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Is it hard to manage graphs?  

• Good systems for processing graphs: 

– PBGL, Neo4j 

 

• Good systems for processing large data: 

– Map/Reduce, Hadoop 

 

• Good systems for processing large graph data: 

– Specialized systems for pagerank, etc. 

 

 



This is hard. 
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Existing Systems 

Native 
Graph* 

Online 
Query 

Index Transaction 
Support 

Parallel 
Graph 
Processing 

Topology  
in memory 

Distributed 

Neo4j YES YES Lucene YES NO NO NO 

HyperGraphDB NO YES Built-in YES NO NO NO 

InfiniteGraph NO YES 
Built-in + 
Lucene 

NO NO NO YES 

Pregel NO NO NO NO YES NO YES 

…. 



An Example: 
Online Query Processing in Graphs 



People Search Demo 

http://graph001:8000/


Very efficient graph exploration 

• Visiting 2.2 million nodes on 8 machines in 100ms  
 

• Graph models 
– Relational 
– Matrix 
– Native (Trinity) 

 

• Relation/Matrix requires data join operations for 
graph exploration 
– Costly and producing large intermediary results 



Joins vs. Graph Exploration for 
subgraph matching 

• Subgraph matching 
– Index sub-structures 
– Decompose a query into a set of sub-structures 
– Query each sub-structure 
– Join intermediary results 

 

• Index size and construction time 
– Super-linear for any non-trivial sub-structure 
– Infeasible for billion node graphs 

 

• Graph exploration 
– No structural index is needed 
– Very few join operations 
– Small intermediary results 
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Microsoft’s Knowledge System 

One of the world’s largest repository of knowledge. 

0.8 Billion 

4 Billion 

12 Billion 

SPARQL Query On Satori  

5x 

3x 

http://graph001:7880/


Compare with RDF-3x 

Query ID 1 2 3 4 5 6 7 

Our System 15640 9849 11184 5 4 9 37666 

RDF-3x 39m2s 14194 30585 14 11 65 69560 

• RDF3x is a state-of-the-art single node RDF engine 
• Dataset Statistics 

• LUBM-10240, a public benchmark for RDF 
• Triple number: 1.36 billion 
• Subject/Object number: 0.3 billion 

• Queries are chosen from the benchmark queries published with LUBM 
 



Subgraph matching on a billion node graph 

• No feasible solution for billion node graphs 

 

• Super-linear index is not feasible 

 

• Desiderata: requiring no index 

 

 

 



Subgraph Match Query 



One size fits all? 

Scale to complexity 
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Disk-based Key-value Store 

Column Store 

Document  Store 

Graph  DB 

Typical RDBMS 

SQL Comfort Zone 

In-memory Key-value Store 



Memory-based Systems 



Trinity 

• A distributed, in-memory 
key/value store 

 

• A graph database for online 
query processing 

 

• A parallel platform for offline 
graph analytics 

 



Graphs 

US Road Map 
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Linked Data 

Facebook 

the Web 

# of Nodes 

# of Edges 

Satori 



How many machines? 

US Road Map: 1 Trinity machine 

   24 
million 

   504 
million 

   800 
million 

     50 
  billion 

    1.4 
 billion 

    5
8

 
m

illio
n

 

    3
1

 
b

illio
n

 
   1

0
4

 
b

illio
n

 

    1
 

trillio
n

 
   5

.6
 

b
illio

n
 

Linked Data: 16 Trinity machines 

Facebook: 25 Trinity machines 

the Web: 275 Trinity machines 

# of Nodes 

# of Edges 

Satori: 4-10 Trinity machines 



Performance Highlight 

 

• Graph DB (online query processing):  
– visiting 2.2 million users (3 hop neighborhood) on Facebook:  <= 100ms 

– foundation for graph-based service, e.g., entity search 

 

• Computing platform (offline graph analytics):  
– one iteration on a 1 billion node graph: <= 60sec 

– foundation for analytics, e.g., social analytics 

 

 



