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ABSTRACT

A public transportation network can often be modeled as a
timetable graph where (i) each node represents a station; and (ii)
each directed edge 〈u, v〉 is associated with a timetable that records
the departure (resp. arrival) time of each vehicle at station u (resp.
v). Several techniques have been proposed for various types of
route planning on timetable graphs, e.g., retrieving the route from
a node to another with the shortest travel time. These techniques,
however, either provide insufficient query efficiency or incur sig-
nificant space overheads.

This paper presents Timetable Labelling (TTL), an efficient in-
dexing technique for route planning on timetable graphs. The basic
idea of TTL is to associate each node u with a set of labels, each of
which records the shortest travel time from u to some other node
v given a certain departure time from u; such labels would then be
used during query processing to improve efficiency. In addition, we
propose query algorithms that enable TTL to support three popular
types of route planning queries, and investigate how we reduce the
space consumption of TTL with advanced preprocessing and label
compression methods. By conducting an extensive set of experi-
ments on real world datasets, we demonstrate that TTL significantly
outperforms the states of the art in terms of query efficiency, while
incurring moderate preprocessing and space overheads.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial Databases and GIS
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1. INTRODUCTION
Identifying fast routes in transportation networks is an important

problem with applications in map services and navigation systems.
This problem has been extensively studied in the past decades,
yielding a plethora of indexing techniques that aim to improve
query efficiency at reasonable costs of pre-computation and space.
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Most of the existing techniques, however, consider private trans-

portation, i.e., they assume that the traversal from one network
location to another is carried out with a private vehicle without
any service time constraint. In contrast, relatively less effort has
been made for the (equally important) case of public transporta-

tion, where any traversal between different network locations relies
on transportation services (e.g., buses, subways, ferries, etc.) that
run on fixed routes with pre-defined schedules.

Route planning for public transportation drastically differs from
that for private transportation, as the former needs to take into ac-
count additional spatiotemporal constraints that do not apply to the
latter, such as the time required to wait for a bus at a station, or
the feasibility of transferring from one bus to another given their
respective schedules. Towards addressing the problem, a common
approach is to model a public transportation network as a timetable

graph [31], where (i) each node represents a station; and (ii) each
directed edge 〈u, v〉 is associated with a timetable that records the
departure (resp. arrival) time of each vehicle at station u (resp. v).
Three types of route planning queries on timetable graphs have
been extensively studied:

1. Earliest Arrival Path (EAP): If we are at station A at time td,
what is the earliest time that we can arrive at station B, and
which is the corresponding route?

2. Latest Departure Path (LDP): If we plan to arrive at station
B no later than time ta, what is the latest time that we should
depart from station A, and which route should we take?

3. Shortest Duration Path (SDP): If we are to depart from sta-
tion A no sooner than time td and arrive at station B no later
than time ta, which is the route that would minimize the du-
ration of our trip from A to B?

As shown by Cooke et al. in [9], each of the above three types of
queries can be solved with a modified version of the Dijkstra’s al-
gorithm [16] that exploits the temporal information in the timetable
graph G. Cooke et al.’s method, however, is inefficient for the
large transportation networks (with millions of temporal edges)
commonly seen in practice. Therefore, numerous techniques (e.g.,
[6, 11, 15, 20]) are proposed to improve over Cooke et al.’s solu-
tion in terms of query efficiency. In particular, the state-of-the-art
techniques either pre-arrange the temporal edges in G in a certain
order [15] or augment G with information about certain important
routes [20], and they accelerate query processing by utilizing the
edge arrangement or the pre-computed information. Nevertheless,
as we will show in our experiments, these techniques [15, 20] still
incur considerable query overheads on sizable timetable graphs G,
since they require traversing a substantial portion of the temporal
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Figure 1: A timetable graph G.

edges in G (or its augmented version). This motivates us to develop
a more efficient route planning schema on transportation networks.

Contributions. This paper presents Timetable Labelling (TTL), an
efficient indexing technique for route planning on timetable net-
works. The basic idea of TTL is to associate each node u with a
set of labels, each of which records the shortest travel time from u
to some other node v given a certain departure time from u. The
labels are constructed in such a way that, for any EAP, LDP, or
SDP query from a node u to another node v, we can efficient re-
trieve a tiny summary of the query result by inspecting the label
sets of u and v (without inspecting G), and we can easily con-
vert the summary into the corresponding path in O(k) time, where
k is the number of nodes in the path. Compared with the exist-
ing techniques [9, 15, 20], TTL incurs lower query overheads as it
completely avoids traversing G during query processing. In par-
ticular, in our experiments on 11 real transportation networks, TTL

is shown to outperform the state of the art by up to 3 orders of
magnitude in terms of query efficiency.

TTL is similar in spirit to hierarchical hub labelling (HHL) [2]
(i.e., the state-of-the-art approach for shortest path queries on sim-
ple graphs), as both of them rely on pre-computed label sets for
query processing. Nevertheless, TTL is not a straightforward exten-
sion of HHL that simply augments each label set with timetable in-
formation. Instead, TTL incorporates a set of non-trivial optimiza-
tion techniques in its preprocessing and query algorithms, which
exploit the characteristics of timetable graphs to achieve significant
improvements in terms of both query performance and space con-
sumptions. More specifically, we make the following contributions.

• We propose TTL, an indexing approach for timetable graphs that
assigns two label sets for each node. We devise an advanced
query processing algorithm for TTL, such that each EAP, LDP,
or SDP query from a node u to another node v can be answered
with a linear scan of u and v’s label sets, followed by an O(k)-
time process to retrieve the query result P , where k is the num-
ber of nodes in P . In contrast, a straightforward query algorithm
would require quadratic (instead of linear) time in inspecting the
label sets of u and v. (Sections 3 and 4)

• We study the preprocessing algorithm for TTL from both the-
oretical and practical perspectives. On the theoretical side, we
show that there is a polynomial time algorithm that returns a TTL

whose space consumption is O(
√
m) times larger than the op-

timal solution, where m is the number of edges in the timetable
graph. On the practical side, we present a preprocessing al-
gorithm motivated by our theoretical results, and show that it
strikes a good balance between pre-computation cost and index
quality. (Sections 5 and 6)

• We improve the performance of TTL by devising several effi-
cient techniques: (i) novel techniques for compressing the label
sets of TTL, which significantly reduce space consumption with-
out substantial effects on query performance, and (ii) a simple
and intuitive method to concisely represent the results of route

planning queries on transportation networks, which not only is
user friendly but also leads to higher query efficiency in TTL.
(Sections 7 and 8)

• We experimentally evaluate TTL against the states of the art, us-
ing 11 real transportation networks with up to 4 million edges.
Our results demonstrate that TTL significantly outperforms com-
petitors in terms of query efficiency, while incurring moderate
preprocessing and space overheads. (Section 10)

2. PROBLEM DEFINITION
Let G be a multigraph with n nodes, such that (i) each node rep-

resents a station in a public transportation network, and (ii) each
edge e from a node u to another node v is associated with a vehicle
b and two timestamps td and ta, which indicate that there is a ve-
hicle b that departs from u at td and arrives at v at ta, without any
stops in between. (Note that there may exist multiple edges from
u to v.) For convenience, we represent e as a tuple 〈u, v, td, ta, b〉.
We refer to b, td, and ta as the vehicle, departure time, and arrival
time of e, respectively, and we define the duration of e as ta − td.
In addition, we say that e is an outgoing edge of u and an incoming

edge of v. We define the out-degree (resp. in-degree) of v as the
number of its outgoing (reps. incoming) edges, denoted by dout(v)
(resp. din(v)). We define the paths in G as follows:

DEFINITION 1 (PATHS). A path P in G is a sequence

〈e1, e2, . . . , ek〉 of edges in G, such that for any i ∈ [1, k − 1],
the starting node of ei+1 equals the ending node of ei, and the

departure time of ei+1 is after the arrival time of ei. �

We define the starting node (resp. departure time) of P as that
of e1, the ending node (resp. arrival time) of P as that of ek, and
the duration of P as the difference between P ’s starting and arrival
time. In addition, if all edges on P have the same vehicle b (i.e., P
does not contain a transfer), then we refer to b as the vehicle of P ;
otherwise, we define the vehicle of P as null.

We consider three types of route planning queries on G, as de-
fined in the following.

DEFINITION 2 (EARLIEST ARRIVAL PATH QUERY). Given

two nodes u and v in G and a starting timestamp t, an earliest

arrival path (EAP) query asks for the path with the earliest arrival

time among those that (i) start from u no sooner than t and (ii) end

at v. �

DEFINITION 3 (LATEST DEPARTURE PATH QUERY). Given

two nodes u and v in G and an ending timestamp t′, a latest

departure path (LDP) query asks for the path with the latest

departure time among those that (i) start from u and (ii) end at v
no later than t′. �

DEFINITION 4 (SHORTEST DURATION PATH QUERY).
Given two nodes u and v in G, a starting timestamp t, and an

ending timestamp t′, a shortest duration path (SDP) query asks

for the path with the shortest duration those that (i) start from u no

sooner than t and (ii) end at v no latter than t′. �

For simplicity, we use the term path queries to refer to EAP, LDP,
and SDP queries. We illustrate Definitions 2-4 with an example.

EXAMPLE 1. Figure 1 shows a timetable graph G containing
6 nodes v1, v2, . . . , v6, and 14 edges. The ordered pair 〈td, ta〉
on each edge e indicates that the departure (resp. arrival) time of
the edge equals td (resp. ta). We use solid, dashed, and dotted
lines to represent the edges correspond to vehicles b1, b2, and b3,
respectively. Suppose that we are at v5 at time t = 5, and plan to
travel to v1. In that case, the earliest time that we can arrive at v1 is



Notation Description

G a timetable graph

n the number of nodes in G

〈v, u, td, ta, b〉 an edge in E

P = 〈e1, . . . , ek〉 a path in G (see Section 2)

o(v) the rank of v in the node order o (see Section 3)

L the TTL on G (see Definition 7)

〈v, td, ta, b, p〉 a label in L (see Definition 7)

Lin(v) the in-label set of v (see Definition 7)

Lout(v) the out-label set of v (see Definition 7)

· a placeholder that denotes irrelevant information
in the context

Table 1: Table of notations.

t′ = 8, for which we need to take vehicle b3 from v5 at time 6, and
stay on the vehicle until it arrives at v1. In other words, if we have
an EAP query from v5 to v1 with a starting timestamp t = 5, then
the answer to the query is a path via vehicle b3 that starts from v5
at time 6 and ends at v1 at time 8. On the other hand, for an LDP
query from v1 to v4 with an ending timestamp t′ = 13, then the
answer is a path that (i) starts from v1 at time 10 via vehicle b1, (ii)
transfers to vehicle b2 at v2, and then (iii) arrives at v4 at time 13
on b2. Finally, for an SDP query from v5 to v1 with starting time
t = 6 and ending time t′ = 10, the query result is identical to the
EAP query mentioned above. �

Given G, our objective is to construct an index structure on G
that can efficiently answer path queries. Table 1 lists the notations
that we will frequently use in the paper. In particular, we will use
“·” as a placeholder to denote some information that is irrelevant to
the discussions in the context.

3. TIMETABLE LABELLING
This section presents timetable labelling (TTL), our index struc-

ture for route planning on timetable graphs. At a high level, a TTL

index pre-computes two sets of labels, Lin(v) and Lout(v), for
each node v in G, such that each label in Lin(v) (resp. Lout(v))
is a tuple concerning a “fast” path that ends at (starts from) v. The
construction of the label sets is governed by a strict total order o on
the nodes in G, which, intuitively, defines the relative importance
of each node with respect to the others. We refer to o as the node

order, and use o(v) to denote the rank of a node v in o. With-
out loss of generality, we assume that o(v) is an integer in [1, n],
and say that v ranks lower than another node u if o(v) > o(u).
Given a timetable graph G and a node order o, the TTL index can
be uniquely constructed. Specifically, TTL is defined based on the
concepts of canonical paths.

DEFINITION 5 (CANONICAL PATHS). Given a node order o
and two nodes u and v in G, a path P from u to v is a canonical

path, if it satisfies the following constraints:

1. Dominance Constraint: There does not exist a path from u
to v with (i) departure time later than P ’s and arrival time

no later than that of P , or (ii) departure time no earlier than

P ’s and arrival time earlier than that of P .

