Managing and Mining
Billion Node Graphs

Haixun Wang
Microsoft Research Asia

Outline

Overview
Storage

Online query processing
Offline graph analytics

Advanced applications

s it hard to manage graphs?

* Good systems for processing graphs:
— PBGL, Neo4j

e Good systems for processing large data:
— Map/Reduce, Hadoop

* Good systems for processing large graph data:
— Specialized systems for pagerank, etc.

This is hard.

Existing Systems

Native Online Transaction | Parallel Topology Distributed
Graph* Query Support Graph in memory
Processing
Neo4j YES YES Lucene YES NO NO NO
HyperGraphDB NO YES Built-in YES NO NO NO
. Built-in +
InfiniteGraph NO YES NO NO NO YES
Lucene

Pregel NO NO NO NO YES NO YES

An Example:
Online Query Processing in Graphs

People Search Demo

& 1 rosia david

' He/She is your 2-hop friend.

B facebook.com

david woods
He/She is your 2-hop friend.
facebook.com

lola david
He/She is your 2-hop friend.
facebook.com

A david lapierre

He/She is your 2-hop friend.

7| facebook.com

; david woods

B facebook.com

bao david

facebook.com

david grado

facebook.com

#¥ davida heredia

‘ m facebook.com

|In2Hop;] Search|

11 results in 8 ms.

david | In3Hop »| Search |

1304 results in 56 ms.

He/She is your 2-hop friend.

He/She is your 2-hop friend.

He/She is your 2-hop friend.

He/She is your 2-hop friend.

http://graph001:8000/

Very efficient graph exploration

* Visiting 2.2 million nodes on 8 machines in 100ms

 Graph models

— Relational
— Matrix
— Native (Trinity)

* Relation/Matrix requires data join operations for
graph exploration

— Costly and producing large intermediary results

Joins vs. Graph Exploration for
subgraph matching

e Subgraph matching
— Index sub-structures
— Decompose a query into a set of sub-structures
— Query each sub-structure
— Join intermediary results

* Index size and construction time
— Super-linear for any non-trivial sub-structure
— Infeasible for billion node graphs

* Graph exploration
— No structural index is needed
— Very few join operations
— Small intermediary results

SPARQL Query On Satori

- SATORI | Microsoft’s Knowledge System

One of the world’s largest repository of knowledge.

3X

12 Billion

.8 Billion

Jun. 2011 Dec. 2011 Jun. 2012
(expected)

http://graph001:7880/

Compare with RDF-3x

 RDF3x s a state-of-the-art single node RDF engine
Dataset Statistics
 LUBM-10240, a public benchmark for RDF
* Triple number: 1.36 billion
* Subject/Object number: 0.3 billion
e Queries are chosen from the benchmark queries published with LUBM

Query ID 1 2 3 4 5 6 7

Our System 15640 9849 11184 5 4 9 37666

RDF-3x 39m2s 14194 30585 14 11 65 69560

Subgraph matching on a billion node graph

* No feasible solution for billion node graphs
* Super-linear index is not feasible

* Desiderata: requiring no index

Response Time (ms)

Subgraph Match Query

Subgraph Match Response Time
1000

DFS ——
900 |Random

700
600

500

400

300 - o o
: 10 100 1000

Node Count

Scale to size

One size fits all?

Disk-based Key-value Store

‘ Column Store

Document Store

— g,
- -~ -

-
~
e
P ‘ In-memory Key-value Store ~

-~

Typical RDBMS

[|
\\ //
S~ o Graph DB _ -

-~ —
e o = =

SQL Comfort Zone

Scale to complexity

Memory-based Systems

Dataset Size (TB)

10000 I I
1000 |- Hard disk _
Billion Scale
100 —/ Graph
Flash Memory C we)
10 GO
r”ﬁ-ﬁ?\
_ ~._Data _
f: Satnri_:/".- T
1.0 |- -
RAM
0.1 I
0.1 1.0 10 100 1000

Query Rate (Millions/sec)

