AN OVERVIEW OF PROBABILISTIC DATABASES

Dan Suciu University of Washington

Probabilistic Databases

- Traditional Data: deterministic
 - Accounting, inventory, …
- New Data: uncertain/probabilistic
 - Big data analytics
 - Information extraction, fuzzy object matching
 - Sensor data, moving objects
 - Scientific data

APWeb 2013

The Landscape of ProbDBs

Early days

- Wong'82
- Shoshani'82
- Cavallo&Pittarelli'87
- Barbara'92
- Lakshmanan'97,'01
- Fuhr&Roellke'97
- Zimanyi'97

Core challenge: Query Evaluation (=Probabilistic Inference)

Recent work

- Stanford (Trio)
- UW (MystiQ)
- Cornell (MayBMS)
- Oxford (MayBMS)
- U.of Maryland
- IBM Almaden (MCDB)
- Rice (MCDB)
- U. of Waterloo
- UBC
- U. of Florida
- Purdue University
- U. of Wisconsin

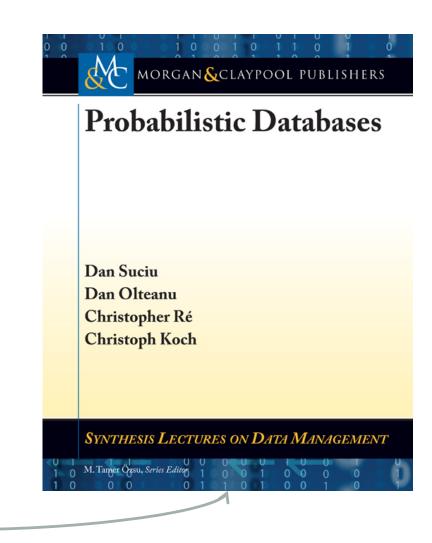
This Talk: Query Evaluation

This talk is based on:

- Dalvi, S. Efficient query evaluation on probabilistic databases. VLDB'04
- Dalvi,S. The Dichotomy of Probabilistic Inference for UCQ, JACM'12
- Dalvi, Schnaitter, S.: Computing query probability with incidence algebras. PODS'10

...and "the book"

- Jha, S.: Probabilistic Databases with MarkoViews, VLDB'2012
- Jha, S.: Query Compilation, ICDT'2013



Outline

- Introduction
- Motivation and Background
- Extensional Query Evaluation
- Intensional Query Evaluation
- Conclusions

Probabilistic Database = Data+Probability

Friends

Name1	Name2	
Alice	Bob	.7
Alice	Carol	.4
Carol	Fred	.2
Bob	Carol	.2
Alice	Fred	.5

-- find Alice and Carol's-- common friends

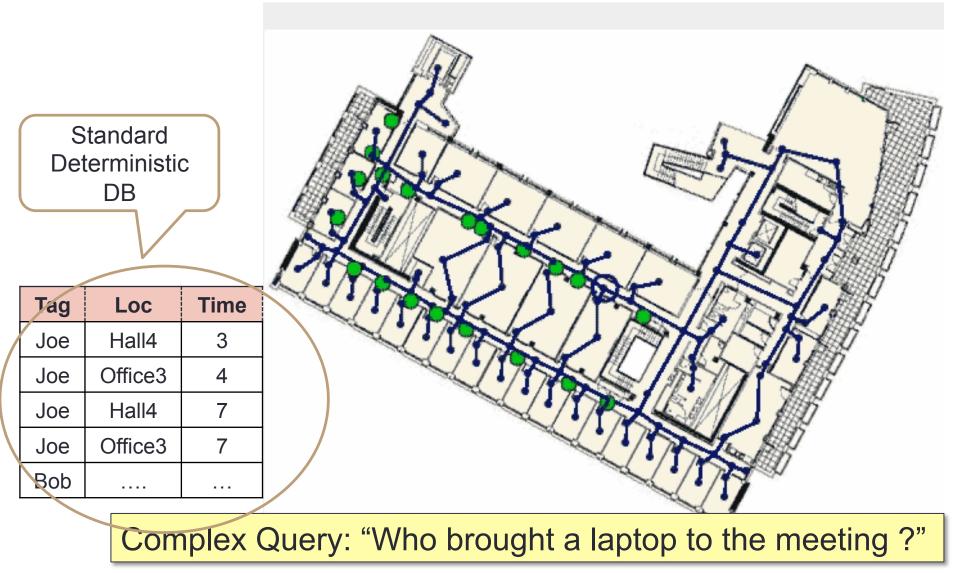
SELECT DISTINCT y.name2 FROM Friends x, Friends y WHERE x.name1 = 'Alice' and x.name2 = y.name2 and y.name1 = 'Carol'