2. Rank Constraint: Among all nodes on P , either u or v has

the highest rank. �

Intuitively, the dominance constraint in Definition 5 requires that
a canonical path to be both the earliest arrival path and the latest
departure path from u to v at a certain timestamp. Meanwhile,

v Lin(v) Lout(v)

v2
〈v1, 9, 10, b2, null〉

〈v1, 10, 11, b1, null〉
〈v1, 8, 10, b1, null〉

v4

〈v1, 10, 13, null, v2〉

〈v2, 11, 13, b2, v6〉

〈v3, 10, 13, b3, null〉

〈v1, 5, 9, b2, v3〉

〈v3, 5, 7, b2, null〉

Table 2: The label sets of v2 and v4 in a TTL index for Figure 1,

with a node order o(vi) = i for i ∈ [1, 6].

the rank constraint is crucial in proving the correctness of TTL’s
query algorithm, which will be discussed in Section 4. We illustrate
Definition 5 with an example.

EXAMPLE 2. Consider the timetable graph in Figure 1. As-
sume that we use a node order o(v1) < o(v2) < . . . < o(v6). The
path P from v5 to v1 taking vehicle b3 at time t = 6 is a canonical
path, since (i) no path from v5 to v1 after time t = 6 can arrive at
v1 earlier than P does or arrive v1 before time t = 8 with departure
time later than P ’s, and (ii) the rank of v1 is the highest among all
nodes on P . In contrast, the path from v6 to v3 taking b3 via v1 at
time t = 7 is not a canonical path, since the rank of v1 is higher
than those of v3 and v6. �

In relation to canonical paths, we also introduce the concepts of
intermediate nodes and pivots.

DEFINITION 6 (PIVOTS). An intermediate node of a path P
refers to any node on P , except for P ’s starting and ending nodes.

The pivot of a canonical path is null if the path contains only two

nodes; otherwise, it is the intermediate node of the path with the

highest rank. �

Given Definition 5 and 6, a TTL index on G is uniquely deter-
mined by a node order o as follows:

DEFINITION 7 (TIMETABLE LABELLING). Given a node or-

der o, let C be the set of all canonical paths on G. For each P ∈ C,

let u, v, td, ta, b, and p be P ’s starting node, ending node, depar-

ture time, arrival time, vehicle, and pivot, respectively. A Timetable

Labelling (TTL) consists of label sets where P is mapped to a label

l = 〈x, td, ta, b, p〉 in either Lout(u) or Lin(v) as follows:

1. If o(u) > o(v) (i.e., u ranks lower than v), then x = v and

l ∈ Lout(u).

2. If o(u) < o(v), then x = u and l ∈ Lin(v). �

In short, in a TTL index, the label sets Lin(v) and Lout(v) for
a node v only contain the information about the canonical paths
between v and the nodes that rank higher than v. For convenience,
we refer to Lin(v) (resp. Lout(v)) as the in-label set (resp. out-

label set) of v, and each label in Lin(v) (resp. Lout(v)) as an in-

label (resp. out-label) of v. As an example, Table 2 shows the
label sets of v2 and v4 in Figure 1, assuming a node order o(v1) <
o(v2) < . . . < o(v6).

The label sets of a TTL index have an important property: for
any path query from a node u to another node v, we can retrieve
essential information about the query result from the label sets of u
and v, as shown in the following lemma.

LEMMA 1. Let q be a path query from a node u to another

v, and P be the result of q. Then, Lout(u) contains a label

〈w, td, ta, b, p〉, and Lin(v) contains a label 〈w′, t′d, t
′
a, b

′, p′〉,
such that one of the following conditions holds:

1. w = v, and td, ta, b, p equal P ’s departure time, arrival

time, vehicle, and pivot, respectively. That is, Lout(u) con-

tains a label pertinent to P .



2. w′ = u, and t′d, t′a, b′, p′ equal P ’s departure time, arrival

time, vehicle, and pivot, respectively. That is, Lin(v) con-

tains a label pertinent to P .

3. w = w′, ta ≤ t′d, and td (resp. t′a) equals P ’s departure

(resp. arrival) time. That is, P contains a node w, such that

Lout(u) (resp. Lin(v)) contains a label pertinent to the sub-

path of P from u to w (resp. from w to v). �

We demonstrate Lemma 1 with the following example.

EXAMPLE 3. Consider the label sets shown in Table 2 for the
timetable graph in Figure 1. For an EAP query that from v4 to v2
with a starting timestamp t = 4, the result is a path P via vehicle
b2 that starts from v4 at time 5, passes through v3 and v1, and ends
at v2 at time 10. Observe that the out-label set Lout(v4) of v4
contains a label 〈v1, 5, 9, b2, v3〉, which captures the sub-path of P
from v4 to v1. Meanwhile, the in-label set Lin(v2) of v2 contains
a label 〈v1, 9, 10, b2, null〉, which captures the sub-path of P from
v1 to v2. �

Lemma 1 is the basis of the query algorithms for TTL, we clarify
in Section 4. Meanwhile, the following lemma shows that the label
sets of a TTL index is minimal, in the sense that if we remove any
label from the label sets, we can no longer answer queries based on
Lemma 2.

LEMMA 2. For any node v, if we remove any label from Lin(v)
or Lout(v), then Lemma 1 no longer holds. �

In subsequent sections, we first introduce TTL’s query process-
ing procedure (in Section 4), followed by its preprocessing algo-
rithm (in Section 5) and several optimizations in terms of query
time and index space (in Section 6 and 7). This is for the ease of
exposition, since the preprocessing method of TTL is considerably
more sophisticated than its query algorithm.

Remark. TTL can be regarded as a non-trivial extension of Hi-

erarchical Hub Labelling (HHL) [2], which is the state-of-the-art
indexing approach for answering shortest path queries on simple
graphs. In particular, HHL also constructs label sets based on a
total order of nodes, and it utilizes the label sets for query process-
ing; nevertheless, the label sets of HHL do not contain any tem-
poral information. Compared with HHL, TTL’s preprocessing and
query algorithms are much more sophisticated, due to the complex-
ity induced by the spatiotemporal constraints in timetable graphs.
Furthermore, TTL features several novel optimization methods (for
reducing space consumption and improving query efficiency) that
are unique to timetable graphs, as we clarify in Sections 7 and 8.

4. QUERY PROCESSING
This section presents the query algorithm for TTL. In a nutshell,

TTL’s query algorithm consists of three phases:

1. Candidate Generation: This phase inspects the label sets of
TTL to retrieve a set of path sketches, each of which corre-
sponds to a candidate path that could be the answer for the
given query.

2. Refinement: This phase inspects the path sketches produced
by the candidate generation phase, and then pinpoints the
sketch sans corresponds to the query answer.

3. Path Reconstruction: This phase converts the sketch sans

back to a path on G, and returns the path as the query result.

In what follows, we elaborate each phase of TTL’s query algorithm,
assuming that we are given an SDP query from a node u to another

node v, with a starting timestamp t and an ending timestamp t′. We
will clarify how the algorithm can be modified to handle EAP and
LDP queries in Section 4.3.

4.1 Candidate Generation and Refinement
Consider the out-label set Lout(u) of u and the in-label set

Lin(v) of v. By Definition 7, the labels inLout(u) and Lin(v) cap-
ture the information about a set Puv of paths from u to v as follows.
First, if Lout(u) contains a label l1 = 〈v, td, ta, ·, ·〉, then there ex-
ists a path P1 from u to v with departure time td and arrival time
ta. In this case, we define the ordered pair 〈l1, null〉 as a sketch

of P1. Second, if Lin(v) contains a label l2 = 〈u, t′d, t′a, ·, ·〉,
then there is a path P2 from u to v with departure time t′d and ar-
rival time t′a. Accordingly, we refer to 〈null, l2〉 as a sketch of P2.
Third, if Lout(u) and Lin(v) contains labels l3 = 〈w, t∗d, t

∗
a, ·, ·〉

and l4 = 〈w, t◦d, t
◦
a, ·, ·〉, respectively, such that t∗a ≤ t◦d, then there

exists a path P3 from u to v with departure time t∗d and t◦a. In that
case, we say that 〈l3, l4〉 is a sketch of P3. In summary, based on
Lout(u) and Lin(v), we can construct the sketches for a set Puv of
paths from u to v, and each sketch records the departure and arrival
time of the corresponding path.

By Lemma 1, Puv must contain the answer Pans to an SDP
query from u to v with a starting timestamp t and an ending times-
tamp t′. If we are given the sketches of all paths in Suv , then we
can easily identify one corresponding to Pans, by searching for
the sketch with the shortest duration among those with departure
time no sooner than t and arrival time no later than t′. However,
constructing sketches for all paths in Puv is costly, since |Puv| =
|Lout(u)|·|Lin(v)| in the worst case. (This worst case occurs when
each label in Lout(u) can be combined with any label in Lin(v)
to form a path sketch.) Nevertheless, many of the sketches could
have been omitted without affecting the correctness of the query
result. For example, consider the label sets Lout(v4) and Lin(v2).
Observe that Lout(v4) contains a label l1 = 〈v1, 5, 9, b2, v3〉,
which can form two path sketches when combined with the la-
bels l2 = 〈v1, 9, 10, b2, null〉 and l3 = 〈v1, 10, 11, b1, null〉 in
Lin(v2). However, the sketch 〈l1, l3〉 is dominated by the sketch
〈l1, l2〉, in the sense that 〈l1, l2〉 corresponds to a path that departs
from u at time 5 and arrives at v at time 10, which is strictly better
than the path corresponding to 〈l1, l3〉, as the latter has departure
time 5 and arrival time 11. In other words, the path pertinent to
〈l1, l3〉 can never be the result for any path query, and hence, we
can omit 〈l1, l3〉 during query processing.

In general, when TTL inspects label sets in its candidate gen-
eration phase, it only constructs path sketches that are not dom-
inated by others, so as to improve query efficiency. To facilitate
this, the preprocessing algorithm of TTL sorts the labels l in each
label set in ascending order of f(l), where f(l) is a total order
of labels as follows: for any two labels l1 = 〈v, td, ta, ·, ·〉 and
l2 = 〈v′, t′d, t′a, ·, ·〉 in the same label set, we have f(l1) < f(l2)
if and only if

1. o(v) < o(v′) (i.e., v ranks higher than v′), or

2. o(v) = o(v′) and td < t′d, or

3. o(v) = o(v′), td = t′d, and ta < t′a.

With the above ordering of labels, TTL generates path sketches
in O(|Lout(u)| + |Lin(v)|) time using the SketchGen method in
Algorithm 1. The input to the algorithm includes Lout(u) and
Lin(v), as well as the SDP query’s starting timestamp t and ending
timestmp t′; its output is a set Suv of path sketches corresponding
to the candidate answers for the query. The basic idea of the algo-
rithm is to generate path sketches with two concurrent linear scans
on Lout(u) and Lin(v), respectively.



Algorithm 1: SketchGen

input : Lout(u), Lin(v), t, t′

output: a set Suv of path sketches

1 initialize i = 1, j = 1, and C = ∅;
2 while i ≤ |Lout(u)| or j ≤ |Lin(v)| do

3 let lu = 〈w, td, ta, ·, ·〉 be the i-th label of Lout(v);
4 if [td, ta] * [t, t′] then

5 increase i by one, and then goto Line 4;

6 else if w = v then
7 insert 〈lu, null〉 into Suv ;
8 increase i by one, and then goto Line 4;

9 let lv = 〈w′, t′d, t
′
a, ·, ·〉 be the j-th tuple of Lin(u);

10 if [t′d, t
′
a] * [t, t′] then

11 increase j by one, and then goto Line 4;

12 else if w′ = u then

13 insert 〈null, lv〉 into Suv ;
14 increase j by one, and then goto Line 4;

15 if w = w′ then

16 if ta ≤ t′d then

17 add 〈lu, lv〉 into Suv;
18 increase i by one;

19 else

20 increase j by one;

21 else
22 if o(w) < o(w′) then

23 increase i by one;

24 else
25 increase j by one;

26 return Suv ;

Specifically, SketchGen first scans the labels in Lout(u), until it
finds a label lu = 〈w, td, ta, ·, ·〉 with td ≥ t and ta ≤ t′ (Lines
1-5). If w = v, then SketchGen inserts lu into Suv as a path sketch,
since lu captures a candidate path from u to v with departure time
td and arrival time ta; after that, SketchGen moves on to the next
label in Lout(u) (Lines 6-8).

