Managing and Mining Billion Node Graphs

Haixun Wang Microsoft Research Asia

Outline

- Overview
- Storage
- Online query processing
- Offline graph analytics
- Advanced applications

Is it hard to manage graphs?

- Good systems for processing graphs:
 PBGL, Neo4j
- Good systems for processing *large data*:
 Map/Reduce, Hadoop
- Good systems for processing *large graph data*:
 Specialized systems for pagerank, etc.

Existing Systems

	Native Graph*	Online Query	Index	Transaction Support	Parallel Graph Processing	Topology in memory	Distributed
Neo4j	YES	YES	Lucene	YES	NO	NO	NO
HyperGraphDB	NO	YES	Built-in	YES	NO	NO	NO
InfiniteGraph	NO	YES	Built-in + Lucene	NO	NO	NO	YES
Pregel	NO	NO	NO	NO	YES	NO	YES

An Example: Online Query Processing in Graphs

People Search Demo

		and the second s	
必应bing david		In 2 Hop 💌 Search	
		11 results in 8 ms.	
rosia david He/She is your 2-hop friend.	必应bing	david	In 3 Hop - Search
facebook.com			1304 results in 56 ms.
He/She is your 2-hop friend. facebook.com	david woods	n foised	
Iola david He/She is your 2-hop friend.	He/She is your 2-ho facebook.com	p mena.	
facebook.com david lapierre	bao david He/She is your 2-ho facebook.com	p friend.	
He/She is your 2-hop friend. facebook.com	david grado		
	He/She is your 2-ho facebook.com	p friend.	
	davida heredia He/She is your 2-ho facebook.com	p friend.	

Very efficient graph exploration

- Visiting 2.2 million nodes on 8 machines in 100ms
- Graph models
 - Relational
 - Matrix
 - Native (Trinity)
- Relation/Matrix requires data join operations for graph exploration

Costly and producing large intermediary results

Joins vs. Graph Exploration for subgraph matching

- Subgraph matching
 - Index sub-structures
 - Decompose a query into a set of sub-structures
 - Query each sub-structure
 - Join intermediary results
- Index size and construction time
 - Super-linear for any non-trivial sub-structure
 - Infeasible for billion node graphs
- Graph exploration
 - No structural index is needed
 - Very few join operations
 - Small intermediary results

SPARQL Query On Satori

Microsoft's Knowledge System

One of the world's largest repository of knowledge.

Compare with RDF-3x

- RDF3x is a state-of-the-art single node RDF engine
- Dataset Statistics
 - LUBM-10240, a public benchmark for RDF
 - Triple number: 1.36 billion
 - Subject/Object number: 0.3 billion
- Queries are chosen from the benchmark queries published with LUBM

Query ID	1	2	3	4	5	6	7
Our System	15640	9849	11184	5	4	9	37666
RDF-3x	39m2s	14194	30585	14	11	65	69560

Subgraph matching on a billion node graph

• No feasible solution for billion node graphs

• Super-linear index is not feasible

• Desiderata: requiring no index

Subgraph Match Query

Subgraph Match Response Time

One size fits all?

Scale to complexity

Memory-based Systems

Trinity

• A distributed, in-memory key/value store

• A graph database for online query processing

• A parallel platform for offline graph analytics

Graphs

Performance Highlight

- Graph DB (online query processing):
 - visiting 2.2 million users (3 hop neighborhood) on Facebook: <= 100ms</p>
 - foundation for graph-based service, e.g., entity search
- <u>Computing platform (offline graph analytics)</u>:
 - one iteration on a 1 billion node graph: <= 60sec</p>
 - foundation for analytics, e.g., social analytics

Performance Highlight

Typical Job	State-of-the-Art	Trinity		
N hop People Search	2 hop search 100 ms; 3 hop is not doable online	2 hop search in 10ms 3 hop search in 100ms		
Subgraph Matching	For billion node graphs, indexing takes <mark>months</mark> to build	No structural index required; response time $\leq 500 \text{ ms}$		
(Approximate) Shortest Distances/Paths	No efficient solution for large graphs	10 ms for discovering shortest paths within 6-hops		
PageRank of Web Graph	Cosmos/MapReduce: 2 days using thousands of machines	1 iteration on 1B graph <mark>≤ 60sec</mark> using 10 machines		
Billion Node Graph Partitioning	<22M nodes	Billions of nodes		
Graph Generation	For small graph only	Generates 1 billion node graph of power law distribution in 15 minutes		