Answers: have probabilities

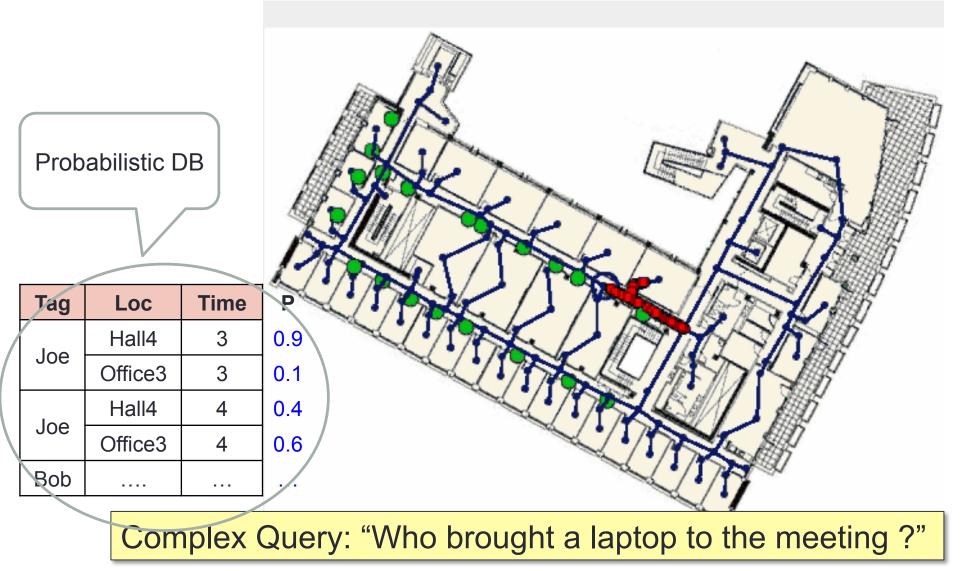
Tuples: have probabilities

Queries: SQL

Balazinska, Borriello, Letchner, Re, Welbourne Example1: RFID Data

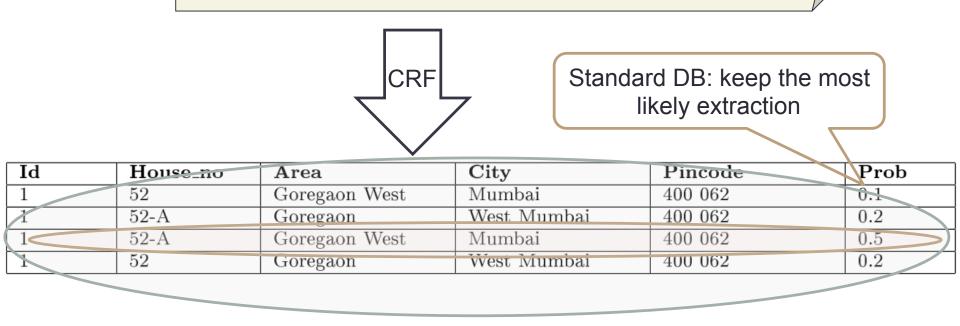


Balazinska, Borriello, Letchner, Re, Welbourne Example1: RFID Data



[Gupta&Sarawagi'2006] Ex 2: Information Extraction

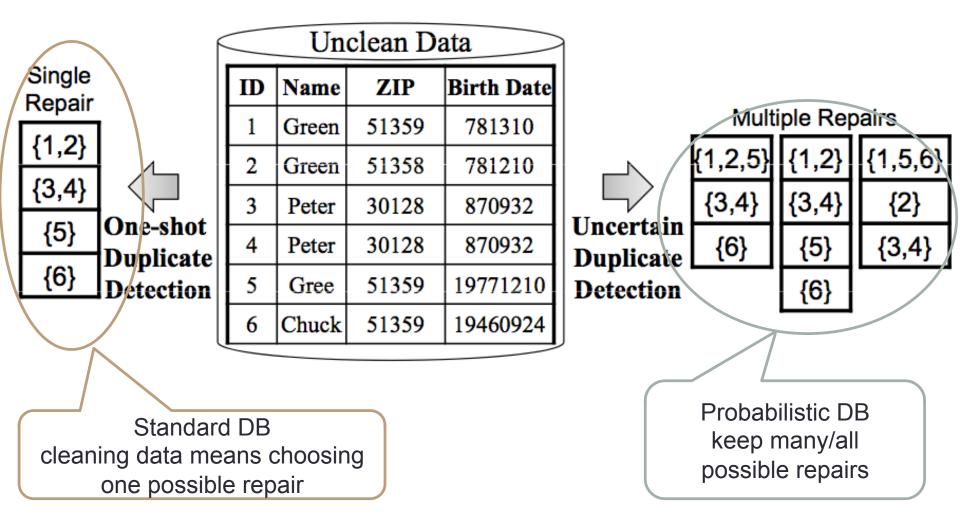
52-A Goregaon West Mumbai 400 076



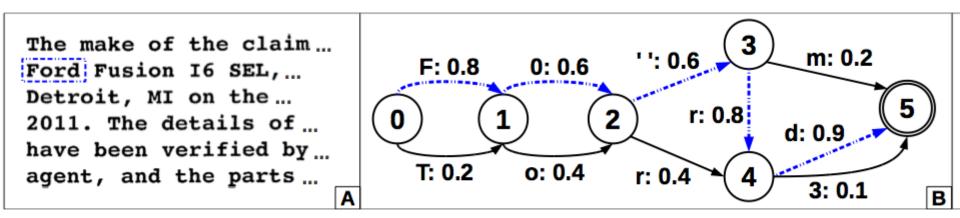
[Stoyanovich'2011] Ex 3: Modeling Missing Data