* Adistributed, in-memory
key/value store

Trinity
* A graph database for online
’ qguery processing
4

* A parallel platform for offline
graph analytics

uol||13

uol||iq
)

uoljjiw uoliiq uoiq

T€

9'S

8§

of Edges

Graphs

mw the Web
- wsw Facebook
- wsw Linked Data
- maw Satori
— m US Road Map
of Nodes
: : g g : >
24 504 800 14 50
million million million billion billion

uol||13

uol||iq
)

uoljjiw uoliiq uoiq

T€

9'S

8§

How many machines?

of Edges

mmw Facebook: 25 Trinity machines

wmsw Linked Data: 16 Trinity machines

mw the Web: 275 Trinity machines

maw Satori: 4-10 Trinity machines

m= US Road Map: 1 Trinity machine

of Nodes

24
million

504 800
million million

1.4
billion

50
billion

>

Performance Highlight

e Graph DB (online query processing):

— visiting 2.2 million users (3 hop neighborhood) on Facebook: <=100ms

— foundation for graph-based service, e.g., entity search

e Computing platform (offline graph analytics):

— one iteration on a 1 billion node graph: <= 60sec

— foundation for analytics, e.g., social analytics

Performance Highlight

2 hop search 100 ms; 3 hopis 2 hop search in 10ms

N hop People Search not doable online 3 hop search in 100ms

For billion node graphs, : .
grap No structural index required;

Subgraph Matching mc!exmg takes months to Espense e = 508 i
build
(Approximate) Shortest No efficient solution for large 10 ms for discovering shortest
Distances/Paths graphs paths within 6-hops
: i i <
Sk @V G Cosmos/MapReduce: 2 days 1 iteration on 1B graph < 60sec

using thousands of machines using 10 machines

Billion Node Graph Partitioning <22M nodes Billions of nodes

Generates 1 billion node graph
Graph Generation For small graph only of power law distribution in 15
minutes

Applications

Algorithms

Programming models

Trinity

Query
processing
engine

Computation
platform

Storage infrastructures

Storage and Communication

Graph Operations
GetlInlinks(), GetOutlinks(), etc

|

Graph Model

Key-Value Data Store

Memory Storage

Modeling a graph

. GID Cell ID
e Basic data structure: Cell | i }
Neighbor 1
Edge Info
'['ngningy{
[A g ra p h nOde IS a Ce | | Neig;:ngr i rCell Structure
Edge Info
Additional Data

* A graph edge may or may not be a Cell
— Edge has no info
— Edge has very simple info (e.g., label, weight)

— Edge has rich info: an independent cell

Cell Schema Example

IVisualCellParser

public void VisualParseCell(long nodelD,
byte[] cell_bytes,
VisualizerCallbackToolkit toolkit);

Subgraph Matching Cell

Cell Transformation and Cell Parsing

Cell
Transformation

PageRank

Cell Parser

Cell Parser

Graph Data Cell Parser
(/ | Cell Parser

)

! Cell Parser

Cell Transformation

- Link Count Link 1 Link n SubgraphMatch Cell

Cell . . Link) Link
State Link Count Link 1 Flag Link n Flag DFS Cell

Partitioning

e Default: random partitioning by hashing
e Customizing hashing function

e Re-partitioning a graph (as an analytical job)

Cell Addressing

64-bit ID

q-bits / \ p-bits

machine 0 machine 1 machine 2 machinem

Memory:Buffer

:

I

|

————————— i

[| :
| | |_____=
Memory Trunk ID I | |
i Memao [1
| Tm“hw : CelllD | Offset | Size
1
| | 010 | 423 | 125
| Memory Trunks | S0l | 321 | 453
| | 001 | 3234 | 232

Hash Index

Cell Addressing

Hash

Cell id

Bucket

v

Cell id

Cell Offset
Cell Size

- Cell Location

SR iack Meta Data
:;.
Version, etc (Optional)

Big cell

A warning to graph system builders: Lady Gaga has 40,000,000 fans.

Her cell takes 320 Mb.

GID }Cell ID gI B “l GID
+] GID1

N Machine 1 Topol
Neighbor 1 GIDm 81 | 0}5’2;5?
Edge Info :
T 1 I Sk 1
opology | ‘s .
Pata Cell Structure (}%l]; e [Ru[:l:::‘l ‘
o 1
Neighbor n Machine k i il i J
Edge Info Ll
Additional Data

Cell as memory objects vs. blobs

»I

| Cell

A memory object o
— Runtime object on heap " KoprmieTatl
5 Mame

1‘*‘?‘ SourceCelSet

1‘*‘?‘ TargetCelSet

i‘*‘?" this (+ 1 nok sho...
i‘*‘?" UndirectedCellSet

+ Methaods

 ABlob
— A binary stream vs.