On the other hand, if w 6= v, then SketchGen turns its attention
to Lin(v), and scans the labels in Lin(v) until it counters a label
lv = 〈w′, t′d, t

′
a, ·, ·〉 with t′d ≥ t and t′a ≤ t′ (Lines 9-11). If

w′ = u, then SketchGen adds lv into Suv as a path sketch, and
moves on to the next label in Lin(v) (Lines 12-14).

Meanwhile, if w′ 6= u, then SketchGen considers whether lu and
lv can be combined to form a path sketch 〈lu, lv〉. In particular, if
w = w′ and ta ≤ t′d, then SketchGen inserts 〈lu, lv〉 into Suv, and
move on to the next label in Lout(u) (Lines 15-18). However, if
w 6= w′ or ta > t′d, then SketchGen would move on to the next
label in either Lout(u) or Lin(v) to continue the construction of
path sketches. Here, SketchGen differentiates two cases.

Case 1: w = w′ but ta > t′d. In this case, SketchGen proceeds to
the next label in Lin(v) (Lines 19-20). The rationale is that, due to
the way that we sort the labels in Lin(v), the next label in Lin(v)
could be l∗v = 〈w, t∗d, ·, ·, ·〉 with ta ≤ t∗d, in which case lu and l∗v
may form a path sketch.

Case 2: w 6= w′. In this case, SketchGen checks whether o(w) <
o(w′). If o(w) < o(w′) holds, then SketchGen moves on to the
next label in Lout(u) (Lines 21-23), since the label could be l∗u =
〈w′, ·, t∗a, ·, ·〉, in which case l∗u and lv may form a path sketch. On
the other hand, if o(w) > o(w′), then the next label in Lout(u)
cannot be combined with lv as a path sketch, and hence, SketchGen

would proceed to the next label in Lin(v) instead.

In general, our discussions above are applicable for any pair of
labels lu ∈ Lout(u) and lv ∈ Lin(v) encountered by SketchGen

during its linear scans of Lout(u) and Lin(v). In particular, any
labels with starting time before t or ending time after t′ are omit-
ted (Lines 4-5 and 10-11), while any remaining lu ∈ Lout(u) that
concerns v and any remaining lv ∈ Lin(u) that concerns u are
inserted into Suv as path sketches (Lines 6-8 and 12-14). For the
other labels, SketchGen carefully decides (i) whether a pair of la-
bels can form a path sketch, and (ii) whether it should proceed to
the next label in Lout(v) or Lin(v) (Lines 15-25).

It can be verified that SketchGen runs in O(|Lout(u)| +
|Lout(v)|) time and generates at most O(|Lout(u)| + |Lout(v)|)
path sketches in Suv , since it linearly scans Lout(u) and Lout(v).
In addition, Suv always contains a sketch that corresponds to the
answer of the given SDP query, as shown in Lemma 3. The ratio-
nale is that, due to the order in which TTL sorts the labels in each
label set, the linear scans employed by SketchGen only omit the la-
bel pairs that either (i) cannot form path sketches or (ii) correspond
to paths that are dominated by others.

LEMMA 3. Let Suv be the set of sketches that SketchGen re-

turns for an SDP query, and Pans be the answer of the query. Then,

one of the sketches in Suv corresponds to Pans. �

Once Suv is obtained, it is straightforward to identify the sketch
in Suv that is pertinent to the SDP query result Pans. In particular,
for each sketch in Suv , we can calculate the duration of the corre-
sponding path based on the departure and arrival time recorded in
the sketch; based on that, we can pinpoint the sketch with the short-
est duration. In Section 4.2, we will explain how we can convert
this sketch back into Pans.

4.2 Path Reconstruction
Let sans be the sketch in Suv that corresponds to the result Pans

of the given SDP query. Then, sans = 〈lu, lv〉, where lu (resp. lv)
is either null or a label in Lout(u) (resp. Lin(v)). To transform
sans back to Pans, it suffices to convert lu 6= null (resp. lv 6=
null) to the canonical path Pu (resp. Pv) in G that correspond to lu
(res. lv). Such conversions can be performed by exploiting the pivot
of Pu (resp. Pv), which is recorded in lu (resp. lv). To explain, we
first present a lemma about pivots.

LEMMA 4. Let P be a canonical path from u to v, and p be the

pivot of P . Then, the sub-path of P from u to p (resp. from p to v)

is also a canonical path. �

Suppose that the pivot of Pu is a node p, and lu = 〈w, ·, ·, ·, p〉.
Let P1 (resp. P2) be the sub-path of P from u to p (resp. from p
to w). By Lemma 4, both P1 and P2 are canonical paths. Then,
by Definition 7, there should exists two labels l1 and l2 (in TTL)
that correspond to P1 and P2, respectively. In other words, we can
“unfold” lu into a sequence of labels S = 〈l1, l2〉, such that the
canonical path pertinent to lu equals a concatenation of the canoni-
cal paths corresponding to l1 and l2. We refer to l1 (resp. l2) as the
left (resp. right) child of lu.

In general, the above unfolding method can be applied on any
label 〈·, ·, ·, ·, p〉 where p 6= null (i.e., the label corresponds to a
canonical path that contains at least two edges). Therefore, given
the label sequence S = 〈l1, l2〉 mentioned above, we can recur-
sively modify S by replacing each label with its children, until
every label in S has a null pivot. In that case, each label in S
represents an edge in G. Then, by replacing each label in S with its
corresponding edge, we can transform S into the canonical path Pu

pertinent to lu. Using the same method, we can unfold lv into its
corresponding canonical path Pv , after which we can concatenate
Pu and Pv to obtain the answer Pans of the given SDP query.



Algorithm 2: PathUnfold

input : a label l = 〈·, ·, ·, ·, p〉 in TTL

output: the canonical path corresponding to l

1 if p = null then

2 return a path that only contains the edge in G corresponding to l;

3 else
4 l1 = the left child of l;
5 l2 = the right child of l;
6 P1 = PathUnfold( l1 );
7 P2 = PathUnfold( l2 );
8 set P = a concatenation of P1 and P2, with P1 proceeding P2;
9 return P ;

Algorithm 2 shows the pseudo-code of the above unfolding ap-
proach, which takes as input a label l and returns the canonical path
P corresponding to l. The most crucial step of the algorithm is the
identification of l’s children. To ensure the efficiency of this step,
TTL pre-computes two pointers from each label to its left and right
children, respectively, so that its takes O(1) time to pinpoint the
children of any label. As such, the running time of Algorithm 2 is
linear to the number of nodes on P .

EXAMPLE 4. Consider an SDP query from v2 to v4 in Figure 1,
with starting time t = 8 and ending time t′ = 13. By a linear
scan of the labels in Lout(v2) and Lin(v4) (in Table 2), we obtain
two path sketches: (i) 〈l1, l2〉, with l1 = 〈v1, 8, 10, b1, null〉 in
Lout(v2) and the label l2 = 〈v1, 10, 13, null, v2〉 in Lin(v4), (ii)
〈null, l3〉, with l3 = 〈v2, 11, 13, b2, v6〉 in Lin(v4). Then, we
set sans = 〈null, l3〉, since 〈null, l3〉 has a shorter duration than
〈l1, l2〉. After that, we unfold l3 by recursively reconstructing the
SDPs from v2 to v6 and v6 to v4. In the end, we obtain the path
Pans = 〈〈v2, v6, 11, 12, b2〉, 〈v6, v4, 12, 13, b2〉〉. �

The following corollary shows the correctness of Algorithm 2.

COROLLARY 1. Given a label l in TTL, Algorithm 2 returns the

canonical path corresponding to l. �

4.3 Summary and Query Extensions
Summing up the discussions in Sections 4.1 and 4.2, TTL an-

swers any SDP query from u to v in O(|Lout(u)|+ |Lin(v)|+ k)
time, where k is the number of nodes on the query result. Fur-
thermore, TTL’s query algorithm for SDP queries can be easily
extended to support EAP and LDP queries. In particular, the ex-
tension is based on the following lemma about SketchGen.

LEMMA 5. Let Lout(u), Lin(v), t, and t′ be the input to

SketchGen (as in Algorithm 1), and Suv be its output. When

t′ = +∞, one of the sketches in Suv corresponds to the answer

of an EAP query from u to v with starting time t. On the other

hand, if t = −∞, then Suv contains a sketch corresponding to the

answer of an LDP query from u to v with ending time t′. �

By Lemma 5, if we are to answer an EAP query from u to v
with starting time t, we can first invoke SketchGen, setting t′ =
+∞. Then, we examine the path sketches returned by SketchGen

to identify the one sans with the earliest arrival time. After that, we
unfold sans into a path using Algorithm 2, and return the path as
the query result.

On the other hand, if we are given an LDP query from u to v
with ending time t, we can apply SketchGen with t = −∞, and
obtain a set of sketches Suv. After that, we inspect Suv to pinpoint
the sketch sans with the latest departure time. Finally, we use Al-
gorithm 2 to convert sans into the query answer. It can be verified
that the above query algorithms for EAP and LDP queries have the
same time complexity as the one for SDP queries.

5. INDEX CONSTRUCTION
This section presents the algorithms for constructing TTL in-

dices, assuming that the node order o is given. (We will discuss
the choice of node order in Section 6.) By Definition 7, each la-
bel in TTL corresponds to a canonical path in G, and vice versa.
Therefore, if we are to build a TTL index L based on a node order
o, then conceptually, we should identify all canonical paths in G,
and convert each of them into a label in L. But how can we derive
all canonical paths in G? A straightforward approach is to run the
temporal Dijkstra’s algorithm to retrieve all temporal shortest paths
in G, and then examine the paths obtained to identify the canonical
paths. This approach, however, incurs prohibitive preprocessing
costs due to the large number of temporal shortest paths that it re-
trieves. To address this issue, we will first present an algorithm
for computing paths in G that satisfy the Dominance Constraint
(referred to as the non-dominated paths) in Section 5.1. Then, we
explain how the algorithm can be used to avoid computing the paths
that violate Rank Constraint, which allows us to construct a TTL in-
dex L in a more efficient manner. Note that, even though our index
construction algorithm has the same worst-case complexity as the
straightforward approach, the former’s practical efficiency is signif-
icantly higher than that of the latter, as we show in Appendix D.2.

5.1 Computing Non-Dominated Paths
Let u be a node in G, and Td be a set that contains the departure

timestamps of all outgoing edges of u. Suppose that we are to
compute all non-dominated paths that start from a node u in G. We
first make an interesting observation as follows.

OBSERVATION 1. Let t⊣ be the largest timestamp in Td. Then,

any earliest arrival path (EAP)P from u to a node v with departure

time t⊣ is a non-dominated path. �

Based on Observation 1, we can compute all non-dominated
paths that start from u at time t⊣, by deriving all EAPs from u at
time t⊣. This derivation can be performed with a modified version
of Dijkstra’s algorithm [9], referred to as temporal Dijkstra’s algo-

rithm. First, we create a hash table A that maps each node v to the
earliest arrival time (EAT) tv from u to v. We initialize tv = +∞
for any v 6= u, and tv = 0 otherwise. Then, we collect all outgoing
edges of u with departure time t⊣, and insert them into a min-heap
H that sorts edges in ascending order of their arrival timestamps.
After that, we iteratively remove the top edge e = 〈x, y, td, ta, ·〉
in H , and process it as follows. We first retrieve the current EAT of
x and y (denoted as tx and ty, respectively) from the hash table A.
If td ≥ tx and ta < ty, we set ty = ta, and insert into H all outgo-
ing edges of y with departure time no sooner than ta. Finally, we
proceed to pop the next edge in H . When H becomes empty, we
terminate the algorithm. Then, by Observation 1, each final EAT
tv recorded in H corresponds to a non-dominated path (from u to
v with starting time t⊣).

Now suppose that we apply the temporal Dijkstra’s algorithm to
compute all EAPs that start from u at time t∗⊣, where t∗⊣ denotes
the second largest timestamp in Td. We have another observation
as follows.

OBSERVATION 2. Any EAP P from u with departure time t∗⊣ is

a non-dominated path, if it is not dominated by any EAP from u
with departure time t⊣. �

Given any EAP from u to v with departure time t∗⊣, we can de-
cide whether it is a non-dominated path, by comparing its arrival
time with that of the EAP from u to v with departure time t⊣. In
general, an EAP from u with departure time t is a non-dominated
path, if it is not dominated by any EAP from u with departure time
t∗ > t. Therefore, if we are to compute all non-dominated paths



from u, we can examine the timestamps in Td in descending order,
and apply the modified Dijkstra’s algorithm once for each times-
tamp t ∈ Td, to identify the non-dominated EAPs from u with
departure t. The following lemma shows that our approach does
not miss any non-dominated path that starts from u.