id	age	edu	inc	nw				
t1	20	HS	?	?				
t2	20	BS	50K	100K	Standard DB: NULL			
t3	20	?	50K	?				
t4	20	HS	100K	500K				
t5	20	?	?	?				
t6	20	HS	50K	100K				
t7	20	HS	50K	500K				
t8	?	HS	?	?	Probabilistic DB:			
t9	30	BS	100K	100K	ok distribution on possible values			
t 10	30	?	100K	?				
t11	30	HS	?	?				
t12	30	MS	?	?	id age edu inc nw prob			
t13	40	BS	100K	100K	t ₁₂ .1 30 MS 50K 100K 0.30			
t14	40	HS	?	?	t ₁₂ .2 30 MS 50K 500K 0.45			
t15	40	BS	50K	500K	t12.3 30 MS 100K 100K 0.10			
t16	40	HS	?	500K	th2.4 30 MS 100K 500K 0.15			
t17	40	HS	100K	500K	1			

[Beskales'2009] Ex 4: Data Cleaning



[Kumar&Re'2012] Ex 5: OCR



They use OCRopus from Google Books: output is a stohastic automaton Traditionally: retain only the Maximum Apriori Estimate (MAP) With a probabilistic database: may retain several alternative recognitions: increase recal

Terminology

- Types of uncertainty:

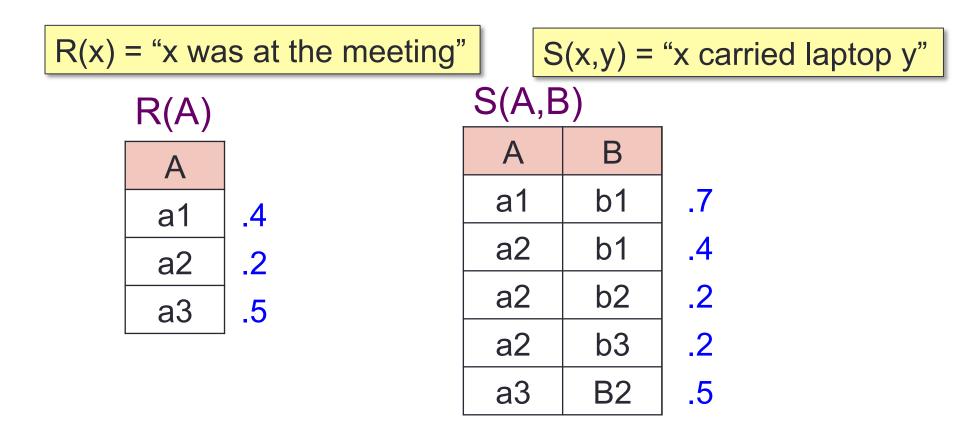
 - Attribute uncertainty = attribute value is a pdf
- Types of probability distrubtion

 - Disjoint/independent tuples
 - Correlations: Markov/Bayesian Networks, Markov Logic Networks
- Types of queries

 - Extensions with explicit reference to probabilities

Tuple-Independent Databases

Every tuple t in D = independent random variable



SELECT-PROJECT-JOIN-UNION

Did anyone bring a laptop to the meeting ?

SELECT DISTINCT 'yes' FROM R, S WHERE R.x = S.x

 $Q = \exists x. \exists y. R(x) \land S(x,y) \equiv Q = R(x), S(x,y)$

Answer: P(Q) = 0.35

The Query Evaluation Problem

Given database D, query Q Compute P(Q)

- Q is <u>small</u>, the database D is <u>huge</u>
- Related to <u>model counting</u>, and <u>probabilistic inference</u>, in AI and model checking; #P-hard in general
- Novel approach possible in probabilistic databases

Outline

- Introduction
- Motivation and Background

Extensional Query Evaluation

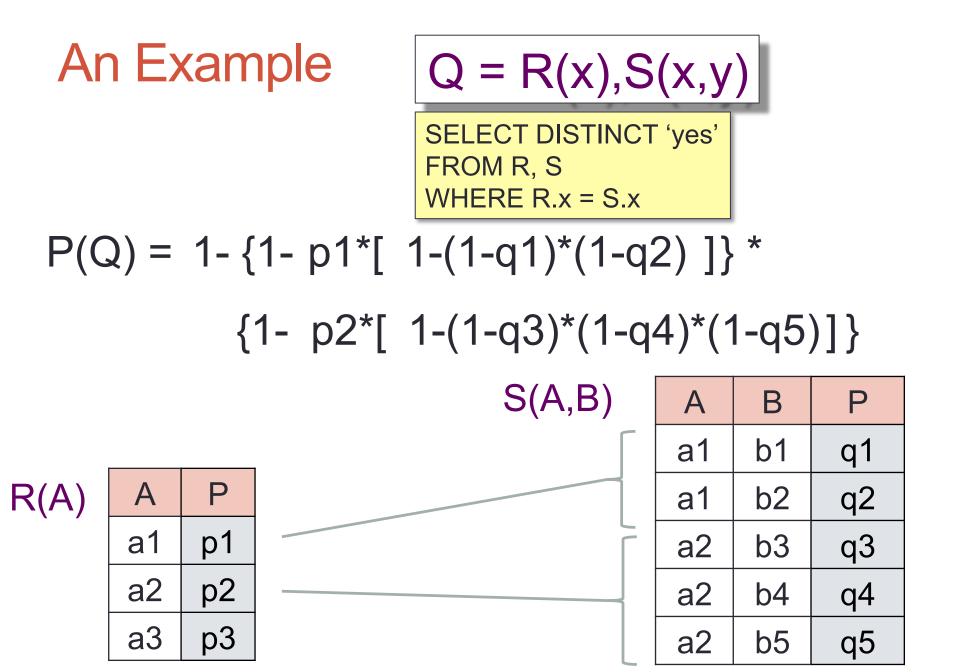
- Intensional Query Evaluation
- Conclusions