Typical Job State-of-the-Art Trinity 

N hop People Search 
2 hop search 100 ms; 3 hop is 
not doable online 

2 hop search in 10ms 
3 hop search in 100ms 

Subgraph Matching 
For billion node graphs, 
indexing takes months to 
build 

No structural index required; 
response time ≤ 500 ms 

(Approximate) Shortest 
Distances/Paths 

No efficient solution for large 
graphs 

10 ms for discovering shortest 
paths within 6-hops 

PageRank of Web Graph 
Cosmos/MapReduce: 2 days 
using thousands of machines 

1 iteration on 1B graph ≤ 60sec 
using 10 machines 

Billion Node Graph Partitioning <22M nodes Billions of nodes 

Graph Generation For small graph only 
Generates 1 billion node graph 
of power law distribution in 15 
minutes 

Performance Highlight 



Applications 

Algorithms 

Programming models 

Computation 
platform 

Query 
processing 

engine 

Storage infrastructures  

Trinity 



Storage and Communication 





Modeling a graph 

• Basic data structure: Cell 

 

• A graph node is a Cell 

 

• A graph edge may or may not be a Cell 

– Edge has no info 

– Edge has very simple info (e.g., label, weight) 

– Edge has rich info: an independent cell 

 

 

 

 

 

 



Cell Schema Example 

Subgraph Matching Cell 

public class myCell: ISubgraphMatchCell, IVisualCellParser 
{ 
    public byte[] label;  
    public List<long> inlinks; 
    public List<long> outlinks; 
    internal long cell_id; 
 
    public unsafe byte[] ToBinary(); 
    public unsafe ISubgraphMatchCell FromBinary(byte[] bytes); 
 
    public void VisualParseCell(long nodeID,  
                                     byte[] cell_bytes,  
                                     VisualizerCallbackToolkit toolkit); 
} 



Cell Transformation and Cell Parsing 



Cell Transformation 

 

SubgraphMatch Cell  

DFS Cell  



Partitioning 

 

• Default: random partitioning by hashing 

 

• Customizing hashing function 

 

• Re-partitioning a graph (as an analytical job) 



Cell Addressing 



Cell Addressing 



Big cell 

A warning to graph system builders:  Lady Gaga has 40,000,000 fans.  
 
Her cell takes  320 Mb. 



Cell as memory objects vs. blobs 

• A memory object 

– Runtime object on heap 

 

• A Blob 

– A binary stream 

– Benefit:  

• 50,000,000 cells, each of size 35 bytes 

• CLR heap objects: 3,934 MB 

• Flat memory streams: 1,668 MB 

– Challenge:  

• Parsing  

 

 

vs. 



Data Model 



‘In-place’ Blob Update 

• The operations to a cell can be translated to 
memory manipulations to blob using a cell 
parser, e.g. 

 

  



Cell Placements in Memory 

• Cells are of different size 

 

• Two types of applications: 
 

– Mostly read-only, few cell-expansion operations  
(e.g., a knowledge taxonomy, a semantic network) 

 

– Many cell-expansion operations 
(e.g., synthetic graph generation) 



Cell Placements in Memory 

• Sequential memory storage 

– Cells are continuously stored in memory 

– Compact.  

 

• Sparse hash storage 

– A cell may be stored as non-continuous blocks 

– Dynamic. (streaming updates) 



Concurrent Sequential Memory Allocation 

Atomically Incrementing 

Memory Pointer 
(A CAS-compare and swap-instruction)  

Concurrent write from  
allocated buffer header 

Concurrent Memory 
Allocation Request 



Concurrent operations on a cell  
(using a Spin Cell Lock) 

 while(CAS(ref lockArray[index], 1, 0) != 0); 

if(CAS(ref spin_lock, 1, 0) != 0) 

{ 

      While(true) 

      { 

            if(volatile_read(ref spin_lock) == 0 && CAS(ref lockArray[index], 1, 0) == 0) 

 return; 

      } 

} 

 Optimized Version 



Hash Storage 

 

• The memory address space is a hash space.  

