
Managing and Mining
Billion Node Graphs

Haixun Wang
Microsoft Research Asia

Outline

• Overview

• Storage

• Online query processing

• Offline graph analytics

• Advanced applications

Is it hard to manage graphs?

• Good systems for processing graphs:

– PBGL, Neo4j

• Good systems for processing large data:

– Map/Reduce, Hadoop

• Good systems for processing large graph data:

– Specialized systems for pagerank, etc.

This is hard.

Graph
System

General
System

Big Data
System

Existing Systems

Native
Graph*

Online
Query

Index Transaction
Support

Parallel
Graph
Processing

Topology
in memory

Distributed

Neo4j YES YES Lucene YES NO NO NO

HyperGraphDB NO YES Built-in YES NO NO NO

InfiniteGraph NO YES
Built-in +
Lucene

NO NO NO YES

Pregel NO NO NO NO YES NO YES

….

An Example:
Online Query Processing in Graphs

People Search Demo

http://graph001:8000/

Very efficient graph exploration

• Visiting 2.2 million nodes on 8 machines in 100ms

• Graph models
– Relational
– Matrix
– Native (Trinity)

• Relation/Matrix requires data join operations for
graph exploration
– Costly and producing large intermediary results

Joins vs. Graph Exploration for
subgraph matching

• Subgraph matching
– Index sub-structures
– Decompose a query into a set of sub-structures
– Query each sub-structure
– Join intermediary results

• Index size and construction time
– Super-linear for any non-trivial sub-structure
– Infeasible for billion node graphs

• Graph exploration
– No structural index is needed
– Very few join operations
– Small intermediary results

0

2

4

6

8

10

12

14

Jun. 2011 Dec. 2011 Jun. 2012
(expected)

Microsoft’s Knowledge System

One of the world’s largest repository of knowledge.

0.8 Billion

4 Billion

12 Billion

SPARQL Query On Satori

5x

3x

http://graph001:7880/

Compare with RDF-3x

Query ID 1 2 3 4 5 6 7

Our System 15640 9849 11184 5 4 9 37666

RDF-3x 39m2s 14194 30585 14 11 65 69560

• RDF3x is a state-of-the-art single node RDF engine
• Dataset Statistics

• LUBM-10240, a public benchmark for RDF
• Triple number: 1.36 billion
• Subject/Object number: 0.3 billion

• Queries are chosen from the benchmark queries published with LUBM

Subgraph matching on a billion node graph

• No feasible solution for billion node graphs

• Super-linear index is not feasible

• Desiderata: requiring no index

Subgraph Match Query

One size fits all?

Scale to complexity

Sc
al

e
to

 s
iz

e

Disk-based Key-value Store

Column Store

Document Store

Graph DB

Typical RDBMS

SQL Comfort Zone

In-memory Key-value Store

Memory-based Systems

Trinity

• A distributed, in-memory
key/value store

• A graph database for online
query processing

• A parallel platform for offline
graph analytics

Graphs

US Road Map

 24
million

 504
million

 800
million

 50
 billion

 1.4
 billion

 5
8

m

illio
n

 3
1

b

illio
n

 1

0
4

b

illio
n

 1

trillio
n

 5

.6

b
illio

n

Linked Data

Facebook

the Web

of Nodes

of Edges

Satori

How many machines?

US Road Map: 1 Trinity machine

 24
million

 504
million

 800
million

 50
 billion

 1.4
 billion

 5
8

m

illio
n

 3
1

b

illio
n

 1

0
4

b

illio
n

 1

trillio
n

 5

.6

b
illio

n

Linked Data: 16 Trinity machines

Facebook: 25 Trinity machines

the Web: 275 Trinity machines

of Nodes

of Edges

Satori: 4-10 Trinity machines

Performance Highlight

• Graph DB (online query processing):
– visiting 2.2 million users (3 hop neighborhood) on Facebook: <= 100ms

– foundation for graph-based service, e.g., entity search

• Computing platform (offline graph analytics):
– one iteration on a 1 billion node graph: <= 60sec

– foundation for analytics, e.g., social analytics

Typical Job State-of-the-Art Trinity

N hop People Search
2 hop search 100 ms; 3 hop is
not doable online

2 hop search in 10ms
3 hop search in 100ms

Subgraph Matching
For billion node graphs,
indexing takes months to
build

No structural index required;
response time ≤ 500 ms

(Approximate) Shortest
Distances/Paths

No efficient solution for large
graphs

10 ms for discovering shortest
paths within 6-hops

PageRank of Web Graph
Cosmos/MapReduce: 2 days
using thousands of machines

1 iteration on 1B graph ≤ 60sec
using 10 machines

Billion Node Graph Partitioning <22M nodes Billions of nodes

Graph Generation For small graph only
Generates 1 billion node graph
of power law distribution in 15
minutes