1

— Benefit:
* 50,000,000 cells, each of size 35 bytes
* CLR heap objects: 3,934 MB
* Flat memory streams: 1,668 MB

44040

o
1
o
1
o
1
o
1
o
1
O

— Challenge:

* Parsing

Graph Operations

GetlInlinks(), GetOutlinks(), etc

|

Graph Model

L
LoadBlob

y

SaveBlob

Y

Key Value |RemoveBlob

Interfaces

Manipulate
CellAs A
Whole

Y

In-place
Blob
Update

| Partial
| Update

[~ _— —_— _— —_— _— —_— _— —_—
\

Memory Storage

| Key-Value
Data Store

Data Model

‘In-place’ Blob Update

 The operations to a cell can be translated to
memory manipulations to blob using a cell
parser, e.g.

Cell Operation (e.g.
GetCellState, ...)

Cell Translated to Memory
Parser Operation On Blob

L

Cell .) Link) Link
- State Link Count ‘ Link 1 ‘Flag Link n Flag

Cell Placements in Memory

 Cells are of different size

* Two types of applications:

— Mostly read-only, few cell-expansion operations
(e.g., a knowledge taxonomy, a semantic network)

— Many cell-expansion operations
(e.g., synthetic graph generation)

Cell Placements in Memory

e Sequential memory storage
— Cells are continuously stored in memory
— Compact.

e Sparse hash storage
— A cell may be stored as non-continuous blocks
— Dynamic. (streaming updates)

Concurrent Sequential Memory Allocation

Concurrent Memory
Allocation Request

Atomically Incrementing
Memory Pointer
(A CAS-compare and swap-instruction)

Concurrent write from
allocated buffer header

Concurrent operations on a cell
(using a Spin Cell Lock)

while(CAS(ref lockArray[index], 1, 0) = 0);

if(CAS(ref spin_lock, 1, 0) I=0)

{
While(true)

{
if(volatile_read(ref spin_lock) == 0 && CAS(ref lockArray[index], 1, 0) == 0)

return;

Optimized Version

Hash Storage

* The memory address space is a hash space.
e Use a hash function to allocate memory.

* Support lock-free streaming cell updates.

Hash Storage

head id links -1
head id links -1
head idl links jmp head id
|
)
links
-1

jmp ad id
Chaining

Links...

links

links

-1

Conflict Resolution in Hash Storage

e Conflicts

— Two node IDs are hashed to the same slot
— One node ID is hashed to the middle of the other

* Rehashing

long Hash(long key, int iteration)

{
long hashCore = GetHashCore(key);

return (hashCore + iteration * (1+ (((hashCore) + 1) % (Capacity - 1)))) ¥ Capacity;
}

Concurrency Control

* To lock: change HEAD flag to OCCUPY flag
* To unlock: change OCCUPY back to HEAD

* The Flag changing must be atomic (e.g. Interlocked
CAS)

HEAD | id] inks | .| 1
<
i ks |] 1

Fast Billion Node Graph Generator

Challenge: i) massive random access; ii) cell size
change

Existing graph generators Trinity graph generator
* Slow * generate a 1 billion node
* For small graphs only graph of power law

distribution in 15 minutes

Trinity Graph Generator

[&4] Trinity Interactive Console _ 1O

E:“binshao“mercurial“Trinity-KUStoreshin>*trinity
Uzage: Trinity [serverllblackboardliconfiglIishellllguit]

—Server Start trinity server.

—blackhoard Start bhlackboard server.

—config Write default configuration values to trinity.xml.
—=zhell Open an interactive zhell.

—guit Exit.