Extensional Query Evaluation

Relational operators are modified to handle probabilities:

1. Join

- 2. Projection w/ duplicate elimination
- 3. Union
- 4. Inclusion/Exclusion
- 5. Selection



1. Join operator

Α	В		Р					
a1	b1	р	1*q1		Runni	ng on a	standar	d RDBMS
a1	b2	р	1*q2	SELECT R.A, S.B, R.P*S.P				P*S.P
a2	b3	p:	2*q3	FROM R, S WHERE R.A=S.A				
a2	b4	p:	2*q4					
a2	b5	p:	2*q5					
					Δ]
					A	В	P	
		R(A		S(A,B)	a1	b1	q1	
		Α	Р		a1	b2	q2	
		a1	p1		a2	b3	q3	
		a2	p2		a2	b4	q4	
		a3	р3		a2	b5	q5	

S(A,B)

2. Projection w/ duplicate elimination

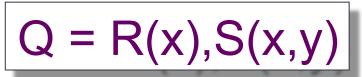
Α	Р
a1	1 - (1-p1)*(1-p2)
a2	1 - (1-p3)*(1-p4)*(1-p5)

Α B Ρ q1 a1 b1 q2 a1 **b1** a2 b2 q3 q4 a2 b3 a2 b2 q5

I IA

Running on a standard RDBMS (need to write the aggregate prod):