LEMMA 6. For any non-dominated path P starting from u,

there exists a timestamp t ∈ Td, such that P is an EAP starting

from u at time t. �

Finally, let us consider a “backward” version of the temporal Di-
jkstra’s algorithm, such that (i) the min-heap H sorts edges based
on arrival time, (ii) the hash table A records the latest departure
time of each node, and (iii) we start by inserting into H all incom-
ing edges of u with a given arrival time t′. It can be verified that
such an algorithm computes the latest departure paths (LDP) that
arrive at u at time t′. In addition, we can observe that an LDP to
v with arrival time t′ is non-dominated, if it is not dominated by
any LDP to v with arrival time t < t′. Furthermore, we have the
following lemma.

LEMMA 7. Let Ta be a set that contains the arrival timestamps

of all incoming edges of u. For any non-dominated path P ending

at u, there exists a timestamp t′ ∈ Ta, such that P is an LDP

ending at u at time t′. �

Therefore, we can compute all non-dominated paths ending at
u, by enumerating the timestamps in Ta in ascending order, and
by applying the reverse version of our Dijkstra’s algorithm once
for each timestamp. In Section 5.2, we will utilize our modified
version of the Dijkstra’s algorithm to identify canonical paths and
construct label sets.

5.2 Construction of Label Sets
Algorithm 3 shows the preprocessing method of TTL, referred

to as IndexBuild. Given G and a node order o, IndexBuild first
identifies the node u1 with the highest rank, as well as the latest
departure time td among the outgoing edges of u1 (Lines 1-4). Af-
ter that, it invokes the temporal Dijkstra’s algorithm to compute the
EAPs from u starting at td (Lines 5-28), with some simple book-
keeping to keep track of the vehicle b of each EAP P (Lines 17-20
and 23-24), as well as the intermediate node p on P with the high-
est rank (Lines 25-28). For each EAP P ending at a node v at time
ta, IndexBuild inserts a label 〈u1, td, ta, b, p〉 into Lin(v) (Lines
30-34). The reason is as follows. First, based on our discussions in
Section 5.1, P satisfies the Dominance Constraint in Definition 5.
Second, given that u has a higher rank than all other nodes, P also
satisfies the Rank Constraint in Definition 5. Therefore, P is a
canonical path, and hence, we add into Lin(v) a label correspond-
ing to P (see Definition 7).

After that, IndexBuild examines the other departure time of u1’s
outgoing edges in descending order (Line 5). For each departure
time td, IndexBuild derives the EAPs starting from u1 at time td,
using the temporal Dijkstra’s algorithm (6-8). For each of the EAP
P derived, if P ends at a node v at time tv , then IndexBuild exam-
ines whether the current Lin(v) contains a label l = 〈u1, ·, ta, ·, ·〉
with ta ≤ tv (Line 31). If such a label exists, then P is dominated
by an EAP that IndexBuild previously derived, in which case P
will be omitted; otherwise, P must be a canonical path, and hence,
IndexBuild inserts into Lin(v) a label corresponding to P .

Once all departure timestamps from u1 are enumerated, In-

dexBuild employs the reverse version of the temporal Dijkstra’s al-
gorithm to derive all canonical paths ending at u1 (Line 34). In
particular, IndexBuild examines the arrival timestamps at v in as-
cending order and, for each timestamp ta, uses the backward Di-
jkstra’s algorithm to compute the LDPs that end at u1 at time ta.

Algorithm 3: IndexBuild

input : G and a node order o
output: a TTL index L

1 let G1 = G;
2 for i = 1, 2, . . . , n do

3 let ui be the node with o(ui) = i;
4 let Td be a set containing the departure timestamps of all outgoing

edges of u in Gi;
5 for each td ∈ Td in descending order do
6 create a hash table A that maps each node v to a tuple

〈tv , bv, pv〉, where tv is the earliest arrival time at v from u
(initialized as +∞), bv is a vehicle (initialized as a
placeholder ⋆), and pv is a pivot node (initialized as null);

7 create a min-heap H that (i) accepts entries of the form
〈e, p〉, where e is an edge, and p is a node, and (ii) sorts
entries in ascending order of the arrival time of their edges;

8 for each outgoing edge e′ of u with departure time td do

9 insert an entry 〈e′, null〉 into H;

10 while H is not empty do

11 remove the top entry 〈e, p〉 from H;
12 let 〈x, y, td, ta, b〉 denote e;
13 retrieve the tuple 〈tx, bx, px〉 associated with x in A;
14 retrieve the tuple 〈ty , by , py〉 associated with y in A;
15 if tx = +∞ or td ≥ tx and ta < ty then

16 set ty = ta and py = p;
17 if by = ⋆ then

18 set by = b;

19 else if by 6= b then

20 set by = null;

21 for each outgoing edge e∗ of y do

22 let 〈·, ·, ·, ·, b∗〉 denote e∗;
23 if b∗ 6= b then

24 set b∗ = null;

25 if p = null or o(p) < o(y) then
26 insert 〈e∗, p〉 into H;

27 else

28 insert 〈e∗, y〉 into H;

29 for each node v in Gi do
30 let 〈tv , bv , pv〉 be the tuple in A corresponding to v;
31 if there is no 〈u, ·, ta, ·, ·〉 ∈ Lin(v) with ta ≤ tv then

32 if there does not exist 〈uj , t
′
d, t

′
a, ·, ·〉 ∈ Lout(ui)

and 〈uj , t
∗
d, t

∗
a, ·, ·〉 ∈ Lin(v), such that t′a < t∗d

and [t′d, t
∗
a] ⊂ [td, tv] then

33 insert into Lin(v) a label 〈ui, td, tv, bv, pv〉;

34 repeat Lines 4-33 to construct labels in the out-label set of each
node, using the reverse version of temporal Dijkstra’s algorithm;

35 remove v from Gi, and let Gi+1 denote the resulting graph;

36 return the collection of all label sets as a TTL index L;

Based on the LDPs computed, IndexBuild identifies all canonical
paths ending at u1, and constructs labels in other nodes’ out-label
sets, in a manner similar to the processing of canonical paths start-
ing from u. After that, IndexBuild removes u1 from G (Line 35),
and proceeds to process the remaining nodes.

Let ui denote the node with o(ui) = i (i ∈ [2, n]). The sub-
sequent execution of IndexBuild inspects ui in ascending order of
i. For each ui, IndexBuild examines a modified version of G (de-
noted as Gi) where all nodes with higher rank than ui are removed.
In particular, IndexBuild computes the all non-dominated paths in
Gi that start from ui, using the same approach as in the case of
u1 (Lines 5-28). The set S of non-dominated paths thus derived
would satisfy the Rank Constraint in Definition 5, since they do
not contain any node that ranks higher than ui. However, as they



are derived on Gi instead of G, they may not all be non-dominated
paths in G. To identify the paths in S that are non-dominated in
G, IndexBuild processes each path P ∈ S as follows. Assume
that P starts from ui at time td and ends at a node v at time ta.
If Lout(ui) contains a label l1 = 〈uj , t

′
d, t

′
a, ·, ·〉 and Lin(v) has a

label l2 = 〈uj , t
∗
d, t

∗
a, ·, ·〉, such that t′a < t∗d and [t′d, t

∗
a] ⊂ [td, ta],

then P is dominated by a path in G that goes from ui to v via uj .
(Note that j < i always holds, due to the order in which IndexBuild

processes nodes.) In that case, IndexBuild omits P (Line 32). On
the other hand, if such labels l1 and l2 do not exist, then P is not
dominated by any path in G that passes through a node uk with
k < i. In that case, P must be a non-dominated path in G. Then,
given that P satisfies the Rank Constraint in Definition 5, it is a
canonical path on G; as such, IndexBuild would insert into Lin(v)
a label pertinent to P (Line 33). In a similar fashion, IndexBuild

would also apply the backward Dijkstra’s algorithm to compute all
canonical paths that ends at ui, and create labels in the out-label
sets accordingly. Interested readers are referred to Appendix C for
an example that demonstrates the execution of IndexBuild.

Once all ui are processed, IndexBuild returns the collection of all
label sets constructed as a TTL index L. The following Lemma 8
shows the correctness and time complexity of IndexBuild.

LEMMA 8. Given G and a node order o, IndexBuild returns a

TTL index in O(n ·m+n2 · log n) time, where m is the number of

edges in G. �

6. NODE ORDERING
As shown in Sections 2 and 5, a TTL index L on G is uniquely

decided by the given node ordering o. As such, the choice of o has
a profound effect on the size of L, defined as

|L| =
∑

v∈V

(

|Lin(v)|+ |Lout(v)|
)

. (1)

The following example illustrates how o may affect |L|:
EXAMPLE 5. Consider a graph G that contains n nodes

v1, v2, . . . , vn, and contains a path P representing a vehicle route
that traverses vi in ascending order of i. For simplicity, assume
that G contains no other edges except for those in P , and that n
is a power of 2. Suppose that o(vi) = i for 1 ≤ i ≤ n. Then,
the size of the corresponding L is O(n2), since each vi would be
added into the label set Lin(vj) for all vj with j > i.

Now consider that we construct the index with a different node
order o, in n iterations as follows. In the first iteration, we set
o(vn/2) = 1, and then remove vn/2 from P , obtaining two sub-
paths of P . After that, in the j-th iteration (j > 1), we select the
longest sub-path of P in our collection, and identify the node v′

exactly in the middle of the sub-path; then, we set o(v′) = j and
remove v′ from the sub-path, which breaks the sub-path into two
smaller sub-paths. With such an ordering, each node v′ is added
only into the label sets of the nodes on the sub-path from which v′

is removed, and hence, the resulting L has a size of O(n log n). �

In what follows, we investigate the choice of o, aiming to reduce
|L|. In particular, we first present an approximation algorithm for
the minimization of L (in Section 6.1), and then introduce a heuris-
tic method that runs well in practice (in Section 6.2).

6.1 Approximation Algorithm
Let N be the set of all non-dominated paths on G. Intuitively,

if a node v appears on a large number of non-dominated paths,
then v is likely to be an important node, in which case it should
be given a high rank in a node order. Our approximation algorithm

exploits this intuition in selecting the node order o. To explain, we
first introduce a few notations. We say that a node v covers a non-
dominated path P ∈ N , if v is on P . We use N (v) to denote
the set of non-dominated paths in N that are covered by v, and we
refer to |N (v)| as the coverage of v.

Let ui (i ∈ [1, n]) denote the node with the i-th highest rank
in our node order o. We first choose u1 to be the node with the
maximum coverage. After that, for i ∈ [2, n], we decide ui in
ascending order of i, and we set ui to the node that covers the
largest number of non-dominated paths that have not been covered
by u1, u2, . . . , ui−1, i.e.,

ui = argmax
v

|Ri(v)|,

where Ri(v) =
∣

∣

∣
N (v) \ ∪i−1

j=1N (uj)
∣

∣

∣
.

For example, in Figure 2a, R1(v1) = 6, R1(v2) = 9, and
R1(v3) = 6; accordingly, u1 = v2. That is, in our choice of ui,
we take into account the nodes that are selected before ui, and aim
to maximize ui’s residual coverage with respect to the previously
selected nodes. Note that this ordering method runs in polynomial
time, since (i) N can be constructed in polynomial time using our
algorithm in Section 5.1, and (ii) the total number of nodes in the
paths in N is polynomial to the number of edges in G.

To analyze the theoretical guarantee of our method, we first de-
fine the influence set of ui (denoted as I(ui)) as the set of non-
dominated paths in Ri(ui) that either start from ui or end at ui.
Observe that each path P in I(ui) is a canonical path with respect
to our node order. Furthermore, if we construct a TTL based on our
node order, then P would be mapped into a label 〈ui, ·, ·, ·, ·〉. In
other words, |I(ui)| equals the number of labels that are due to ui,
and we have |L| = ∑n

i=1 |I(ui)|. Intuitively, |I(ui)| captures the
space overhead incurred by ui in the TTL index.