Please enter a switch. the default iz [-shelll:
EisbwmsIxhin>start trinity —hlackboard
E:sbwmsTshin?cluster_exec Trinity.GraphGenerator.exe —g 187374182480 1873741824 RMAT _

parallel execution edge #: node #: graph type
in the entire cluster 108B 1B

Offline Graph Analytics

Vertex-Based Graph Computation

B graph001:2009
B graphl0z:2009
B graph003:2009
B graph004:2009
B graph005:2009

Monitor !El E
" Console Load status |
Update [T AutoRefrezh

e ——]
 — :
— :
e —]
e —]
Al B graph00&:3003 e —]
* Trinity-Computation-ControlCenter B graphl07:9009 e — |
"Plan | Configuration Execution | Results | ® graph00s&: 3003 e ————]
E hed 102413 B graph003:3003 [—]
Sgraph-datatmnath 10240135 TR e g L010.5000 !
E:\graph-data'umatiGahd-134 mograp e — |
[10/19/2011 4:46:16 FPM] Message tyi mgraph011:9009 e —— |
registered. = oz aph012:9009 E—— |
[10/19/2011 4:46:17 PM] Message tyl B graph0i13:s003 F—————— |
registered. B graph0i14:3003 e ————]
My IPEndPoint: 169.254.45.89:9001 = graph015:9009 e]
nication . . .
Barrier Synchronization
=

Progress

Start Kill Al

Jiohl ;
Al job: ‘

Page Rank Script

public class Cell : BaseCell

{
public int OutDegree;

Local Variables

public Message message; <€

public override void Initialize()
{
OutDegree = outlinks.Length;
message.PageRankScore = 1.0f / GlobalNodeNumber;
}
public override void Computation()
{
float PageRankScore = 0;
if (CurrentlterationRoundNumber > 100)
VoteToStop();
foreach (long msg_id in inlinks)

{

Message msg =

Vertex-based Computation

Fetch Message

(Message)CacheManager.GetMessage(msg_id); (
PageRankScore += msg.PageRankScore;

}

Generate New Message

message.PageRankScore = PageRankScore / OutDegree; (
}

public struct Message

{
public float PageRankScore;

}

Vertex-based Computation

* Take each graph vertex as a processor
e Synchronous communication model (BSP)

* Used in Pregel and its open source variants,
such as Giraph and GoldenOrb

Restricted vertex-based computation

* |[n each super step, the sender and receiver set
are known beforehand

 Messages can be categorized by their hotness

 Messages can be pre-fetched and cached

A bi-partite view

Local Vertices Remote Vertices

©0000 0000 000
0000 O 0000 OO0O0O 000

A bi-partite view

Local Vertices Remote Vertices

How many machines do we need?

* Facebook
—800 million users, 130 friends per user
—30 Trinity machines

* Web
— 25 billion pages, 40 links per page

— 180 Trinity machines ——— 30 Trinity machines

Distribution-Aware Computing

* Support message sending by two APIs:

* Local message sending

— sending messages to neighboring nodes on the
same machine

* Message sending
— sending messages to neighboring nodes

Distribution-Aware Computing

* Nodes are distributed on N machines (randomly)
— Each machine has 1/N nodes, and d/N edges

 Can we perform computation on 1 machine and
estimate the results for the entire graph?

— Graph density estimation

* Can we perform computation on each machine
locally, and aggregate their results as the final

step?
— Finding connected components

Distributed betweenness

Betweeness is the most effective oo 5 partiion
guideline to select landmarks = |
80

Exact betweenness costs O(nm) _
time, unacceptable on large g o)
graphs § sl

s S
Approximate fast betweenness is 20 7 g

i i i ! using betweeness

expected 0 | | | | Iusing dclegree :

0 50 100 150 200 250 300 350 400
Number of landmarks

* Count shortest paths rooted at
sampled vertices

* Count shortest path with limited
depth

On distributed platform

— We count the shortest paths
within each machines

How many machines do we need?

* Facebook
—800 million users, 130 friends per user
—30 Trinity machines —— 1 Trinity machine

* Web
— 25 billion pages, 40 links per page

— T80 Trinity machines —— 1 Trinity machine

Billion-node graph partitioning

Why partition?

* Divide a graph into k
(almost) equal-size
partitions, such that the
number of edges between
partitions is minimized.