 

• Use a hash function to allocate memory. 

 

• Support lock-free streaming cell updates. 



Hash Storage 

head id links -1 

head id links … -1 

head id1 links … jmp head id links -1 

links … … … jmp head id links … 

… -1 

Links… … -1 

Chaining 



Conflict Resolution in Hash Storage 

• Conflicts 

– Two node IDs are hashed to the same slot 

– One node ID is hashed to the middle of the other 

 

• Rehashing  
 

 



Concurrency Control 

• To lock: change HEAD flag to OCCUPY flag 

 

• To unlock: change OCCUPY back to HEAD 

 

• The Flag changing must be atomic (e.g. Interlocked 
CAS) 

 
HEAD id links … -1 

OCCUPY id links … -1 



Fast Billion Node Graph Generator 

Existing graph generators 

• Slow 

• For small graphs only 

 

Trinity graph generator 

• generate a 1 billion node 
graph of power law 
distribution in 15 minutes 

Challenge: i) massive random access; ii) cell size 
change 



Trinity Graph Generator 

edge #: 
10 B 

node #: 
1 B 

graph type parallel execution  
in the entire cluster  



Offline Graph Analytics 



Vertex-Based Graph Computation 



public class Cell : BaseCell 

{ 

    public int OutDegree; 

    public Message message; 

 

    public override void Initialize() 

    { 

        OutDegree = outlinks.Length; 

        message.PageRankScore = 1.0f / GlobalNodeNumber; 

    } 

    public override void Computation() 

    { 

        float PageRankScore = 0; 

        if (CurrentIterationRoundNumber > 100) 

            VoteToStop(); 

        foreach (long msg_id in inlinks) 

        { 

            Message msg = 
(Message)CacheManager.GetMessage(msg_id); 

            PageRankScore += msg.PageRankScore; 

        } 

        message.PageRankScore = PageRankScore / OutDegree; 

    } 

} 

 

public struct Message 

{ 

    public float PageRankScore; 

} 

 

 

Page Rank Script 

Local Variables 

Fetch Message 

Generate New Message 

Vertex-based Computation 



Vertex-based Computation 

• Take each graph vertex as a processor 

 

• Synchronous communication model (BSP) 

 

• Used in Pregel and its open source variants, 
such as Giraph and GoldenOrb 



Restricted vertex-based computation 

• In each super step, the sender and receiver set  
are known beforehand 

 

• Messages can be categorized by their hotness 

 

• Messages can be pre-fetched and cached 

 

 



A bi-partite view 

Local Vertices Remote Vertices 



A bi-partite view 

Local Vertices Remote Vertices 



How many machines do we need? 

 

• Facebook 
–800 million users, 130 friends per user 

–30 Trinity machines 

 

• Web  
– 25 billion pages, 40 links per page 

–150 Trinity machines 

 
 

 

30 Trinity machines 



Distribution-Aware Computing 

• Support message sending by two APIs: 

 

• Local message sending   

– sending messages to neighboring nodes on the 
same machine 

 

• Message sending 

– sending messages to neighboring nodes 



Distribution-Aware Computing 

• Nodes are distributed on N machines (randomly) 
– Each machine has 1/N nodes, and d/N edges  

 
• Can we perform computation on 1 machine and 

estimate the results for the entire graph? 
– Graph density estimation 

 

• Can we perform computation on each machine 
locally, and aggregate their results as the final 
step? 
– Finding connected components  



Distributed betweenness 
approximation 

• Betweeness is the most effective 
guideline to select landmarks 

• Exact betweenness costs O(nm) 
time, unacceptable on large 
graphs 

• Approximate fast betweenness is 
expected 
• Count shortest paths rooted at 

sampled vertices 

• Count shortest path with limited 
depth 

• On distributed platform 
– We count the shortest paths 

within each machines 



How many machines do we need? 

