. ACM, 2167–2181.

[27] Kai Han, Keke Huang, Xiaokui Xiao, Jing Tang, Aixin Sun, and Xueyan Tang. 2018. Efficient Algorithms for Adaptive

Influence Maximization. PVLDB 11, 9 (2018), 1029–1040.

[28] Keke Huang, Sibo Wang, Glenn S. Bevilacqua, Xiaokui Xiao, and Laks V. S. Lakshmanan. 2017. Revisiting the

Stop-and-Stare Algorithms for Influence Maximization. PVLDB 10, 9 (2017), 913–924.

[29] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. IRIE: Scalable and Robust Influence Maximization in Social Networks.

In ICDM. 918–923.

[30] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network.

In SIGKDD. 137–146.
[31] Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3.
[32] Andreas Krause and Daniel Golovin. 2014. Submodular Function Maximization. In Tractability: Practical Approaches to

Hard Problems. Cambridge University Press, 71–104.

[33] Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart. 2015. Online Influence Maximization. In SIGKDD.
645–654.

[34] Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. 2015. Real-time Targeted Influence Maximization for Online

Advertisements. PVLDB 8, 10 (2015), 1070–1081.

[35] Bo Liu, Gao Cong, Dong Xu, and Yifeng Zeng. 2012. Time constrained influence maximization in social networks. In

ICDM. 439–448.

[36] Wei Lu, Wei Chen, and Laks V. S. Lakshmanan. 2015. From Competition to Complementarity: Comparative Influence

Diffusion and Maximization. PVLDB 9, 2 (2015), 60–71.

[37] Brendan Lucier, Joel Oren, and Yaron Singer. 2015. Influence at scale: Distributed computation of complex contagion

in networks. In SIGKDD. 735–744.
[38] Hung T. Nguyen, Thang N. Dinh, and My T. Thai. 2016. Cost-aware Targeted Viral Marketing in billion-scale networks.

In INFOCOM. 1–9.

[39] Hung T. Nguyen, Thang N. Dinh, and My T. Thai. 2018. Revisiting of ’Revisiting the Stop-and-Stare Algorithms for

Influence Maximization’. In CSoNet. 273–285.
[40] Hung T. Nguyen, Tri P. Nguyen, NhatHai Phan, and Thang N. Dinh. 2017. Importance Sketching of Influence Dynamics

in Billion-Scale Networks. In ICDM. 337–346.

[41] Hung T. Nguyen, Tri P. Nguyen, Tam N. Vu, and Thang N. Dinh. 2017. Outward Influence and Cascade Size Estimation

in Billion-scale Networks. Proc. ACM Meas. Anal. Comput. Syst. 1, 1 (2017), 20:1–20:30.
[42] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. 2016. Stop-and-Stare: Optimal Sampling Algorithms for Viral

Marketing in Billion-scale Networks. In SIGMOD. 695–710.
[43] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi. 2014. Fast and Accurate Influence

Maximization on Large Networks with Pruned Monte-Carlo Simulations. In AAAI. 138–144.
[44] Grant Schoenebeck and Biaoshuai Tao. 2020. Influence Maximization on Undirected Graphs: Toward Closing the

(1-1/e) Gap. ACM Trans. Economics and Comput. 8, 4 (2020), 22:1–22:36.
[45] Jing Tang, Keke Huang, Xiaokui Xiao, Laks V. S. Lakshmanan, Xueyan Tang, Aixin Sun, and Andrew Lim. 2019.

Efficient Approximation Algorithms for Adaptive Seed Minimization. In SIGMOD. 1096–1113.
[46] Jing Tang, Xueyan Tang, Xiaokui Xiao, and Junsong Yuan. 2018. Online Processing Algorithms for Influence Maxi-

mization. In SIGMOD. 991–1005.
[47] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence Maximization in Near-Linear Time: AMartingale Approach.

In SIGMOD. 1539–1554.
[48] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: near-optimal time complexity meets

practical efficiency. In SIGMOD. 75–86.
[49] Rajan Udwani. 2018. Multi-objective Maximization of Monotone Submodular Functions with Cardinality Constraint.

In NeurIPS. 9513–9524.
[50] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random Variables with General Distributions.