For any node v in G, let Td(v) (resp. Ta(v)) be the set that con-
tains the departure (resp. arrival) timestamps of all outgoing (resp.
incoming) edges of v, and

α =
∑

v in G

(|Td(v)|+ |Ta(v)|). (2)

The following lemma shows an upper-bound of |I(ui)| based on
|Ri(ui)| and α.

LEMMA 9. |I(ui)| ≤
√
α ·

√

|Ri(ui)|.
Let v1, v2, . . . , vn be the node ordering minimizing |L|. We define

R′
i(v) =

∣

∣

∣
N (v) \ ∪i−1

j=1N (vj)
∣

∣

∣
.

The influence set I(vi) of vi can be similarly defined as the set of
non-dominated paths in R′

i(vi) that either start from vi or end at
vi. The following lemma shows a lower-bound of |I(vi)| based on
|R′

i(vi)|.
LEMMA 10.

√

|R′
i(vi)| ≤ |I(vi)|.

The following lemma shows the connection between |Ri(ui)|
and |R′

i(vi)|:
LEMMA 11.

∑n
i=1

√

|Ri(ui)| ≤ 2 ·∑n
i=1

√

|R′
i(vi)|.

Based on Lemmas 9, 10 and 11, we show in Theorem 1 the ap-
proximation ratio of our ordering method.

THEOREM 1. A TTL index based on a node order

u1, u2, . . . , un has a size that is at most 2
√
α times of that

with the optimal node ordering. To derive such a node order, it

takes O(n2 ·m) time and O(n ·m) space, where m is the number

of edges in the timetable graph. �
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(a) Timetable graph G′. (b) Lin(v3). (c) Lin(v3) compressed. (d) Timetable for r1.

Figure 2: An example of route-based compression.

6.2 Heuristic Approach
As shown in Theorem 1, the approximation algorithm in Sec-

tion 6.1 incurs tremendous overheads, which renders it inapplica-
ble in sizable graphs. To remedy this issue, we devise a heuris-
tic approach that has the same spirit of the approximation algo-
rithm, but entails much smaller computation costs. First, we ran-
domly sample a number of edges from G. After that, for each edge
e = 〈u, ·, td, ·, ·〉, we employ the temporal Dijkstra’s algorithm to
identify all EAPs starting from u at time td. Notice that all these
EAPs form a tree T rooted at u, such that the directed path from the
root to any leave is an EAP from u. Furthermore, for any node v in
T , the number of nodes in the subtree under v (including v itself)
equals the number of EAPs from u that are covered by v. We refer
to this number as the coverage of v in T , and refer to T as the EAP

tree from u at time td. Note that the coverage of all nodes in T can
be computed in O(n) time using a bottom-up scan of T .

Let T denote the set of all EAP trees that we have sampled, and
u1, u2, . . . , un denote the node order that we chose. To decide our
node order, we maintain an array that records, for each node v, the
sum of the coverage of v in all trees in T . We refer to this sum
as the coverage sum of v. We first identify u1 as the node with
the maximum coverage sum, i.e., u1 covers the largest number of
EAPs that we constructed. Then, we remove, from each EAP tree
T ∈ T , the subtree under u1 (including u1), and we update the
coverage sum of each node accordingly. Subsequently, for each
i ∈ [2, n] in ascending order, we select ui to be the node with the
maximum coverage sum in the modified T with the subtrees under
u1, . . . , ui−1 removed.

The above heuristic approach runs in O(n2·|T |) time, where |T |
denotes the number of EAP trees in T . To explain, observe that
for any i ∈ [1, n], we take O(n · |T |) time to identify ui, remove
it and its subtrees from all EAP trees, and update the remaining
nodes’ coverage sums. Therefore, the total running time of the
heuristic approach equals O(n2·|T |). Apparently, a larger |T | leads
to a better node ordering but a larger computation overheads. In
our implementation of TTL, we start from T = ∅, then iteratively
sample EAP trees from G, until the total number of edges in the
EAP trees reaches x ·m, where x is a constant and m is the number
of edges in G. That is, we restrict the total size of the EAP trees.
Our experiments show that x = 8 strikes a good tradeoff between
index size and preprocessing time.

7. LABEL COMPRESSION
Even with a good node order o, a TTL index L may still have a

sizable number of labels and incur considerable space overheads.
To reduce the space consumption of L, we propose to compress the
labels in L by exploiting their similarities. In particular, we present
a route-based compression approach in Section 7.1, followed by a
pivot-based compression method in Section 7.2.

7.1 Route-Based Compression
Consider the example in Figure 2a, where we have three vehicles

b1, b2, and b3 serving the same route r1 = 〈v1, v2, v3〉, i.e., they
all start from node v1, pass by v2, and then arrive at v3. Figure 2b
shows the label sets of v3, assuming that o(v1) < o(v2) < o(v3).

Observe that the labels in Lin(v3) are rather redundant, as they
repeatedly record the arrival time of b1, b2, and b3. To eliminate
such redundancy, we propose to replace the labels in Lin(v3) with
two labels 〈v1, null, null, r1, v2〉 and 〈v2, null, null, r1, null〉, as
shown in Figure 2c. That is, we combine the labels in Lin(v3)
that share the same starting node, ending node, and pivot. To en-
sure lossless decompression, we create a time table that records,
for v1, v2, and v3, the departure and arrival time of each bus serv-
ing route r1, as shown in Figure 2d. During query processing, if
we encounter the label 〈v1, null, null, r1, v2〉 in Lin(v3), then we
inspect the timetable entries associated with v1 and v3 to recon-
struct three original labels concerning b1, b2, and b3. The label
〈v2, null, null, r1, null〉 can be decompressed in the same way.

In general, in the in-label set Lin(v) of a node v, if all labels
from a node u are associated with vehicles serving the same route
r (hence the same pivot p), then we compress the labels into a single
label 〈u, null, null, r, p〉, and create the timetables of r associated
with u and v. The out-label sets in L can be compressed in the same
manner. We observe that this route-based compression approach is
particularly effective on a path that is only served by buses from
one route, as in the case of Figure 2a.

7.2 Pivot-Based Compression
The route-based compression approach is applicable on a la-

bel l, only if the vehicle of l is not null, i.e., the canonical path
corresponding to l is carried out by one vehicle without transfer.
Nonetheless, we may still compress labels pertinent to paths with
vehicle transfers, by exploiting the pivots recorded in the labels.
For example, consider an in-label set Lin(v) of a node v, where
there are three labels from a node u: l1 = 〈u, td, ta, null, p〉,
l2 = 〈u, t′d, t′a, null, p〉, and l3 = 〈u, t∗d, t∗a, null, p〉. Although
the vehicles of l1, l2, and l3 equal null, they all have the same
pivot p, i.e., the canonical paths corresponding to l1, l2, and l3 all
pass through p. In that case, we compress l1, l2, and l3 into a single
label lc = 〈u, null, null, null, p〉.

After that, whenever we encounter lc during query process-
ing, we decompress it by reconstructing l1, l2, and l3 using their
children (see Section 4.2). For instance, suppose that o(u) <
o(p) < o(v). Then, Lin(p) must contain three labels 〈u, td, ·, ·, ·〉,
〈u, t′d, ·, ·, ·〉, 〈u, t∗d, ·, ·, ·〉, which are the left children of l1, l2,
and l3, respectively. In addition, Lin(v) should have three labels
〈p, ·, ta, ·, ·〉, 〈p, ·, t′a, ·, ·〉, 〈p, ·, t∗a, ·, ·〉 that are the right children
of l1, l2, and l3, respectively. Therefore, we can easily reconstruct
l1, l2, and l3, by inspecting Lin(p) and Lin(v), based on the pivot
information in lc.

In general, in an in-label (resp. out-label) set, if all in-labels from
(resp. out-labels to) a node u′ have the same pivot p′, then we may
replace them with a compressed label 〈u′, null, null, null, p′〉.
There is one caveat, though: if a label l and its left (resp. right)
child are both compressed, then the reconstruction of l would also
require reconstruction of its left (resp. right) child. Such recur-
sive reconstruction incurs considerable overheads, which degrades
query efficiency on compressed label sets. To avoid such recur-
sions, we impose a constraint in label compression: if a label is
compressed, then neither of its children should be compressed. An



immediate question is, how should we choose the labels to com-
press, so as to minimize space consumption without violating the
compression constraint?

To answer the above question, we construct a dependency graph

as follows. First, in the in-label set Lin(v) (resp. out-label set
Lout(v)) of a node v, if we may generate a compressed la-
bel 〈u, null, null, null, p〉, then we create a tuple 〈u, v, p〉 (resp.
〈v, u, p〉). After that, we map each tuple into a node, and draw an
undirected edge between any two nodes with a parent-child rela-
tionship, e.g., 〈u, v, p〉 and 〈u, p, ·〉. In addition, we assign to each
node 〈u, v, p〉 a weight that equals c−1, where c equals the number
of labels compressed into 〈u, v, p〉. In other words, c captures the
reduction of space due to 〈u, v, p〉. We refer to the resulting graph
as a dependency graph D.

Observe that, if we are to create a set S of compressed labels un-
der our compression constraints, then the labels in S correspond to
an independent set on D. Accordingly, we can maximize the effect
of compression by identifying the maximum-weight independent
set on D, which is NP-hard. We address the problem by adopting
an approximation algorithm [28] for maximum-weight independent
set, which runs in O(n′ log n′+m′) time, where n′ and m′ are the
numbers of nodes and edges in D, respectively.

Finally, we note that the above pivot-based compression method
can be combined with the route-based compression approach in
Section 7.1. Specifically, we first apply route-based compression
on the label sets, and then, employ pivot-based compression but ex-
clude those labels that have been compressed using the route-based
approach. As such, we benefit from both types of compression.
We refer readers to Appendix B for a more detailed description of
TTL’s query algorithm under a compressed index structure.

8. EXTENSIONS

Concise Representation of Query Results. Recall that our query
algorithms always return a path P represented as a sequence of
edges 〈e1, e2, ..., ek〉 in G. Although such an edge sequence pro-
vides very detailed information about P , users in practice may pre-
fer a more concise representation of P as the query result. For
example, suppose that e1, e2, . . . , ej (j < k) have the same ve-
hicle b1, while ej+1, . . . , ek all concern the same vehicle b2. In
other words, the path P requires the user to (i) take vehicle b1 from
node u at time td (where u and td are the starting node and de-
parture time of e1, respectively), and then (ii) get off b1 at node
w and transfer to vehicle b2 at time t′d (where t′d is the departure
time of ej+1), and stay on b2 until she reaches her destination. In
that case, instead of presenting P to the user, we could provide her
with a concise description of Pc, which is a sequence of two tuples:
〈u, b1, td〉, 〈w, b2, t

′
d〉. Such a concise path is more user-friendly

as it is easier to comprehend and remember than P . Moreover, the
concise representation of query results is favorable to the compres-
sion techniques in Section 7, since it reduces the amount of label
decompression required during query processing.

To generate a concise path Pc for a query, a straightforward ap-
proach is to first derive the corresponding path P , and then convert
P into Pc by identifying the edges on P where there are changes
of vehicles. Interestingly, our query algorithm can be easily modi-
fied to return Pc without even deriving P . In particular, given a path
query q, we first invoke our candidate generation and refinement al-
gorithms (in Section 4.1) to identify the path sketch sans = 〈lu, lv〉
of the query result. After that, we invoke the PathUnfold algorithm
to unfold the labels in sans, with one slight modification: during
the unfolding process, whenever we encounter a label l whose ve-
hicle does not equal null (i.e., the path corresponding to l does not
involve a transfer), then we do not unfold l. The output of modified

algorithm would then be a partially unfolded path, which is a se-
quence where each element is either an edge in G or a label whose
corresponding path is carried out by one vehicle. After that, it is
straightforward to construct Pc from the partially unfolded paths.
This partial unfolding approach leads to higher query efficiency
since it not only reduces the number of paths to unfold, but also
accelerates the construction of Pc.

Extended Timetables. So far we have assumed that we are given a
timetable graph G with a finite set E of temporal edges. For exam-
ple, E corresponds to the predefined vehicles routes on a weekday.
However, if we construct a TTL index on such a timetable graph
G, then the index can only return paths whose starting and ending
time are within the same day, e.g., we will miss paths that start on
late Monday night and ends on early Tuesday morning. To address
this issue, we can extend E to include the timetables of two con-
secutive weekdays, and construct a TTL index accordingly. Then,
the index could return any path whose total duration does not ex-
ceed 24 hours. In case that the weekend timetable is different from
that of a weekday, we can create three additional TTL indices, each
of which incorporates the timetables of two consecutive days from
Friday to Monday. We note that such indexing partitioning ap-
proach is widely adopted in spatial-temporal indexing (e.g., [24]).