Storage and Communication

Modeling a graph

• Basic data structure: Cell

A graph <u>node</u> is a Cell

- A graph <u>edge</u> may or may not be a Cell
 - Edge has no info
 - Edge has very simple info (e.g., label, weight)
 - Edge has rich info: an independent cell

Cell Schema Example

public class myCell: ISubgraphMatchCell, Misual CellParser

public byte[] label; public List<long> inlinks; public List<long> outlinks; internal long cell_id;

ł

public unsafe byte[] ToBinary();
public unsafe ISubgraphMatchCell FromBinary(byte[] bytes);

public void VisualParseCell(long nodelD, byte[] cell_bytes, VisualizerCallbackToolkit toolkit);

Subgraph Matching Cell

Cell Transformation and Cell Parsing

Cell Transformation

Partitioning

• Default: random partitioning by hashing

• Customizing hashing function

• Re-partitioning a graph (as an analytical job)

Cell Addressing

Cell Addressing

Big cell

A warning to graph system builders: Lady Gaga has 40,000,000 fans.

Her cell takes 320 Mb.

Cell as memory objects vs. blobs

• A memory object

Runtime object on heap

- A Blob
 - A binary stream
 - Benefit:
 - 50,000,000 cells, each of size 35 bytes
 - CLR heap objects: 3,934 MB
 - Flat memory streams: 1,668 MB
 - Challenge:
 - Parsing

'In-place' Blob Update

• The operations to a cell can be translated to memory manipulations to blob using a cell parser, e.g.

Cell Placements in Memory

- Cells are of different size
- Two types of applications:
 - Mostly read-only, few cell-expansion operations (e.g., a knowledge taxonomy, a semantic network)
 - Many cell-expansion operations (e.g., synthetic graph generation)

Cell Placements in Memory

- Sequential memory storage
 - Cells are continuously stored in memory

– Compact.

- Sparse hash storage
 - A cell may be stored as non-continuous blocks
 - Dynamic. (streaming updates)
Concurrent Sequential Memory Allocation

Concurrent Memory Allocation Request

Atomically Incrementing Memory Pointer (A CAS-compare and swap-instruction)

Concurrent write from allocated buffer header

Concurrent operations on a cell (using a Spin Cell Lock)

while(CAS(ref lockArray[index], 1, 0) != 0);

```
if(CAS(ref spin_lock, 1, 0) != 0)
{
    While(true)
    {
        if(volatile_read(ref spin_lock) == 0 && CAS(ref lockArray[index], 1, 0) == 0)
            return;
    }
}
Optimized Version
```

Hash Storage

• The memory address space is a hash space.

• Use a hash function to allocate memory.

• Support lock-free streaming cell updates.

Hash Storage

	head	id	links	-1				
head	id	links		-1				
head	id1	links		jmp	head	id	links	-1
v links				jmp 🗕	head	id	links	
 -1					Cha	ining		
					Links		-1	

Conflict Resolution in Hash Storage

- Conflicts
 - Two node IDs are hashed to the same slot
 - One node ID is hashed to the middle of the other
- Rehashing

```
long Hash( long key, int iteration )
{
    long hashCore = GetHashCore( key );
    return ( hashCore + iteration * ( 1 + ( ( ( hashCore ) + 1 ) % ( Capacity - 1 ) ) ) ) % Capacity;
}
```

Concurrency Control

- To lock: change HEAD flag to OCCUPY flag
- To unlock: change OCCUPY back to HEAD
- The Flag changing must be atomic (e.g. Interlocked CAS)

Fast Billion Node Graph Generator

Challenge: i) massive random access; ii) cell size change

Existing graph generators

- Slow
- For small graphs only

Trinity graph generator

 generate a 1 billion node graph of power law distribution in 15 minutes

Trinity Graph Generator

Offline Graph Analytics

Vertex-Based Graph Computation

Page Rank Script

Vertex-based Computation

• Take each graph vertex as a processor

• Synchronous communication model (BSP)

 Used in Pregel and its open source variants, such as Giraph and GoldenOrb

Restricted vertex-based computation

 In each super step, the sender and receiver set are known beforehand

• Messages can be categorized by their hotness

Messages can be pre-fetched and cached

A bi-partite view

Remote Vertices

A bi-partite view

How many machines do we need?