ACM Trans. Math. Softw. 3, 3 (1977), 253–256.
[51] Yanhao Wang, Qi Fan, Yuchen Li, and Kian-Lee Tan. 2017. Real-Time Influence Maximization on Dynamic Social

Streams. PVLDB 10, 7 (2017), 805–816.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

APPENDIX
A PROOF OF THEOREM 4
We introduce some notations and lemmas that are useful to prove Theorem 4. Denote ¯̀ as the total

expected number of elements in 𝑇 checked by SKIP to determine whether 𝑥 𝑗 is added to 𝑆 (Lines

9-10). Thus, SKIP takes 𝑂 (1 + ¯̀) time in expectation, where “1” is from the stopping step of while

loop when it meets the condition 𝑗 > ℎ (Line 7).

Similarly, let ¯̀(𝑝𝑖 , . . . , 𝑝 𝑗) denote the expected number of elements checkedwhen𝑇 = {𝑥𝑖 , . . . , 𝑥 𝑗 },
e.g., ¯̀ = ¯̀(𝑝1, . . . , 𝑝ℎ). Consider that SKIP performs on {𝑥𝑖 , . . . , 𝑥 𝑗 } and 𝑥𝑘 is the first element

checked. The probability for such a case is (1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 , as Pr[𝑋 = 𝑘 − 𝑖 + 1] follows the geometric

distribution 𝐺 (𝑝𝑖). After checking 𝑥𝑘 , SKIP performs on {𝑥𝑘+1, . . . , 𝑥 𝑗 }. Thus, by Markov chain,

¯̀(𝑝𝑖 , . . . , 𝑝 𝑗) =
𝑗∑︁
𝑘=𝑖

(
(1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 ·

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

))
.

The following lemma shows the monotonicity of ¯̀(𝑝𝑖 , . . . , 𝑝 𝑗).

Lemma 20. ¯̀(𝑝𝑖+1, . . . , 𝑝 𝑗) ≤ ¯̀(𝑝𝑖 , . . . , 𝑝 𝑗).

Proof. Weprove the lemma by induction.When 𝑖 = 𝑗−1, we have ¯̀(𝑝𝑖+1) = 𝑝𝑖+1 and ¯̀(𝑝𝑖 , 𝑝𝑖+1) =
𝑝𝑖 + (1 − 𝑝𝑖)𝑝𝑖 + 𝑝𝑖𝑝𝑖+1 = (2 + 𝑝𝑖+1 − 𝑝𝑖)𝑝𝑖 , which indicates that ¯̀(𝑝𝑖+1) ≤ ¯̀(𝑝𝑖 , 𝑝𝑖+1). Assume that

for any 𝑖 ≥ 𝑖∗, it holds that
¯̀(𝑝𝑖+1, . . . , 𝑝 𝑗) ≤ ¯̀(𝑝𝑖 , . . . , 𝑝 𝑗).

Now consider 𝑖 = 𝑖∗ − 1. Similar to (A), we have

¯̀(𝑝𝑖+1, . . . , 𝑝 𝑗) =
𝑗∑︁

𝑘=𝑖+1

(
(1 − 𝑝𝑖+1)𝑘−𝑖−1𝑝𝑖+1 ·

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

))
.

For any ℓ = 𝑖, . . . , 𝑗 , define

Δℓ :=

ℓ∑︁
𝑘=𝑖

(1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 −
ℓ∑︁

𝑘=𝑖+1
(1 − 𝑝𝑖+1)𝑘−𝑖−1𝑝𝑖+1 = (1 − 𝑝𝑖+1)ℓ−𝑖 − (1 − 𝑝𝑖)ℓ−𝑖+1.

It is easy to verify that Δℓ ≥ 0 for any ℓ = 𝑖, . . . , 𝑗 owing to the fact that {𝑝𝑖 , . . . , 𝑝 𝑗 } are in

non-ascending order. Besides, the following conclusion holds by definition, and will be used later,

Δℓ+1 + 𝑝𝑖+1 (1 − 𝑝𝑖+1)𝑙−𝑖 = Δℓ + 𝑝𝑖 (1 − 𝑝𝑖)𝑙−𝑖+1 . (20)

Then, we have

¯̀(𝑝𝑖 , . . . , 𝑝 𝑗) =
𝑗∑︁
𝑘=𝑖

(
(1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 ·

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

))
= 𝑝𝑖

(
1 + ¯̀(𝑝𝑖+1, . . . , 𝑝 𝑗)

)
+

𝑗∑︁
𝑘=𝑖+1

(
(1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 ·

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

))
≥ Δ𝑖+1

(
1 + ¯̀(𝑝𝑖+2, . . . , 𝑝 𝑗)

)
+ 𝑝𝑖+1

(
1 + ¯̀(𝑝𝑖+2, . . . , 𝑝 𝑗)

)
+

𝑗∑︁
𝑘=𝑖+2

(
(1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 ·

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

))
.