SELECT S.A, 1.0-prod(1.0 - S.P) FROM S GROUP BY S.A

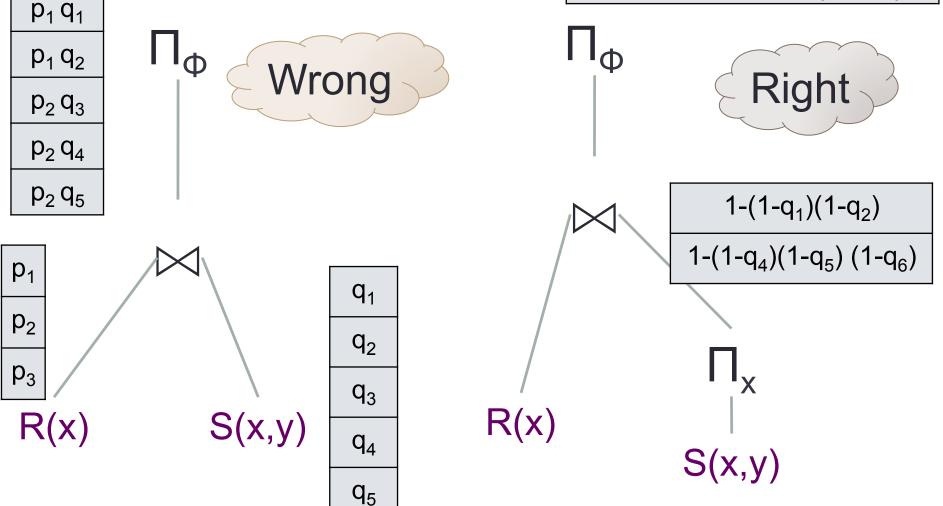


 $1-(1-p_1q_1)(1-p_1q_2)(1-p_2q_3)(1-p_2q_4)(1-p_2q_5)$

SELECT DISTINCT 'yes' FROM R, S WHERE R.x = S.x

$$1-{1-p_1[1-(1-q_1)(1-q_2)]}^*$$

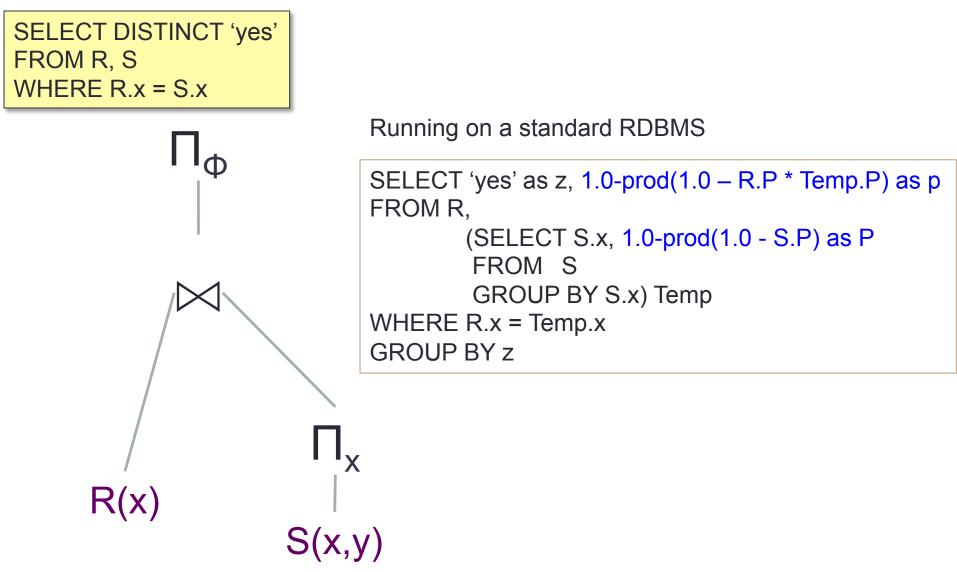
 ${1-p_2[1-(1-q_4)(1-q_5)(1-q_6)]}$



Lesson 1

- Plans that are equivalent may be different when interpreted as extensional plans
- A correct extensional plan is called a *safe plan*
- Need to find a safe plan!

Using a Standard RDBMS



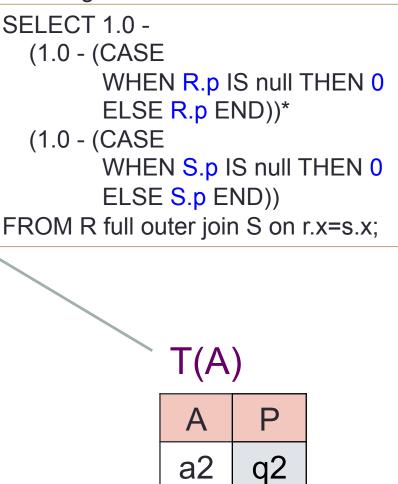
Lesson 2

- You don't need a probabilistic database system in order to use a probabilistic database!
- What you need is to know really well SQL and probability theory
- (You also need to read the book on probabilistic databases!)

3. Union

A	Р
a1	p1
a2	1-(1-p2)(1-q2)
a3	1-(1-p3)(1-q3)
a4	q4

Running on a standard RDBMS



a3

a4

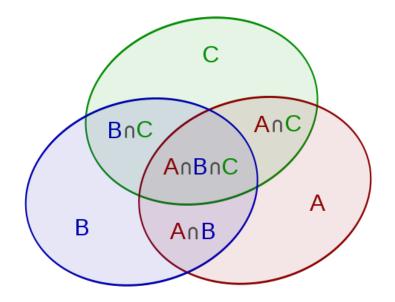
q3

q4

R(A)APa1p1a2p2a3p3

4 Inclusion-exclusion Formula

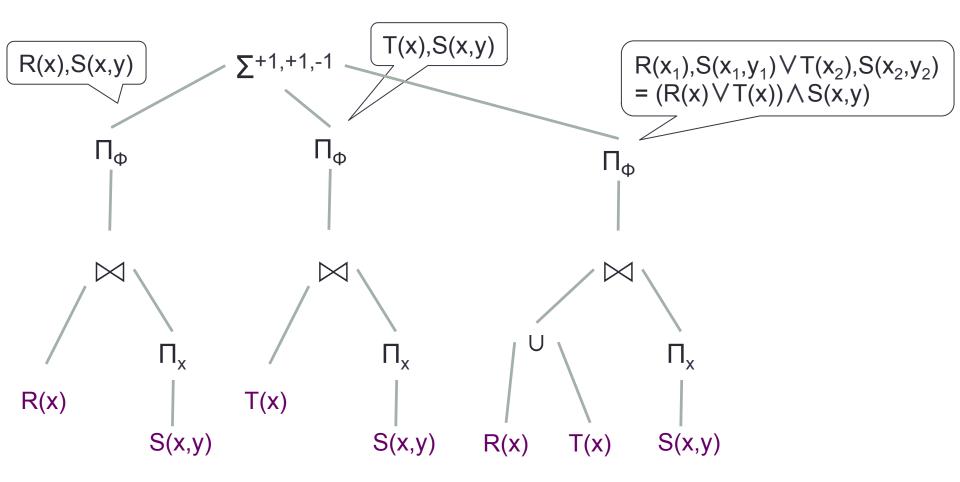
$$P(Q1 \land Q2 \land Q3) = P(Q1) + P(Q2) + P(Q3) - P(Q1 \lor Q2) - P(Q1 \lor Q3) - P(Q2 \lor Q3) + P(Q1 \lor Q2 \lor Q3)$$