* A better partition helps

— Load balance

— Reduce communication
 Example: BFS on the graph

— Best partitioning needs 3
communications

— Worst partitioning needs 17

State-of-art method: Metis

* A multi-level framework
* Three phrases Q Ny

. A :
— Coarsening by maximal / Q é@ ¥
. . £ g
match until the graph is
small enough ¥

— Partition the coarsest
graph by KL algorithm
[kl11972]

— Uncoarsening Ref: [Metis 1995]

Weakness of metis

* Not semantic aware: Coarsening is
ineffective on real graphs

— Principle of coarsening

* An optimal partitioning on a coarser graph
implies a good partitioning in the finer graph

— Coarsening by maximal match can
guarantee this only when node degree is
bounded, for example 2D, 3D meshes

— Real networks have skewed degree
distribution

* |nefficiency

— To support uncoarsening, many mappings and intermediate graphs
need to be stored, leading to bad performance

— For example, a 4M graphs consumes 10G memory

* Not general enough
— Exclusive for partitioning

Suggested solution : Multi-level Label

Propagation
* Coarsening by label
propagation
- LIghtWEIght Coarsening phase by multi-level LP

* Can be easily implemented by
message passing

— Semantic aware &)

e Can discover the inherent Q}
community structure of real
graph

* Label propagation

— In each iteration, a vertex takes
the label that is prevalent in its
neighborhood as its own label.

Mapping back

)

Refinement phase

Handling Imbalance

* |Imbalance:
— Too many small clusters
— Some extremely large clusters (monster clusters)

e Qur approach

— First, we set size constraint on each label, to limit monster
clusters
— Second, we use the following model to merge small cluster

* multiprocessor scheduling (MS)
* weighted graph partitioning (WGP)

Results - quality and performance

16000 ; ; . 600
14000 | 500 L
. . = 12000
* Quality is comparable £ il 5 400
= 8000 o 300 +
. o E
to Metis £ 6000 | 200 |
= 4000 |
. 2000 t i %‘ﬁ 100 ¢ _
e Performanceis 0 0 il Fiom, H
WikiTalk PatentsteJournal W|k|Ta|k Patems LiveJournal
significantly better <. y
i 5 | | o 70 | %
than Metis B 1 ol
= 15 ¢) Z =50
= = 40 +
2 10| J N] % 30 + —
3 J . 9 g
€ 5l N | @ 20t
= - % 10 | 1
g 0 mzi\. 4 i : 0 R‘Fi 4 [4
O WikiTalk Patents LiveJournal WikiTalk Patents LweJournaI
METIS(rb+rm) E=s=m MLP+METIS Random ===3

METIS(kway+shem) LP+MS =———m

Results- Scalability

. 100000
 We use 8 machines, : |
each of which has 48G ~ , 7
memory. = 1000 | e
e Qur solution takes 4 '

100 : ' : :
226 22?’ 28 29

hours on a graph with Pertex
512M node and 6.5G
edges

2 2

Figure 9: Scalability to billion-node graphs

Community search on large
graphs

Distance Oracle

Why approximate distance oracle?

 Whatis your Erdos number?
— The shortest distance from you to mathematician Paul Erdos in the
scientific collaboration network
— Shortest distance can also be used to compute centrality, betweenness

e Exact solutions

— Online computation

* Dijkstra-like algorithms, BFS

* At least linear complexity, computational prohibitive on large graphs
— Pre-computing all pairs of shortest path

e Of quadratic space complexity

* Approximate distance oracle
— Report approximate distance between any two vertices in a graph in
constant time by pre-computation
— When graph is huge, approximation is acceptable, and pre-
computation is necessary

Current Solutions

* Two possible solutions

— Coordinate based
— Sketch based

 Problem solved

— Approximate distance in (almost) constant time by
pre-computation.

— Currently for undirected, un-weighted graph only
— With potential consideration for dynamic graphs

Distributed betweenness

Betweeness is the most effective oo 5 partiion
guideline to select landmarks = |
80

Exact betweenness costs O(nm) _
time, unacceptable on large g o)
graphs § sl

s S
Approximate fast betweenness is 20 7 g

i i i ! using betweeness

expected 0 | | | | Iusing dclegree :

0 50 100 150 200 250 300 350 400
Number of landmarks

* Count shortest paths rooted at
sampled vertices

* Count shortest path with limited
depth

On distributed platform

— We count the shortest paths
within each machines

Information about Trinity

* http://research.microsoft.com/trinity

http://research.microsoft.com/trinity

Thanks!

Buffered Asynchronous Message Sender

e Lock free