9. RELATED WORK
A plethora of techniques [6, 7, 9, 11, 15, 20–22, 26, 27, 31, 34, 36]

have been proposed for processing EAP, LAP, and SDP queries on
timetable graphs. Among them, the states of the art include the
Connection Scan Algorithm (CSA) [15, 37], the Contraction Hier-

archies for Timetables (CHT) [20], and T.Patterns [4]. In particular,
CSA represents the timetable graph G as two sequences of edges,
such that the first (resp. second) sequence sorts edges in ascend-
ing order of their departure timestamps (resp. in descending order
of their arrival timestamps). For any path query, CSA derives the
query answer using one linear scan of one of the edge sequences.
This technique incurs very small preprocessing overheads, and is
shown to outperform the temporal Dijkstra’s algorithm [9] in terms
of query time.

Meanwhile, CHT [20], preprocesses G by constructing shortcuts

(i.e., artificial edges) among the nodes in G, such that each shortcut
captures a fastest route between the two nodes that it connects. Dur-
ing query processing, CHT employs a bidirectional Dijkstra-like
search from the source and destination nodes simultaneously, and
it utilizes the pre-computed shortcuts to reduce the number of nodes
that need to be traversed. T.Patterns [4] exploits a similar idea to
CHT, but instead of maintaining shortcuts, it pre-computes a set of
fastest paths in G and record them in a set S. Then, when process-
ing queries, T.Patterns utilizes the pre-computed paths to construct
the major parts of the query results, which improves query perfor-
mance. Nevertheless, T.Patterns does not guarantee exact query re-
sults, e.g., its answer for an EAP query might not be an actual EAP.
In other words, T.Pattern trades query accuracy for efficiency. In
our experiments, we compare TTL with CSA and CHT instead of
T.Patterns, since we aim to provide exact answers for path queries.

Apart from CSA, CHT, and T.Patterns, other techniques for
timetable graphs can be divided into two categories. Techniques in
the first category [21,22,26,27,36] convert G into a time-expanded

graph G′, such that each spatiotemporal event in G (e.g., arrival
of a vehicle b at a station u) is mapped to a node in G′, and two
consecutive events (e.g., arrival of b at u, followed by its departure)
is mapped to a directed edge in G′. Based on G′, various tech-
niques [21, 22, 26, 27, 36] have been proposed to accelerate path
queries. However, as pointed out in [5,7], such techniques are gen-
erally not incomparable to the state-of-the-art methods that process



queries on G instead of G′. On the other hand, techniques in the
second category [10,12,14,17,29,30,32,35] considers query types
that are more sophisticated than EAP, LDP, SDP, in that they take
into account advanced query constraints, such as the cost of making
a transfer, the fare of a ride, etc.

In addition, there is a line of research [9, 11, 13, 18, 19, 23, 25–
27, 33] on route planning on time-dependent graphs, i.e., simple
graphs where the length of each edge is a function of time. Such
graphs are typically used to model road networks where the travel-
ing time of an edge is a certain pre-defined function of time. Tech-
niques developed for time-dependent graphs can also be applied
on timetable graphs (via a sophisticated mapping from timetables
to time-dependent functions), but as shown in [6, 11, 20], they are
inferior to CHT in terms of query performance on timetable graphs.

Finally, there exists a large body of literature on processing
shortest path and distance queries on simple graphs without tempo-
ral information (see [5] for a recent survey). The classic approach
for this problem is Cohen et al.’s 2-hop labelling (2HL) [8] for dis-
tance queries. Cohen et al. present a preprocessing algorithm for
2HL that achieves an O(log n) approximation in terms of index
size, but the algorithm has O(n5) complexity and does not scale to
large graphs. To address this issue, the state-of-the-art approach is
to construct 2HL based on a total order on the nodes. The result-
ing indexing method is referred to as Hierarchical Hub Labelling

(HHL) [2, 3]. Compared with Cohen et al’s method, HHL provides
higher query efficiency and smaller pre-computation cost. How-
ever, approximation algorithms for HHL (in terms of index size)
remain an open problem.

10. EXPERIMENTS
This section experimentally evaluates TTL on a machine with an

Intel E5-2650V2 2.60GHz CPU and 64GB RAM, running Ubuntu
14.04.1. All methods tested are implemented in C++ and compiled
with GCC 4.8.2. In each experiment, we repeat each method 5
times, and report the average measurement.

Datasets. We use 11 publicly available datasets from [1] as our
datasets. Each dataset records the timetable of the public trans-
portation network of a major city or country on a weekday. Table 3
shows the characteristics of the data.

Query Sets. For each dataset, we generate 105 queries for EAP,
LDP, and SDP, respectively, and we report the average query time
of each method for each query set. Each query is generated by se-
lecting source and destination node uniformly at random. In addi-
tion, the starting and ending timestamps of each query are also ran-
domly generated, except that the starting (resp. ending) timestamp
of an LDP (resp. EAP) query is always set to −∞ (resp. +∞).

Methods. We evaluate two versions of TTL: one with the compres-
sion methods in Section 7 applied (referred to as C-TTL), and one
without (referred to as TTL). For each version, we test its query
performance under two scenarios: when it returns a complete path
in answering a query, and when it returns a concise representation
of the path. We compare all versions of TTL with the state-of-the-
art indexing methods on timetable graphs, namely, CHT [20] and
CSA [15]. Unless otherwise specified, we use heuristic algorithm
in Section 6.2 to decide the node ordering used in TTL and C-TTL.

10.1 Performance of Query Processing
In the first set of experiments, we evaluate the query efficiency

of all methods. Figure 3 shows the average query time of each
method for SDP queries in log-scale. Observe that, TTL and C-TTL

significantly outperform CSA and CHT in all cases. In particular,
the average query time of TTL is always below 30µs, and is at
least three (resp. two) orders lower than that of CSA (resp. CHT)

dataset |V | |E| avg degree

Austin 2.7K 317.5K 118.7

Madrid 4.6K 1912.2K 412.5

Budapest 5.5K 1375.2K 251.5

Salt Lake City 6.3K 329.0K 52.6

Rome 8.8K 2267.7K 258.3

Denver 9.5K 708.7K 74.5

Houston 9.8K 1111.8K 112.9

Toronto 10.8K 3295.1K 305.4

Berlin 12.8K 1965.8K 153.0

Los Angeles 15.0K 1903.2K 126.6

Sweden 51.4K 3926.5K 76.4

Table 3: Public transportation networks (K=103).

in almost all cases. C-TTL is slightly slower than TTL (as it needs
to decompress labels during query processing), but is still orders of
magnitude faster than CSA and CHT. Meanwhile, CHT is superior
to CSA, as it adopts a more advanced index structure than the latter.

Interestingly, the query time of TTL and C-TTL does not always
increase with the size of the input dataset. To explain, observe
that the average query cost of TTL and C-TTL is decided by two
factors: (i) the average number of labels in each label set, denoted
as lavg, and (ii) the average number of path unfolding operations
required during path reconstructions, which is roughly comparable
to the average number of nodes on the query result path (denoted as
navg). We observe that neither lavg nor navg necessarily increases
with the dataset size. For example, on the Austin dataset, lavg ≈
1600, and navg ≈ 39 for SDP queries; in contrast, on Sweden, we
have lavg ≈ 775 and navg ≈ 19 for SDP queries, even though
Sweden is more than ten times larger than Austin. In addition, we
note that a similar phenomenon is also demonstrated in previous
work [2, 3] on labelling indices for conventional graphs, i.e., the
query cost of a labelling approach depends more on the input data’s
topology than its size.

The above results concern the case when we return a detailed
path for each SDP query. In addition to that, Figure 3 also plots
the performance of TTL and C-TTL when they return concise paths
as query results. Observe that the query efficiency of both TTL

and C-TTL improves noticeably when concise paths are adopted.
This is because when TTL and C-TTL return concise paths instead
of complete paths, their costs of path reconstruction during query
processing are significantly reduced, due to the decreased amount
of path unfolding operations, as mentioned in Section 8. In addi-
tion, the performance gap between TTL and C-TTL is reduced in the
case of concise paths, because C-TTL performs a smaller number
of label decompressions when constructing concise paths.

Apart from SDP queries, we also evaluate the average query time
of each method for EAP and LDP queries, respectively, and we
observe that TTL and C-TTL consistently outperform CSA and CHT

by large margins. Interested readers are referred to Appendix D for
these experimental results.

10.2 Preprocessing and Space Overheads
Our second set of experiments evaluates the space overheads of

each method. Figure 4 shows the results in log-scale. The index
size of CSA is rather small, since it only requires storing two copies
of G (in the form of sorted edge sequences). The space consump-
tion of CHT is comparable to that of CSA, which indicates that the
shortcuts that it creates take roughly the same space as the input
graph G. On the other hand, the space costs of TTL and C-TTL are
considerably larger than those of CSA and CHT. However, the rel-
atively large space overhead of TTL and C-TTL is justified by their
superior query performance against CSA and CHT. Furthermore,
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even on the country-scale transportation network Sweden, the in-
dex size of TTL (resp. C-TTL) is only a few hundred MB, which
can easily fit in the main memory of a commodity machine. In
other words, the space overheads of TTL and C-TTL are still ac-
ceptable for practical applications.

In the next set of experiments, we evaluate the effectiveness of
label compression schemes. In particular, on each dataset, we con-
struct four TTL indices: (i) one without compression, denoted as
L; (ii) one with route-based compression, denoted as L1; (iii) one
with pivot-based compression, denoted as L2, and (iv) one with
both route-based and pivot-based compressions, denoted as L3. We
define ∆i = |L| − |Li| (i = 1, 2, 3). Table 4 shows the values of
∆1/|L|, ∆2/|L|, and ∆3/|L| on each dataset. Observe that, by
using route-based compression and pivot-based compression sepa-
rately, our index size can be reduced by up to 38.00% and 38.78%,
respectively. When both compression techniques are applied, the
size of our TTL indices can be reduced by up to 61.43%.

This reduction in space consumption comes at a moderate cost
of query efficiency, though. For instance, on the Budapest dataset,
our compression techniques reduce the size of C-TTL by 41.71%,
but increase the query time (when returning concise paths) from
10µs to 12µs. Nonetheless, even with compression applied, the
query performance of C-TTL is still significantly better than that of
CSA and CHT, as shown in Figure 3. As such, C-TTL is a compet-
itive method compared to TTL, especially when the index size is a
concern (e.g., when the index is to be loaded in a mobile devise).

Finally, Figure 5 shows the preprocessing time of all methods.
CSA incurs the smallest pre-computation overheads as it only re-
quires sorting the edges in G twice. CHT has a much larger prepro-
cessing cost, since it needs to construct a sizable number of short-
cuts on G. The pre-computation time of TTL and C-TTL are larger
than that of CSA and CHT, but is still below 17 minutes even on the
largest dataset Sweden. Furthermore, TTL and C-TTL have similar

dataset ∆1/|L| ∆2/|L| ∆3/|L|

Austin 20.25% 33.66% 46.20%

Madrid 16.52% 30.23% 45.61%

Budapest 10.41% 35.45% 41.71%

Salt Lake City 38.00% 38.78% 61.43%

Rome 14.42% 31.85% 43.87%

Denver 23.84% 34.92% 49.23%

Houston 28.77% 32.62% 49.54%

Toronto 19.95% 32.77% 44.78%

Berlin 6.70% 23.51% 27.58%

Los Angeles 16.78% 31.68% 41.66%

Sweden 12.74% 28.52% 35.92%

Table 4: Compression ratio.

pre-processing overheads, which indicates that the compression al-
gorithms adopted by C-TTL entail negligible additional costs. We
also refer interested readers to Appendix D for additional experi-
ments on the effectiveness of TTL’s preprocessing algorithm.