$$Q_J = R(x_1), S(x_1, y_1), T(x_2), S(x_2, y_2)$$

SELECT DISTINCT 'yes' FROM R r, S s1, T t, S s2 WHERE r.x = s1.x and t.x = s2.x

$$P(Q_J) = P(q_1, q_2) = P(q_1) + P(q_2) - P(q_1 \vee q_2)$$



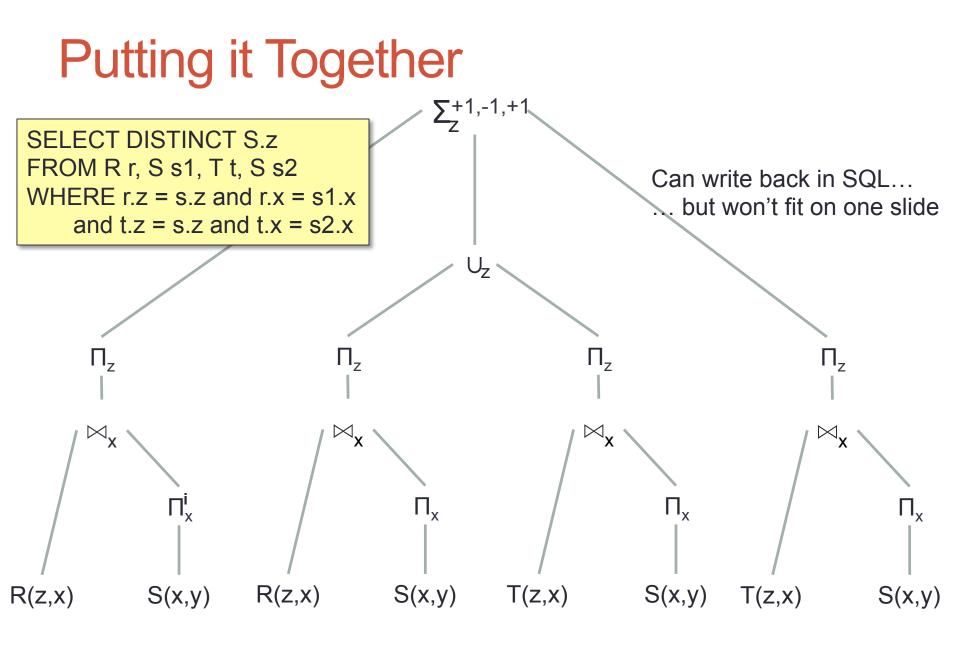
Lesson 3

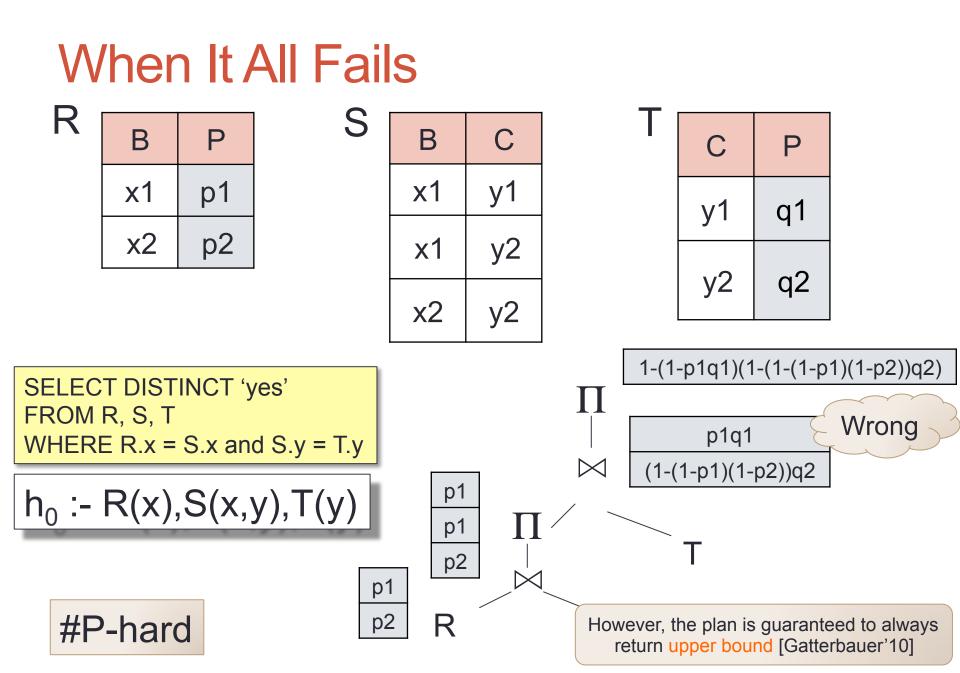
We need unions in order to handle self-joins!