The inequality is due to ¯̀(𝑝𝑖+1, . . . , 𝑝 𝑗) ≥ ¯̀(𝑝𝑖+2, . . . , 𝑝 𝑗) and Δ𝑖+1 + 𝑝𝑖+1 = 𝑝𝑖 + (1 − 𝑝𝑖)𝑝𝑖 by (20).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Recursively, we have

¯̀(𝑝𝑖 , . . . , 𝑝 𝑗) ≥ Δ𝑖+2
(
1 + ¯̀(𝑝𝑖+3, . . . , 𝑝 𝑗)

)
+

𝑖+2∑︁
𝑘=𝑖+1

(
(1 − 𝑝𝑖+1)𝑘−𝑖−1𝑝𝑖+1 ·

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

))
+

𝑗∑︁
𝑘=𝑖+3

(
(1 − 𝑝𝑖)𝑘−𝑖𝑝𝑖 ·

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

))
≥ · · · ≥ Δ 𝑗 + ¯̀(𝑝𝑖+1, . . . , 𝑝 𝑗).

Note that Δ 𝑗 ≥ 0 as 𝑝𝑖 ≥ 𝑝𝑖+1, which immediately concludes the lemma. □

Lemma 21. For any 𝑝𝑘 ≤ 𝑝 ′𝑘 , ¯̀(𝑝𝑖 , . . . , 𝑝𝑘 , . . . , 𝑝 𝑗) ≤ ¯̀(𝑝𝑖 , . . . , 𝑝 ′𝑘 , . . . , 𝑝 𝑗).

Proof. We prove the lemma by induction. When 𝑖 = 𝑗 = 𝑘 , it obviously holds that ¯̀(𝑝𝑘) =
𝑝𝑘 ≤ 𝑝 ′𝑘 = ¯̀(𝑝 ′

𝑘
). Assume that ¯̀(𝑝𝑖 , . . . , 𝑝𝑘 , . . . , 𝑝 𝑗) ≤ ¯̀(𝑝𝑖 , . . . , 𝑝 ′𝑘 , . . . , 𝑝 𝑗) that for any 𝑖 ≥ 𝑖

∗
. Now

consider the following two cases when 𝑖 = 𝑖∗ − 1.

Case (i) 𝑘 > 𝑖. With assumption that for any ℓ + 1 ≥ 𝑖 + 1 ≥ 𝑖∗, ¯̀(𝑝ℓ+1, . . . , 𝑝𝑘 , . . . , 𝑝 𝑗) ≤
¯̀(𝑝ℓ+1, . . . , 𝑝 ′𝑘 , . . . , 𝑝 𝑗), then we have:

¯̀(𝑝𝑖 , . . . , 𝑝𝑘 , . . . , 𝑝 𝑗) =
𝑗∑︁
ℓ=𝑖

(
(1 − 𝑝𝑖)ℓ−𝑖𝑝𝑖 ·

(
1 + ¯̀(𝑝ℓ+1, . . . , 𝑝𝑘 , . . . , 𝑝 𝑗)

))
≤

𝑗∑︁
ℓ=𝑖

(
(1 − 𝑝𝑖)ℓ−𝑖𝑝𝑖 ·

(
1 + ¯̀(𝑝ℓ+1, . . . , 𝑝 ′𝑘 , . . . , 𝑝 𝑗)

))
= ¯̀(𝑝𝑖 , . . . , 𝑝 ′𝑘 , . . . , 𝑝 𝑗).