11. CONCLUSIONS
This paper presents Timetable Labelling (TTL), an efficient in-

dexing technique for route planning on public transportation net-
works. We investigate various aspects in the design of TTL indices,
and propose advanced algorithms for query processing, index con-
struction, and label compression. With extensive experiments on
real datasets, we show that TTL significantly outperforms the state-
the-art in terms of query efficiency.
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APPENDIX

A. PROOFS
Proof of Lemma 1. We prove the lemma by contradiction: As-

sume that there does not exist a label 〈w, td, ta, b, p〉 in Lout(u) or
a label 〈w′, t′d, t

′
a, b

′, p′〉 in Lin(v) such that either of them satis-
fies any one of the conditions in the lemma. In other words, there
are two cases, stated as follows.

Case 1: There does not exist a canonical path from u to v.

Case 2: There does not exist a node w∗ such that both the paths
from u to w∗ and from w∗ to v contain a canonical path respec-
tively.



Given that P is the result of the path query q from u to v, we
have that P is not dominated by the other paths that answer q by
Definitions 2, 3, and 4. Besides, any sub-path of P is also not
dominated by the other paths. If not, we can replace the sub-path
with the dominated one.

Let wo be the node with highest rank among nodes in P . If wo

equals u or v, then P is a canonical path (by Definition 5), which
contradicts Case 1. On the other hand, if wo does not equal u or
v, let P1 be the sub-path from u to wo, and P2 be the sub-path
from wo to v. As such, we have P1 and P2 as canonical paths (by
Definition 5), which contradicts Case 2. Thus, the lemma is proved.

�

Proof of Lemma 2. Let l = 〈u, td, ta, b, p〉 be an in-label in
Lin(v), and l′ = 〈u′, t′d, t

′
a, b

′, p′〉 be an out-label in Lout(v). The
lemma says that if we remove l or l′, there exists a path query q
whose result P does not satisfy the constraints in Lemma 1.

Consider l. Given that 〈u, td, ta, b, p〉 ∈ Lin(v), we have
o(u) < o(v) and l is pertinent to a canonical path P from u to
v. Let q be a path query from u to v with starting timestamp td
and ending timestamp ta, and P be the result of q. By contradic-
tion, assume that after removing l from Lin(v), P still satisfies
Lemma 1. Since o(u) < o(v), by Definition 7, v cannot appear in
any label of Lout(u). Then, there must exist a node w, such that
〈w, td, t

∗
a, ·, ·〉 ∈ Lout(u), 〈w, t∗d, ta, ·, ·〉 ∈ Lin(v), and t∗a ≤ t∗d.

That is, the path P from u to v passes w, and w has a higher rank
than both u and v, which contradicts the Rank Constraint in Defi-
nition 5. The case for l′ can be proved in a similar manner. �

Proof of Lemma 3. Consider a path query q from u to v with
a starting timestamp t and an ending timestamp t′. Let Pans be
the result of q, l = 〈w, td, ta, ·, ·〉 be an out-label of u, and l′ =
〈w′, t′d, t

′
a, ·, ·〉 be an in-label of v. If l is pertinent to Pans or the

sub-path of Pans, we have t ≤ td and ta ≤ t′, which is checked by
Line 4 of Algorithm 1. Similarly, the timestamps of l′ are checked
by Line 10 of Algorithm 1. By Lemma 1, there are three cases:

Case 1: If w = v, we have Pans, which is pertinent to l.

Case 2: If w′ = u, we have Pans, which is pertinent to l′.

Case 3: If w 6= v, w′ 6= u, ta ≤ t′d and w = w′, we have l and l′

each of which is pertinent to a sub-path of Pans.

Obviously, Case 1 and Case 2 can be correctly handled by Lines
6-8 and Lines 12-14 respectively. Now, we focus on the discussion
of Case 3. By contradiction, assume that Lines 15-20 cannot find a
sketch corresponding to Pans. Since labels in Lout(u) and Lin(v)
are sorted, we have ta > t′d for all pairs of l and l′ where w = w′.
This contradicts Case 3, which completes the proof. �

Proof of Lemma 4. Without loss of generality, let o(u) < o(v),
i.e., the rank of u is higher than that of v. Let P1 denote the sub-
path of P from u to p, and P2 the sub-path of P from p to u. By
Definition 6, the rank of p is higher than all nodes in P , except
u and v. As such, both P1 and P2 satisfy the Rank Constraint in
Definition 5.

Assume on the contrary that either P1 or P2 is not a canonical
path. Consider that P1 is not a canonical path. Since P1 satisfies
the Rank Constraint, there must exist another path P o from u to p
dominating P1. This contradicts that P is a canonical path. The
case for P2 can be similarly established. �

Proof of Lemma 5. By Lemma 1 and Lemma 3, given a starting
timestamp t and an ending timestamp t′, we can find the sketches
pertinent to all paths from u to v, each of which is an SDP regard-
ing its departure time td ≥ t and arrival time ta ≤ t′. Denote these

paths by SDP (u, v, t, t′). As such, when t′ = +∞, we can ob-
tain the sketches pertinent to paths in SDP (u, v, t,+∞). Hence,
we are able to find the EAP whose arrival time is the minimum
in SDP (u, v, t,+∞). The similar analysis can be applied to the
extension of LDP queries. �

Proof of Lemmas 6 and 7. Consider Lemma 6. Given the non-
dominated path P starting from u at time t ∈ Td and ending at v
at time t′, assume that P is not an EAP. In other words, there exists
another path P ′ such that P ′ also starts from u at time t but ends
at v at time t∗, which is earlier than t′, i.e., t∗ < t′. However,
this violates that P is a non-dominated path, which completes the
proof of Lemma 6. The proof of Lemma 7 can be established in the
similar manner. �

Proof of Lemma 8. We first show that each label in L constructed
by Algorithm 3 is pertinent to a canonical path of G. Consider a
label l = 〈u, td, ta, ·, ·〉 in the in-label set Lin(v) of v, which is
pertinent to a path P from u to v with departure time td and arrival
time ta. As all nodes whose ranks are higher than u are removed
before the computation on u, we have that P fulfills Rank Con-
straint in Definition 5. Assume that P does not satisfy Dominance
Constraint, i.e., there exists another canonical path P ′ from u to v
with departure time t′d > td and arrival time t′a < ta. Since we
compute the outgoing edges of u in descending order of their de-
parture timestamps, P ′ is computed before P . As such, P should
not be added to Lin(v) due to that [t′d, t

′
a] ⊂ [td, td], which leads

to a contradiction. In sum, P is a canonical path.
Now we prove that each canonical path of G is pertinent to a

label in L. Assume by contradiction that there exists a canonical
path P ∗ from u to v such that P ∗ is not pertinent to any label in
L. By Lemmas 6 and 7, given a starting timestamp t, we can find
all EAPs from u by the modified version of Dijkstra’s algorithm;
and given an ending timestamp t′, we can find all LDPs to v by
the reverse version of Dijkstra’s algorithm. As such, P ∗ must be
found by the modified version or the reverse version of Dijkstra’s
algorithm. This indicates that there must already exists a label l′ in
L such that l′ is pertinent to another path P ′ and P ′ dominates P ∗.
This contradicts to the assumption that P ∗ is a canonical path, as a
consequence, IndexBuild correctly produces a TTL index.

To analyze the complexity, we consider the time cost in each
iteration. In each iteration, a vertex is chosen and a temporal Di-
jkstra is started from this vertex. Observe that each edge will be
traversed at most once, and during the traversal, a vertex is popped
at most once from the heap. By maintaining a Fibonacci Heap, the
amortized cost hence is O(n · log n). The label insertion process
as shown in Lines 29-33 requires only O(1) time for each insertion
by forcing the vertices sorted in the out-label (resp. in-label) by the
vertex level order and then in decreasing order of arrival timestamps
(resp. in increasing order of departure timestamps). So in each it-
eration, the complexity is O(m+n · log n). There are n iterations,
and the time-complexity can be bounded by O(n ·m+n2 · log n),
which completes the proof. �

Proof of Lemma 9. By the definition of I(ui), we have the fol-
lowing two inequalities:

|I(ui)| ≤
∑

v∈V

|Ta(v)|+
∑

v∈V

|Td(v)| = α, (3)

|I(ui)| ≤ |Ri(ui)|. (4)

Based on the above inequalities, we have

|I(ui)| =
√

|I(ui)| ·
√

|I(ui)| ≤
√
α ·

√

|Ri(ui)|. (5)



Proof of Lemma 10. We define the marginal out-coverage of vi as
Iout(vi) = {〈vi, ·, ·, ·〉 ∈ I(vi)}, and marginal in-coverage of vi
as Iin(vi) = {〈·, vi, ·, ·〉 ∈ I(vi)}. That is, |I(vi)| = |Iout(vi)|+
|Iin(vi)|. Therefore, we have

√

|R′
i(vi)| ≤ |Iout(vi)| · |Iin(vi)|+ |Iout(vi)|+ |Iin(vi)|

≤
√

(|Iout(vi)|+ |Iin(vi)|)2
= |I(vi)|,

which completes the proof. �

Proof of Lemma 11. Given the ordering o outputted by the ap-
proximation algorithm, we have u1, u2, . . . , un with o(ui) = i.
Let r be a tuple in Ri(ui). We define c(r) = 1√

|Ri(ui)|
as the

contribution of r to the amount of
√

|Ri(ui)|. Then, we have
√

|Ri(ui)| =
∑

r∈Ri(ui)
c(r).

We denote the set of all the tuples to be covered in G by

RG = ∪n
i=1Ri(ui). (6)

As such, we have
∑n

i=1

√

|Ri(ui)| =
∑

r∈RG
c(r).

Now, consider the optimal ordering o′, which is v1, v2, . . . , vn
with o′(vi) = i. Let ri,j be the j-th tuple in R′

i(vi) that will be
covered if we choose the nodes with the order given by the ap-
proximation algorithm. Then, we have c(ri,j) ≤ 1√

|R′

i
(vi)|−j+1

.

This is because (i) the approximation algorithm always chooses
the node with the maximum residual coverage, and (ii) ri,k (k ∈
[j, |R′

i(vi)|]) has not been covered yet and can be covered by node
vi.

On the other hand, we have

1√
1
+

1√
2
+ ...+

1
√

|R′
i(vi)|

≤ 2
√

|R′
i(vi)|. (7)

Based on the aforementioned observations, we have

n
∑

i=1

√

|Ri(ui)| =
∑

r∈RG

c(r)

=

n
∑

i=1

|R′

i
(vi)|

∑

j=1

c(ri,j)

≤
n
∑

i=1

|R′

i
(vi)|

∑

j=1

1
√

|R′
i(vi)| − j + 1

≤ 2 ·
n
∑

i=1

√

|R′
i(vi)|, (By Inequality 7)

which completes the proof. �

Proof of Theorem 1. Let |Lapx| be the index size with the node
ordering given by the approximation algorithm, and |Lopt| be the
index size with the optimal node ordering, then we have

|Lapx| =
n
∑

i=1

|I(ui)|

≤ √
α ·

n
∑

i=1

√

|Ri(ui)| (By Lemma 9)

≤ 2
√
α ·

n
∑

i=1

√

|R′
i(vi)| (By Lemma 11)

≤ 2
√
α ·

n
∑

i=1

|I(vi)| (By Lemma 10)

= 2
√
α · |Lopt|,

this derives the approximation ratio.
To obtain the node order with approximation guarantee, the main

challenges are to (i) compute the number of the non-dominated
paths covered by each node, and (ii) update the number when an-
other node is ordered. We address these challenges by maintaining
three hash tables, T1, T2, and T3. In particular, for each item in
T1 (resp. T2), its key is a triple 〈u, v, td〉 (resp. 〈u, v, ta〉), and its
value is the arrival time ta (resp. departure time td) of the canon-
ical path that is from u to v with departure time td (resp. arrival
time ta). As such, ta (resp. td) of a non-dominated path can be
retrieved from T1 (resp. T2) in constant time given 〈u, v, td〉 (resp.
〈u, v, ta〉). Besides, for each item in T3, its key is a quadruple
〈u, v, td, ta〉, and its value is True if the non-dominated path from
u to v with departure time td and arrival time ta has been cov-
ered, otherwise False. Furthermore, a counter r(v) for a node v
is maintained to record the number of non-dominated paths cov-
ered by v but not covered by any node u with o(u) < o(v). Since
the number of non-dominated paths starting from a node v is at
most O(n · dout(v)), the space complexity of three hash tables is
O(n ·m).