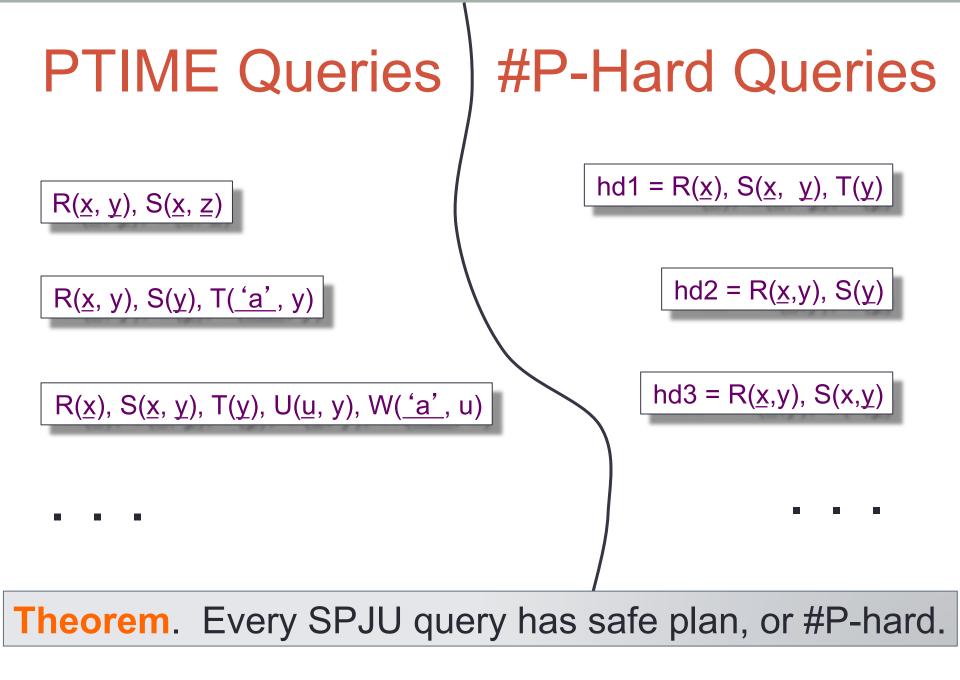
- SPJ = not a "natural" class of queries for probDB
- SPJU = the "natural" class of queries

We need the inclusion/exclusion formula

- Today's probabilistic inference systems do NOT use inclusion/ exclusion; they cannot have guaranteed running time bounds on such queries
- More on this later...







Landscape of SPJU Queries so far...

Have approximate plans

#P-hard

PTIME

Have safe plans

Summary: Extensional Query Evaluation

- Relational operators are modified to handle probabilities:
 Join, projection, union, inclusion/exclusion, selection
- <u>Safe</u> plan =computes probabilities correctly
- Every safe plan can converted into standard SQL and run on your favorite RDBMS
- Some cool facts along the way:
 - Inclusion/exclusion formula
 - Using unions to handle self-joins

Outline

- Introduction
- Motivation and Background
- Extensional Query Evaluation

Intensional Query Evaluation

Conclusions

Background: Model Counting

Let F be a Boolean formula over Boolean variables X_1, X_2, \ldots

#F = number of satisfying assignments

Model counting problem: compute #F.

Valiant'79: Model counting is #P-hard

P(F) denotes the probability, assuming $X_1, X_2, ...$ are set to true independently, with known probabilities

Factoid: if $P(X_1) = P(X_2) = ... = \frac{1}{2}$ then $P(F) = \#F / 2^n$

 $F = X Y \vee Y Z \vee X Z$

#F = 4

 $P(F) = P(X) \times P(Y)$ + P(X) \times P(Z) + P(X) \times P(Z) - 2 \times P(X) \times P(Y) \times P(Z)

Background: DPLL

Modern model counting systems:

- c2d [Huang and Darwiche, 2007], Dsharp [Muise et al., 2012]
- Based on Davis, Putnam, Logemann, Loveland, see [Gomes et al., 2009]

```
// basic DPLL:
Function P(F):
    if F = false then return 0
    if F = true then return 1
    select a variable X, return (1-P(X)) \times P(F_{X=0}) + P(X) \times P(F_{X=1})
```

// DPLL with caching: Cache F and P(F); look it up before computing

// DPLL with components:

if $F = F_1 \land F_2$ and F_1 , F_2 have no common variables then return $P(F_1) \times P(F_2)$

Intentional Query Evaluation

Query Q + database D = lineage expression F

- Boolean variables X₁, X₂, ... correspond to tuples t₁, t₂, ...
- The lineage F says when "Q is true"

Compute P(F) using a DPLL-style system

• c2d Or Dsharp Or ...

Challenge: for which Q does the system run in PTIME?

1. Read-Once Boolean Formulas

A Boolean formula F is called <u>read-once</u> if it can be written such that every Boolean variable occurs only once [Golumbic'2004]

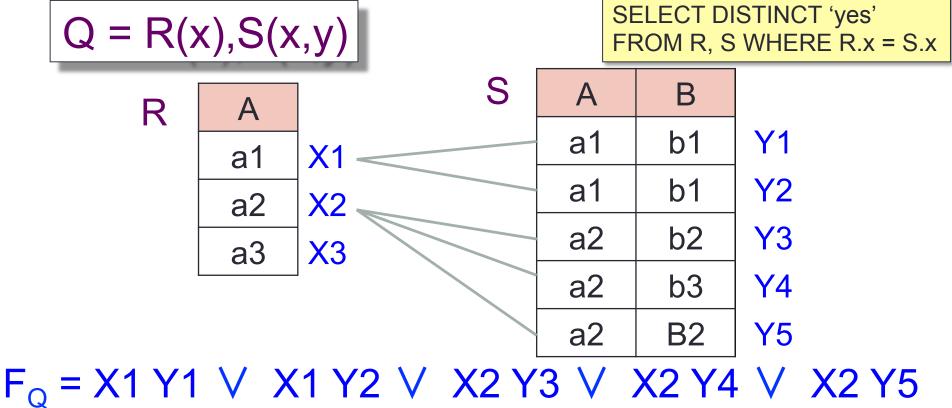
P(F) can be computed in linear time:

$$P(F_1 \land F_2) = P(F_1) \times P(F_2)$$
$$P(F_1 \lor F_2) = 1 - (1 - P(F_1)) \times (1 - P(F_2))$$