Performance Highlight

Applications

Algorithms

Programming models

Computation
platform

Query
processing

engine

Storage infrastructures

Trinity

Storage and Communication

Modeling a graph

• Basic data structure: Cell

• A graph node is a Cell

• A graph edge may or may not be a Cell

– Edge has no info

– Edge has very simple info (e.g., label, weight)

– Edge has rich info: an independent cell

Cell Schema Example

Subgraph Matching Cell

public class myCell: ISubgraphMatchCell, IVisualCellParser
{
 public byte[] label;
 public List<long> inlinks;
 public List<long> outlinks;
 internal long cell_id;

 public unsafe byte[] ToBinary();
 public unsafe ISubgraphMatchCell FromBinary(byte[] bytes);

 public void VisualParseCell(long nodeID,
 byte[] cell_bytes,
 VisualizerCallbackToolkit toolkit);
}

Cell Transformation and Cell Parsing

Cell Transformation

SubgraphMatch Cell

DFS Cell

Partitioning

• Default: random partitioning by hashing

• Customizing hashing function

• Re-partitioning a graph (as an analytical job)

Cell Addressing

Cell Addressing

Big cell

A warning to graph system builders: Lady Gaga has 40,000,000 fans.

Her cell takes 320 Mb.

Cell as memory objects vs. blobs

• A memory object

– Runtime object on heap

• A Blob

– A binary stream

– Benefit:

• 50,000,000 cells, each of size 35 bytes

• CLR heap objects: 3,934 MB

• Flat memory streams: 1,668 MB

– Challenge:

• Parsing

vs.

Data Model

‘In-place’ Blob Update

• The operations to a cell can be translated to
memory manipulations to blob using a cell
parser, e.g.

Cell Placements in Memory

• Cells are of different size

• Two types of applications:

– Mostly read-only, few cell-expansion operations
(e.g., a knowledge taxonomy, a semantic network)

– Many cell-expansion operations
(e.g., synthetic graph generation)

Cell Placements in Memory

• Sequential memory storage

– Cells are continuously stored in memory

– Compact.

• Sparse hash storage

– A cell may be stored as non-continuous blocks

– Dynamic. (streaming updates)

Concurrent Sequential Memory Allocation

Atomically Incrementing

Memory Pointer
(A CAS-compare and swap-instruction)

Concurrent write from
allocated buffer header

Concurrent Memory
Allocation Request

Concurrent operations on a cell
(using a Spin Cell Lock)

 while(CAS(ref lockArray[index], 1, 0) != 0);

if(CAS(ref spin_lock, 1, 0) != 0)

{

 While(true)

 {

 if(volatile_read(ref spin_lock) == 0 && CAS(ref lockArray[index], 1, 0) == 0)

 return;

 }

}

 Optimized Version

Hash Storage

• The memory address space is a hash space.

• Use a hash function to allocate memory.

• Support lock-free streaming cell updates.

Hash Storage

head id links -1

head id links … -1

head id1 links … jmp head id links -1

links … … … jmp head id links …

… -1

Links… … -1

Chaining

Conflict Resolution in Hash Storage

• Conflicts

– Two node IDs are hashed to the same slot

– One node ID is hashed to the middle of the other

• Rehashing

Concurrency Control

• To lock: change HEAD flag to OCCUPY flag

• To unlock: change OCCUPY back to HEAD

• The Flag changing must be atomic (e.g. Interlocked
CAS)

HEAD id links … -1

OCCUPY id links … -1

Fast Billion Node Graph Generator

Existing graph generators

• Slow

• For small graphs only

Trinity graph generator

• generate a 1 billion node
graph of power law
distribution in 15 minutes

Challenge: i) massive random access; ii) cell size
change

Trinity Graph Generator

edge #:
10 B

node #:
1 B

graph type parallel execution
in the entire cluster

Offline Graph Analytics

Vertex-Based Graph Computation

public class Cell : BaseCell

{

 public int OutDegree;

 public Message message;

 public override void Initialize()

 {

 OutDegree = outlinks.Length;

 message.PageRankScore = 1.0f / GlobalNodeNumber;

 }

 public override void Computation()

 {

 float PageRankScore = 0;

 if (CurrentIterationRoundNumber > 100)

 VoteToStop();

 foreach (long msg_id in inlinks)

 {

 Message msg =
(Message)CacheManager.GetMessage(msg_id);

 PageRankScore += msg.PageRankScore;

 }

 message.PageRankScore = PageRankScore / OutDegree;

 }

}

public struct Message

{

 public float PageRankScore;

}

Page Rank Script

Local Variables

Fetch Message

Generate New Message

Vertex-based Computation

Vertex-based Computation

• Take each graph vertex as a processor

• Synchronous communication model (BSP)

• Used in Pregel and its open source variants,
such as Giraph and GoldenOrb

Restricted vertex-based computation

• In each super step, the sender and receiver set
are known beforehand

• Messages can be categorized by their hotness

• Messages can be pre-fetched and cached

A bi-partite view

Local Vertices Remote Vertices

A bi-partite view

Local Vertices Remote Vertices

How many machines do we need?