Specifically, we first compute r(v) for each node v and construct
the hash tables using the temporal Dijkstra’s algorithm, which can
be finished in O(n2 · m) time. Then, in each iteration, we choose
the node v′ with the highest r(v′) score, after which we identify
the non-dominated paths covered by node v′, and update r(v) of
the other nodes v accordingly. Consider the total cost of retrieving
the non-dominated paths in all n iterations. To retrieve the non-
dominated paths covered by node v′, we need to examine all pos-
sible non-dominated paths that start from a node u, end at a node
w, and pass through v′. To compute such paths, we first examine
all incoming edges e of v′, and identify the arrival timestamp ta of
e; after that, we search T2 for an entry with a key 〈u, v′, ta〉, and
obtain the corresponding departure time t1. Then, we inspect all
outgoing edges e′ of v′, and obtain the departure timestamp td of
e′; after that, we search T1 for an entry with the key 〈v′, w, td〉,
and obtain the corresponding arrival time t2. Finally, we search T3

for an entry with a key 〈u, w, t1, t2〉, to see if the path is a non-
dominated path that has not been covered. Note that the checking
for all paths from u to w can be done in din(v

′)+dout(v
′) time. As

there are O(n2) combinations of u and w, the cost to compute the
non-dominated paths covered by v′ is O(n2 ·(din(v′)+dout(v

′))).
Summing up the costs in n iterations, the total cost of computing
all non-dominated paths is O(n2 ·m).

Next, consider the cost of updating r(v) of an unordered node v,
after we obtain all non-dominated paths covered by v′. Let P be a
non-dominated path covered by v′. If v also covers P , we decrease
r(v) by one. Let u (resp. w) be the starting (resp. ending) node of
P , and td (resp. ta) be the departure (resp. arrival) time of P . To
check whether P is covered by v, we first search T1 for an entry
with a key 〈u, v, td〉, and obtain the corresponding arrival time t1;
then, we search T2 for an entry with a key 〈v, w, ta〉, and obtain the
corresponding departure time t2. If t1 is no larger than t2, then P
is covered by v, and we decrease r(v) by one. Such a check takes
constant time. As we needs to perform such check for each node on
each of the O(n · m) non-dominated path covered by v′, the total
cost of the checks is O(n2 · m). In summary, the approximation
algorithm runs in O(n2 ·m) time and O(n ·m) space. �

Proof of Corollary 1. Consider a label l = 〈·, ·, ·, ·, p〉. If p =
null, l is pertinent to an edge in G. Otherwise, by Definition 7, l is
pertinent to a canonical path consisting of at least two edges. If p 6=
null, we recursively find the edges that form the sub-paths P1 and



P2 pivoted by p, and then concatenate the sub-paths. By Lemma 4,
P1 and P2 are canonical paths, which proves the correctness of
Algorithm 2. �

Proof of Observations 1 and 2. To prove why Observation 1
holds, assume to the contrary that P is dominated by another path
P ′ from u to v. In that case, P ′ either (i) departs from u later than
t⊣, or (ii) departs from u at t⊣ but arrives at v earlier than P . This,
however, contradicts the facts that t⊣ is the largest timestamp in
Td, and P is an EAP. The rationale of Observation 2 is that, if P
is dominated by another path P ∗, then P ∗ must depart from u af-
ter t∗⊣ (i.e., P ∗ has departure time t⊣); otherwise, the existence of
P ∗ violates the assumption that P is an EAP. In other words, if P
is not dominated by any EAP from u at t⊣, then P would not be
dominated by any other paths, either.

B. QUERY WITH COMPRESSED LABELS
In Section 7, we have explained how we can reconstruct origi-

nal labels from the ones generated by our compression methods. In
what follows, we clarify how we can process queries on the com-
pressed index. In particular, we first explain the candidate genera-
tion and refinement process on compressed labels, and then intro-
duce the algorithm for path reconstruction. For ease of exposition,
we focus on SDP queries, but our solution can be easily extended
to EAP and LDP queries.

Candidate Generation and Refinement. Given a query asking
for the SDP from u to v with a starting timestamp t and an end-
ing timestamp t′, we generate the set Suv of path sketches by lin-
early scanning Lout(u) and Lin(v) using Algorithm 1, with one
modification: whenever we encounter a compressed label l, we
decompress it based on the compression technique used. In par-
ticular, if l is produced by the route-based compression, then l
should be in the form of 〈·, null, null, r, ·〉, i.e., the route infor-
mation r of l is available. Then, as explained in Section 7.1, the
original labels associated with l can be easily retrieved from the
timetable associated with r. Next, consider that l is generated by
the pivot-based compression. In that case, l should be in the form
of 〈·, null, null, null, p〉. Let l1, l2, . . . , lj (j ≥ 1) be the orig-
inal labels associated with l. Without loss of generality, assume
that o(u) < o(p) < o(v). Then, as explained in Section 7.2, the
left (resp. right) children of l1, l2, . . . , lj are stored in Lin(p) (resp.
Lin(v)). As such, we can recover l1, l2, . . . , lj by inspecting the
labels in Lin(p) and Lin(v) based on the pivot information of l.
After that, we can replace l with l1, l2, · · · , lj in the linear scan.

After the linear scan, the set Suv of all the path sketches with
respect to the SDP query can be obtained. Then, we identify the
sketch sans in Suv that is pertinent to the SDP query result, using
the same approach as described in Section 4.1. Note that all labels
in sans are not compressed, due to the decompression operations
performed during the linear scan.

Path reconstruction. Once sans is identified, we proceed to re-
construct the path corresponding to sans. Algorithm 4 presents the
pseudo-code of CPathUnfold, namely, the method for path recon-
struction with the compressed index. CPathUnfold takes as input
a label l (in sans), which, as mentioned, is guaranteed to be un-
compressed due to the way sans is generated. Without loss of gen-
erality, assume that the left child l′ of l is compressed. Then, the
departure timestamp of l′ is the same as that of l, and the starting
node and ending node of l′ can be learnt from l. Therefore, to de-
compress l′, it suffices to identify the arrival timestamp and vehicle
of l′. If l′ is produced from the route-based compression, then we
can pinpoint the arrival timestamp and vehicle of l′ by inspecting

Algorithm 4: CPathUnfold

input : a label l = 〈·, ·, ·, ·, p〉 in TTL

output: the canonical path corresponding to l

1 if p = null then

2 return a path that only contains the edge in G corresponding to l;

3 else
4 l1 = the left child of l;
5 l2 = the right child of l;
6 let l′1 be the original label of l1 to be computed;
7 if l1 is a label with route-based compression then
8 obtain l′1 by inspecting the timetable of the route associated

with l1;

9 else if l1 is a label with pivot-based compression then
10 obtain l′1 by inspecting the left and right children of l1;

11 P1 = CPathUnfold( l′1 );
12 repeat Lines 7-14 by replacing l1 with l2, l′1 with l′2, and P1 with

P2;
13 set P = a concatenation of P1 and P2, with P1 proceeding P2;
14 return P ;

the timetable of the route associated with l′. Meanwhile, if l′ is
generated by the pivot-based compression, then l′ can be recon-
structed by inspecting the children of l′ and the pivot information
in l′ (as explained in Section 7.2). The case that the right child of l
is compressed can be addressed in a similar manner.

C. ADDITIONAL EXAMPLE

EXAMPLE 6. Consider the timetable graph G′ in Figure 2a
with a node order o(v2) = 1, o(v1) = 2, and o(v3) = 3. The index
construction algorithm first selects v2, and performs a temporal Di-
jkstra traversal from v2 with the largest departure timestamp, i.e.,
4. Then it obtains one EAP, based on which IndexBuild inserts a
label 〈v2, 4, 5, b3, null〉 into Lin(v3). Next, it performs a tempo-
ral Dijkstra traversal from v2 at timestamp 3 and timestamp 2 in
sequence. These two traversals lead to two additional labels. After
that, a backward Dijkstra is performed from v2 with the smallest
arrival timestamp, i.e., 2. Then it obtains one LDP, and IndexBuild

inserts a label 〈v2, 1, 2, b1, null〉 into Lout(v1) corresponding to
this LDP. Afterwards, two more backward Dijkstra traversals are
performed from v2 at timestamp 3 and 4 in a row, resulting in two
more labels. This finishes the traversal from v2, and v2 is removed
from the graph. Then v1 and v3 have no incoming and outgoing
edges, and both incur no label cost during the traversal. This fin-
ishes the index construction, ending up with 6 labels as shown in
Table 5. �

D. ADDITIONAL EXPERIMENTS

D.1 EAP and LDP queries
Figure 6 and Figure 7 report the average query time for EAP

and LDP queries, respectively. Observe that the performance of
each method for EAP and LDP queries on each dataset is generally
similar. However, CSA and CHT incur several times less query time
for EAP and LDP queries than for SDP queries. This is because,
to answer EAP (resp. LDP) queries, they only maintain the earliest
arrival time to (resp. latest departure time from) each node that is
traversed. However, to answer an SDP query, they both need to
maintain a list to record the departure time and arrival time of each
non-dominated path that ends at a certain traversed node, which can
be excessively large. Overall, TTL and C-TTL still outperform CSA

and CHT by a large margin.
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Figure 6: Average query time for EAP queries.
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Figure 7: Average query time for LDP queries.

Brute-force DijkstraA-Order H-Order Rand-Order

10
0

10
1

10
2

10
3

10
4

10
5

Austin Madrid Budapest Salt Lake City Rome Denver Houston Toronto Berlin Los Angeles Sweden

total preprocessing time (s)

Figure 8: Total preprocessing time.
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Figure 9: Index size.

v Lin(v) Lout(v)

v2 ∅ ∅

v1 ∅
〈v2, 1, 2, b1, null〉
〈v2, 2, 3, b2, null〉
〈v2, 3, 4, b3, null〉

v3

〈v2, 2, 3, b1, null〉
〈v2, 3, 4, b2, null〉
〈v2, 4, 5, b3, null〉

∅

Table 5: The label sets of v1, v2, and v3 in a TTL index of G′

in Figure 2a, with a node order o(v2) = 1, o(v1) = 2, and

o(v3) = 3.

D.2 Index Construction and Node Orders
In this set of experiments, we evaluate the efficiency of our index

construction algorithm and the effectiveness of our ordering algo-
rithms. In particular, we first compare our index construction algo-
rithm with a baseline approach that (i) runs the temporal Dijkstra’s
algorithm O(n) times to compute all temporal shortest paths in G,
and then (ii) examines the paths obtained to identify the canoni-
cal paths. We denote the baseline approach as brute-force Dijkstra.

Figure 8 reports the index construction time of Algorithm 3 (re-
ferred to as H-Order) and brute-force Dijkstra, both of which adopt
H-Order as the ordering methods. Observe that Algorithm 3 is at
least two orders of magnitude faster than brute-force Dijkstra, even
though both algorithms have the same worst-case time complexity.
The main reason is that Algorithm 3 performs a more advanced
version of the Dijkstra’s search from vi, with various heuristics
adopted to prune the search space (see Section 5). For instance,
whenever it encounters a node vj with o(vj) < o(vi) during the
search, it would omit all edges pertinent to vj , since any path that
contains those edges would violate the Rank Constraint in Defini-
tion 5 (and hence, cannot be canonical). This demonstrates that our
index construction algorithm is highly superior to the brute-force

Dijkstra approach in terms of practical efficiency.
Next, we compare our heuristic ordering algorithm (referred to

as H-Order) and our approximate ordering algorithm (referred to
as A-Order), with a baseline approach that orders nodes randomly
(denoted by Rand-Order). Figure 9 reports the index size of TTL

(in log-scale) for each of the three node ordering methods. The re-
sults of A-Order are omitted on some datasets due to its prohibitive
memory consumption (> 64GB). Observe that, both A-Order and



H-Order outperform the baseline approach by large margins, which
demonstrates the importance of node ordering in index construction
and the superiority of our approaches. In particular, the index size
of H-Order is more than one order of magnitude smaller than that of
Rand-Order on Berlin dataset. Besides, the index size of H-Order

is comparable to that of A-Order, which shows the effectiveness of
our heuristic ordering approach.

Figure 8 presents the total processing time of TTL for each or-
dering methods. The total processing time of A-Order is at least 2
orders of magnitude larger than that of H-Order, since A-Order in-
curs significant overheads in computing all non-dominated paths
and updating the marginal coverage of each node. In addition,
Rand-Order has a total processing time several times larger than
that of H-Order , since the former generates an enormous number
of labels (see Figure 9). In summary, our heuristic ordering method
yields similar index size as the approximation algorithm, but incurs
much less preprocessing cost.