Case (ii) 𝑘 = 𝑖. Let Γℓ :=
∑ℓ
𝑖=𝑘
(1 − 𝑝 ′

𝑘
)𝑖−𝑘𝑝 ′

𝑘
− ∑ℓ

𝑖=𝑘
(1 − 𝑝𝑘)𝑖−𝑘𝑝𝑘 , which implies that Γℓ = (1 −

𝑝𝑘)ℓ−𝑘+1 − (1 − 𝑝 ′𝑘)
ℓ−𝑘+1 ≥ 0 for any ℓ = 𝑘, . . . , 𝑗 , since 𝑝𝑘 ≤ 𝑝 ′𝑘 . Similar with (20), we have

− Γℓ+1 + 𝑝 ′𝑘 (1 − 𝑝
′
𝑘
)ℓ−𝑘+1 = −Γℓ + 𝑝𝑘 (1 − 𝑝𝑘)ℓ−𝑘+1. (21)

Then, we can get that

¯̀(𝑝𝑘 , . . . , 𝑝 𝑗) =
𝑗∑︁
ℓ=𝑘

(
(1 − 𝑝𝑘)ℓ−𝑘𝑝𝑘 ·

(
1 + ¯̀(𝑝ℓ+1, . . . , 𝑝 𝑗)

))
= −Γ𝑘

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

)
+ 𝑝 ′

𝑘

(
1 + ¯̀(𝑝𝑘+1, . . . , 𝑝 𝑗)

)
+

𝑗∑︁
ℓ=𝑘+1

(
(1 − 𝑝𝑘)ℓ−𝑘𝑝𝑘 ·

(
1 + ¯̀(𝑝ℓ+1, . . . , 𝑝 𝑗)

))
≤ −Γ𝑘+1

(
1 + ¯̀(𝑝𝑘+2, . . . , 𝑝 𝑗)

)
+
𝑘+1∑︁
ℓ=𝑘

(
(1 − 𝑝 ′

𝑘
)ℓ−𝑘𝑝 ′

𝑘
·
(
1 + ¯̀(𝑝ℓ+1, . . . , 𝑝 𝑗)

))
+

𝑗∑︁
ℓ=𝑘+2

(
(1 − 𝑝𝑘)ℓ−𝑘𝑝𝑘 ·

(
1 + ¯̀(𝑝ℓ+1, . . . , 𝑝 𝑗)

))
≤ · · · ≤ −Γ𝑗 + ¯̀(𝑝 ′

𝑘
, . . . , 𝑝 𝑗) ≤ ¯̀(𝑝 ′

𝑘
, . . . , 𝑝 𝑗),

where the inequality is due to Lemma 20 and (21). Thus, Lemma 21 follows. □

Given any 𝛽 = 2, . . . , 𝑛, we divide 𝑉 into 𝐿(𝛽) + 1 buckets such that bucket 𝐵𝑘 = {𝑥𝑖 : 𝛽𝑘 ≤ 𝑖 <
𝛽𝑘+1} with 𝑘 = 0, 1, . . . , 𝐿(𝛽), where 𝐿(𝛽) = ⌊log𝛽 𝑛⌋. For 𝑥𝑖 ∈ 𝐵𝑘 , let 𝑝𝑖 := 𝑝𝛽𝑘 which is an upper

bound on 𝑝𝑖 . The following lemma establishes an upper bound on ¯̀.

Lemma 22. Given 𝛽 = 2, . . . , 𝑛, ¯̀ ≤ ˆ̀(𝛽) + 𝐿(𝛽) + 1, where ˆ̀(𝛽) = ∑𝑛
𝑖=1
𝑝𝑖 .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Proof. Define ¯̀
∗

:= ¯̀(𝑝1, . . . , 𝑝𝑛). By Lemma 21, we have ¯̀ ≤ ¯̀
∗
. We just need to show that

¯̀
∗ ≤ ˆ̀(𝛽) + 𝐿(𝛽) + 1. By Lemma 20, we have

¯̀
∗ =

𝑛∑︁
𝑘=1

(
(1 − 𝑝1)𝑘−1 · (1 + ¯̀(𝑝𝑘+1, . . . , 𝑝𝑛))

)
≤

𝛽−1∑︁
𝑘=1

(
(1 − 𝑝1)𝑘−1𝑝1 · (1 + ¯̀(𝑝𝑘+1, . . . , 𝑝𝑛))

)
+

𝑛∑︁
𝑘=𝛽

(
(1 − 𝑝1)𝑘−1𝑝1 ·

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

))
≤

𝛽−1∑︁
𝑘=1

(
(1 − 𝑝1)𝑘−1𝑝1 · (1 + ¯̀(𝑝𝑘+1, . . . , 𝑝𝑛))

)
+(1 − 𝑝1)𝛽−1 ·

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
.