• Facebook
–800 million users, 130 friends per user

–30 Trinity machines

• Web
– 25 billion pages, 40 links per page

–150 Trinity machines

30 Trinity machines

Distribution-Aware Computing

• Support message sending by two APIs:

• Local message sending

– sending messages to neighboring nodes on the
same machine

• Message sending

– sending messages to neighboring nodes

Distribution-Aware Computing

• Nodes are distributed on N machines (randomly)
– Each machine has 1/N nodes, and d/N edges

• Can we perform computation on 1 machine and

estimate the results for the entire graph?
– Graph density estimation

• Can we perform computation on each machine
locally, and aggregate their results as the final
step?
– Finding connected components

Distributed betweenness
approximation

• Betweeness is the most effective
guideline to select landmarks

• Exact betweenness costs O(nm)
time, unacceptable on large
graphs

• Approximate fast betweenness is
expected
• Count shortest paths rooted at

sampled vertices

• Count shortest path with limited
depth

• On distributed platform
– We count the shortest paths

within each machines

How many machines do we need?

• Facebook
–800 million users, 130 friends per user

–30 Trinity machines

• Web
– 25 billion pages, 40 links per page

–150 Trinity machines

1 Trinity machine

1 Trinity machine

Billion-node graph partitioning

Why partition?

• Divide a graph into k
(almost) equal-size
partitions, such that the
number of edges between
partitions is minimized.

• A better partition helps
– Load balance

– Reduce communication

• Example: BFS on the graph
– Best partitioning needs 3

communications

– Worst partitioning needs 17

a b

dc

e f

hg

i j

lk

State-of-art method: Metis

• A multi-level framework

• Three phrases

– Coarsening by maximal
match until the graph is
small enough

– Partition the coarsest
graph by KL algorithm
[kl1972]

– Uncoarsening

Ref: [Metis 1995]

Weakness of metis

• Not semantic aware: Coarsening is
ineffective on real graphs
– Principle of coarsening

• An optimal partitioning on a coarser graph
implies a good partitioning in the finer graph

– Coarsening by maximal match can
guarantee this only when node degree is
bounded, for example 2D, 3D meshes

– Real networks have skewed degree
distribution

c, f

e, g h, i

b, j

k, l

a, d

• Inefficiency
– To support uncoarsening, many mappings and intermediate graphs

need to be stored, leading to bad performance
– For example, a 4M graphs consumes 10G memory

• Not general enough
– Exclusive for partitioning

Suggested solution : Multi-level Label
Propagation

• Coarsening by label
propagation
– Lightweight

• Can be easily implemented by
message passing

– Semantic aware
• Can discover the inherent

community structure of real
graph

• Label propagation
– In each iteration, a vertex takes

the label that is prevalent in its
neighborhood as its own label.

C1

C2 C3

Handling Imbalance

• Imbalance:
– Too many small clusters

– Some extremely large clusters (monster clusters)

• Our approach
– First, we set size constraint on each label, to limit monster

clusters

– Second, we use the following model to merge small cluster
• multiprocessor scheduling (MS)

• weighted graph partitioning (WGP)

Results - quality and performance

• Quality is comparable
to Metis

• Performance is
significantly better
than Metis

Results- Scalability

• We use 8 machines,
each of which has 48G
memory.

• Our solution takes 4
hours on a graph with
512M node and 6.5G
edges

Community search on large
graphs

Distance Oracle

Why approximate distance oracle?

• What is your Erdos number?
– The shortest distance from you to mathematician Paul Erdos in the

scientific collaboration network
– Shortest distance can also be used to compute centrality, betweenness

• Exact solutions
– Online computation

• Dijkstra-like algorithms, BFS
• At least linear complexity, computational prohibitive on large graphs

– Pre-computing all pairs of shortest path
• Of quadratic space complexity

• Approximate distance oracle
– Report approximate distance between any two vertices in a graph in

constant time by pre-computation
– When graph is huge, approximation is acceptable, and pre-

computation is necessary

Current Solutions

• Two possible solutions

– Coordinate based

– Sketch based

• Problem solved

– Approximate distance in (almost) constant time by
pre-computation.

– Currently for undirected, un-weighted graph only

– With potential consideration for dynamic graphs

Distributed betweenness
approximation

• Betweeness is the most effective
guideline to select landmarks

• Exact betweenness costs O(nm)
time, unacceptable on large
graphs

• Approximate fast betweenness is
expected
• Count shortest paths rooted at

sampled vertices

• Count shortest path with limited
depth

• On distributed platform
– We count the shortest paths

within each machines

Information about Trinity

• http://research.microsoft.com/trinity

http://research.microsoft.com/trinity

Thanks!

Buffered Asynchronous Message Sender

• Lock free