- Facebook
 - -800 million users, 130 friends per user
 - -30 Trinity machines
- Web
 - 25 billion pages, 40 links per page
 - -1×0 Trinity machines \longrightarrow 30 Trinity machines

Distribution-Aware Computing

- Support message sending by two APIs:
- Local message sending
 - sending messages to neighboring nodes on the same machine
- Message sending
 - sending messages to neighboring nodes

Distribution-Aware Computing

- Nodes are distributed on N machines (randomly)
 Each machine has 1/N nodes, and d/N edges
- Can we perform computation on 1 machine and estimate the results for the entire graph?
 – Graph density estimation
- Can we perform computation on each machine locally, and aggregate their results as the final step?
 - Finding connected components

Distributed betweenness approximation

- Betweeness is the most effective guideline to select landmarks
- Exact betweenness costs O(nm) time, unacceptable on large graphs
- Approximate fast betweenness is expected
 - Count shortest paths rooted at sampled vertices
 - Count shortest path with limited depth
- On distributed platform
 - We count the shortest paths within each machines

How many machines do we need?

- Facebook
 - -800 million users, 130 friends per user

-→ Trinity machines -----> 1 Trinity machine

- Web
 - 25 billion pages, 40 links per page
 - − 1×0 Trinity machines → 1 Trinity machine

Billion-node graph partitioning

Why partition?

- Divide a graph into k (almost) equal-size partitions, such that the number of edges between partitions is minimized.
- A better partition helps
 - Load balance
 - Reduce communication
- Example: BFS on the graph
 - Best partitioning needs 3 communications
 - Worst partitioning needs 17

State-of-art method: Metis

- A multi-level framework
- Three phrases
 - Coarsening by maximal match until the graph is small enough
 - Partition the coarsest graph by KL algorithm [kl1972]
 - Uncoarsening

Ref: [Metis 1995]

Weakness of metis

- Not semantic aware: Coarsening is ineffective on real graphs
 - Principle of coarsening
 - An optimal partitioning on a coarser graph implies a good partitioning in the finer graph
 - Coarsening by maximal match can guarantee this only when node degree is bounded, for example 2D, 3D meshes
 - Real networks have skewed degree distribution

- Inefficiency
 - To support uncoarsening, many mappings and intermediate graphs need to be stored, leading to bad performance
 - For example, a 4M graphs consumes 10G memory
- Not general enough
 - Exclusive for partitioning

Suggested solution : Multi-level Label Propagation

- Coarsening by label propagation
 - Lightweight
 - Can be easily implemented by message passing
 - Semantic aware
 - Can discover the inherent community structure of real graph
- Label propagation
 - In each iteration, a vertex takes the label that is prevalent in its neighborhood as its own label.

Handling Imbalance

- Imbalance:
 - Too many small clusters
 - Some extremely large clusters (monster clusters)

- Our approach
 - First, we set size constraint on each label, to limit monster clusters
 - Second, we use the following model to merge small cluster
 - multiprocessor scheduling (MS)
 - weighted graph partitioning (WGP)

Results - quality and performance

- Quality is comparable to Metis
- Performance is significantly better than Metis

Results- Scalability

- We use 8 machines, each of which has 48G memory.
- Our solution takes 4 hours on a graph with 512M node and 6.5G edges

Figure 9: Scalability to billion-node graphs

Community search on large graphs

Distance Oracle

Why approximate distance oracle?

- What is your Erdos number?
 - The shortest distance from you to mathematician *Paul Erdos* in the scientific collaboration network
 - Shortest distance can also be used to compute centrality, betweenness
- Exact solutions
 - Online computation
 - Dijkstra-like algorithms, BFS
 - At least linear complexity, computational prohibitive on large graphs
 - Pre-computing all pairs of shortest path
 - Of quadratic space complexity
- Approximate distance oracle
 - Report *approximate* distance between any two vertices in a graph in constant time by *pre-computation*
 - When graph is huge, approximation is acceptable, and precomputation is necessary

Current Solutions

- Two possible solutions
 - Coordinate based
 - Sketch based
- Problem solved
 - Approximate distance in (almost) constant time by pre-computation.
 - Currently for undirected, un-weighted graph only
 - With potential consideration for dynamic graphs

Distributed betweenness approximation

- Betweeness is the most effective guideline to select landmarks
- Exact betweenness costs O(nm) time, unacceptable on large graphs
- Approximate fast betweenness is expected
 - Count shortest paths rooted at sampled vertices
 - Count shortest path with limited depth
- On distributed platform
 - We count the shortest paths within each machines

Information about Trinity

• <u>http://research.microsoft.com/trinity</u>

Thanks!

Buffered Asynchronous Message Sender

• Lock free