 

• Facebook 
–800 million users, 130 friends per user 

–30 Trinity machines 

 

• Web  
– 25 billion pages, 40 links per page 

–150 Trinity machines 

 
 

 

1 Trinity machine 

1 Trinity machine 



Billion-node graph partitioning 



Why partition? 

• Divide a graph into k 
(almost) equal-size 
partitions, such that the 
number of edges between 
partitions is minimized. 

• A better partition helps 
– Load balance 

– Reduce communication 

• Example: BFS on the graph 
– Best partitioning needs 3 

communications 

– Worst partitioning needs 17 

a b
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State-of-art method: Metis 

• A multi-level framework 

• Three phrases 

– Coarsening by maximal 
match until the graph is 
small enough 

– Partition the coarsest 
graph by KL algorithm 
[kl1972] 

– Uncoarsening 

 

Ref: [Metis 1995] 



Weakness of metis 

• Not semantic aware: Coarsening is 
ineffective on real graphs 
– Principle of coarsening 

• An optimal partitioning on a coarser graph 
implies a good partitioning in the finer graph 

– Coarsening by maximal match can 
guarantee this only when node degree is 
bounded, for example 2D, 3D meshes 

– Real networks have skewed degree 
distribution 

c, f

e, g h, i

b, j

k, l

a, d

• Inefficiency 
– To support uncoarsening, many mappings and intermediate graphs 

need to be stored, leading to bad performance 
– For example, a 4M graphs consumes 10G memory 

• Not general enough 
– Exclusive for partitioning 



Suggested solution : Multi-level Label 
Propagation  

• Coarsening by label 
propagation 
– Lightweight 

• Can be easily implemented by 
message passing 

– Semantic aware 
• Can discover the inherent 

community structure of real 
graph 

• Label propagation 
–  In each iteration, a vertex takes 

the label that is prevalent in its 
neighborhood as its own label. 

 

C1

C2 C3



Handling Imbalance 

• Imbalance: 
– Too many small clusters 

– Some extremely large clusters (monster clusters) 

 

 

• Our approach 
– First, we set size constraint on each label, to limit monster 

clusters 

– Second, we use the following model to merge small cluster 
• multiprocessor scheduling (MS) 

• weighted graph partitioning (WGP)  



Results - quality and performance 

• Quality is comparable 
to Metis 

• Performance is 
significantly better 
than Metis 

 



Results- Scalability 

• We use 8 machines, 
each of which has 48G 
memory.  

• Our solution takes 4 
hours on a graph with 
512M node and 6.5G 
edges 

 



Community search on large 
graphs 



Distance Oracle 



Why approximate distance oracle? 

• What is your Erdos number? 
– The shortest distance from you to mathematician Paul Erdos in the 

scientific collaboration network 
– Shortest distance can also be used to compute centrality, betweenness 

• Exact solutions  
– Online computation 

• Dijkstra-like algorithms, BFS 
• At least linear complexity,  computational prohibitive on large graphs 

– Pre-computing all pairs of shortest path 
• Of quadratic space complexity  

• Approximate distance oracle 
– Report approximate distance between any two vertices in a graph in 

constant time by pre-computation 
– When graph is huge, approximation is acceptable, and pre-

computation is necessary 
 
 

 
 



Current Solutions 

• Two possible solutions 

– Coordinate based 

– Sketch based 

• Problem solved 

– Approximate distance in (almost) constant time by 
pre-computation. 

– Currently for undirected, un-weighted graph only 

– With potential consideration for dynamic graphs 



Distributed betweenness 
approximation 

• Betweeness is the most effective 
guideline to select landmarks 

• Exact betweenness costs O(nm) 
time, unacceptable on large 
graphs 

• Approximate fast betweenness is 
expected 
• Count shortest paths rooted at 

sampled vertices 

• Count shortest path with limited 
depth 

• On distributed platform 
– We count the shortest paths 

within each machines 



Information about Trinity 

• http://research.microsoft.com/trinity 

 

http://research.microsoft.com/trinity


Thanks! 



 



Buffered Asynchronous Message Sender 

• Lock free  

 

 

 