For 𝛽 = 2, it is straightforward to verify that,

`∗ ≤ 𝑝1

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
+ (1 − 𝑝1)

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
= 1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛) ≤ 𝑝1 + 1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛) .

For 𝛽 > 2, we have

¯̀(𝑝2, . . . , 𝑝𝑛) ≤
𝛽−1∑︁
𝑘=2

(
(1 − 𝑝2)𝑘−2𝑝2 · (1 + ¯̀(𝑝𝑘+1, . . . , 𝑝𝑛))

)
+(1 − 𝑝2)𝛽−2 ·

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
.

Note that 𝑝1 = 𝑝2 when 𝛽 > 2. Thus, (1 − 𝑝1)𝑘−1𝑝1 + 𝑝1 (1 − 𝑝2)𝑘−2𝑝2 = (1 − 𝑝1)𝑘−2𝑝1 . As a result,

¯̀
∗ ≤ 𝑝1 +

𝛽−1∑︁
𝑘=2

(
𝑝1 (1 − 𝑝2)𝑘−2𝑝2 + (1 − 𝑝1)𝑘−1𝑝1)

)
(1 + ¯̀(𝑝𝑘+1, . . . , 𝑝𝑛))

+
(
𝑝1 (1 − 𝑝2)𝛽−2 + (1 − 𝑝1)𝛽−1

) (
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
≤ 𝑝1 +

𝛽−1∑︁
𝑘=2

(
(1 − 𝑝1)𝑘−2𝑝1 · (1 + ¯̀(𝑝𝑘+1, . . . , 𝑝𝑛))

)
+(1 − 𝑝1)𝛽−2 ·

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
≤ · · · ≤ (𝛽 − 2)𝑝1 + 𝑝1 ·

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
+ (1 − 𝑝1) ·

(
1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛)

)
≤ (𝛽 − 1)𝑝1 + 1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛).

Therefore for 𝛽 = 2, . . . , 𝑛, we recursively have

¯̀
∗ ≤ (𝛽 − 1)𝑝1 + 1 + ¯̀(𝑝𝛽 , . . . , 𝑝𝑛) ≤ (𝛽 − 1)𝑝1 + (𝛽2 − 𝛽)𝑝𝛽 + 2 + ¯̀(𝑝𝛽2 , . . . , 𝑝𝑛)

≤ · · · ≤
𝐿 (𝛽)−1∑︁
𝑘=0

(𝛽𝑘+1 − 𝛽𝑘)𝑝𝛽𝑘 + 𝐿(𝛽) + ¯̀(𝑝𝛽𝐿 (𝛽) , . . . , 𝑝𝑛).

Meanwhile, SKIP performs sampling with standard geometric distribution 𝐺 (𝑝𝛽𝐿 (𝛽)) on

{𝑝𝛽𝐿 (𝛽) , . . . , 𝑝𝑛}, which indicates that ¯̀(𝑝𝛽𝐿 (𝛽) , . . . , 𝑝𝑛) = (𝑛 − 𝛽𝐿 (𝛽) + 1)𝑝𝛽𝐿 (𝛽) + 1. Therefore,

¯̀
∗ ≤ ˆ̀(𝛽) + 𝐿(𝛽) + 1. □

Now, we are ready to prove our main result.

Proof of Theorem 4. Recall that SKIP takes an expected time of 𝑂 (1 + ¯̀). By Lemma 22, we

know that ¯̀ ≤ min𝛽∈{2,...,𝑛}{ ˆ̀(𝛽) + 𝐿(𝛽) + 1}. In addition, according to the definition of 𝑝𝑖 under a

given 𝛽 , it is easy to verify that 𝑝𝑖 ≤ 𝑝 ⌈𝑖/𝛽 ⌉ . Thus,

ˆ̀(𝛽) =
𝑛∑︁
𝑖=1

𝑝𝑖 ≤
𝑛∑︁
𝑖=1

𝑝 ⌈𝑖/𝛽 ⌉ ≤ 𝛽
𝑛∑︁
𝑖=1

𝑝𝑖 = 𝛽`.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Therefore, ¯̀ ≤ min𝛽∈{2,...,𝑛}{𝛽` + log𝛽 𝑛 + 1}.
When ` ≥ (log𝑛)/2, ¯̀ ≤ 2` + log

2
𝑛 ≤ 6` by setting 𝛽 = 2. Thus, Theorem 4 holds, since

𝑂 (1 + ¯̀) = 𝑂 (`).
Next, we consider ` < (log𝑛)/2. Define

𝛾 :=
(log𝑛)/`

log ((log𝑛)/`) and 𝛽∗ := ⌈𝛾⌉ .

Thus, 𝛽∗` = 𝑂 (log𝑛

log((log𝑛)/`)) and log𝛽∗ 𝑛 = 𝑂 (log𝑛

log((log𝑛)/`)). Therefore,

𝑂 (1 + ¯̀) = 𝑂
(
1 + log𝑛

log((log𝑛)/`)

)
.

This completes the proof. □

B VARIANT OF GREEDY ALGORITHM
In this appendix, we present another revised greedy algorithm, which is different from Greedy-

Degree in Alg. 9. For ease of explanation, we name it Greedy-Cost.
Recap that in the second phase of HIST, we can stop the RR set generation process as soon as we

hit any sentinel node, thus reducing the average size of the RR sets. Suppose we have a function

𝐶R (𝑆) which represents the amount of cost reduction on the collection R of RR sets when 𝑆 is

selected as the sentinel set. Then we can design the Greedy-Cost algorithm by replacing Line 3 in

Alg. 1, that is,

𝑣 ← arg max𝑢∈𝑉 (ΛR (𝑆∗𝑘 ∪ {𝑢})) − ΛR (𝑆
∗
𝑘
)

with the following statements:

M ← arg max𝑢∈𝑉 (ΛR (𝑆∗𝑘 ∪ {𝑢})) − ΛR (𝑆
∗
𝑘
)

𝑣 ← arg max𝑣′∈M 𝐶R (𝑆∗𝑘 ∪ {𝑣
′}) −𝐶R (𝑆∗𝑘)

whereM is the set of nodes which have the largest marginal coverage. Obviously if |M| = 1, we

have only one candidate, and it must be selected as the sentinel node.

In the following, we present how to define the cost funtion 𝐶R (·). Recap that when generating

an RR set 𝑅, each sampled node is added into 𝑅 one by one (please see Alg. 2). Thus, we say the

index of 𝑢 is 𝑖 if it is the 𝑖-th node added into 𝑅, where 𝑖 = 0, 1, 2, . . . , |𝑅 | − 1. Let 𝑙 (𝑢, 𝑅) be the
function which returns the index of 𝑢 in 𝑅. Let 𝑙 (𝑢, 𝑅) = |𝑅 | if 𝑢 ∉ 𝑅. Due to the existence of the

sentinel set 𝑆 , the process of generating 𝑅 can be stopped immediately when it reaches the sentinel

node 𝑢∗ ∈ 𝑆 with the minimum index,

𝑢∗ = arg min𝑢′∈𝑆 𝑙 (𝑢 ′, 𝑅).
Therefore, we define the cost reduction function on an RR set 𝑅 caused by the sentinel set 𝑆 as:

𝐶 (𝑅, 𝑆) = |𝑅 | − 𝑙 (𝑢∗, 𝑅).
It is easy to realize that if no node of 𝑆 is hit by 𝑅, the cost reduction𝐶 (𝑅, 𝑆) = 0 due to 𝑙 (𝑢, 𝑅) = |𝑅 |
for each 𝑢 ∈ 𝑆 . It implies that it can not save any sampling cost when generating 𝑅. By summing

up all the cost reduction in R, the function 𝐶R (𝑆) is defined as

𝐶R (𝑆) =
∑︁
𝑅∈R

𝐶 (𝑅, 𝑆).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing Solutions
	2.3 RR Set Generation

	3 SUBSIM
	3.1 A New RR set Generation Scheme
	3.2 Influence Maximization: A New Bound

	4 Extension to General IC Model
	4.1 ISS Algorithm
	4.2 BUCKET Algorithm
	4.3 SKIP Algorithm

	5 Highly Influential Scenarios
	5.1 Sentinel Set Selection Phase
	5.2 IM-Sentinel Phase
	5.3 Theoretical Analysis

	6 Forward Propagation
	6.1 Time Complexity
	6.2 Heuristic Condition
	6.3 Theoretical Analysis

	7 Additional Related Work
	8 Experiments
	8.1 Effectiveness of SUBSIM
	8.2 Effectiveness of HIST
	8.3 Forward Propagation

	9 Conclusion
	References
	A Proof of Theorem 4
	B Variant of Greedy Algorithm