Modify the model counter to check for read-once formulas [Sen'2010], [Roy'2011]

APWeb 2013

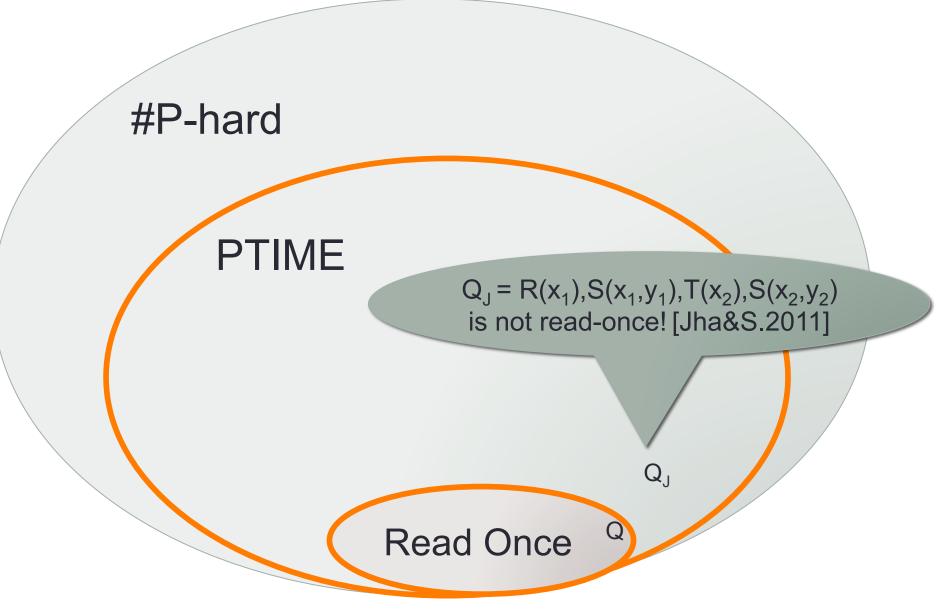
1. Read-Once Boolean Formulas



= X1 (Y1 VY2) V X2 (Y3 VY4 VY5)

Read-once

Landscape of SPJU



2. Ordered Binary Decision Diagrams

Branching program, BP = a rooted DAG where:

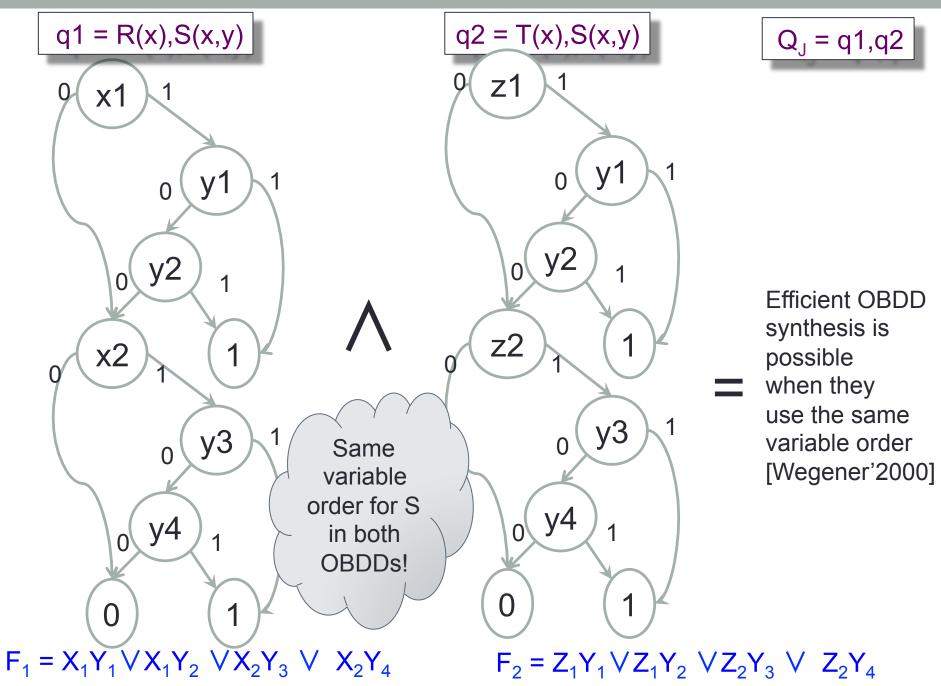
- Each internal node tests a Boolean variable X and has two outgoing edges labeled 0 and 1
- Each sink node is labeled 0 or 1
- Every path tests every variable X only once

OBDD = a BP where:

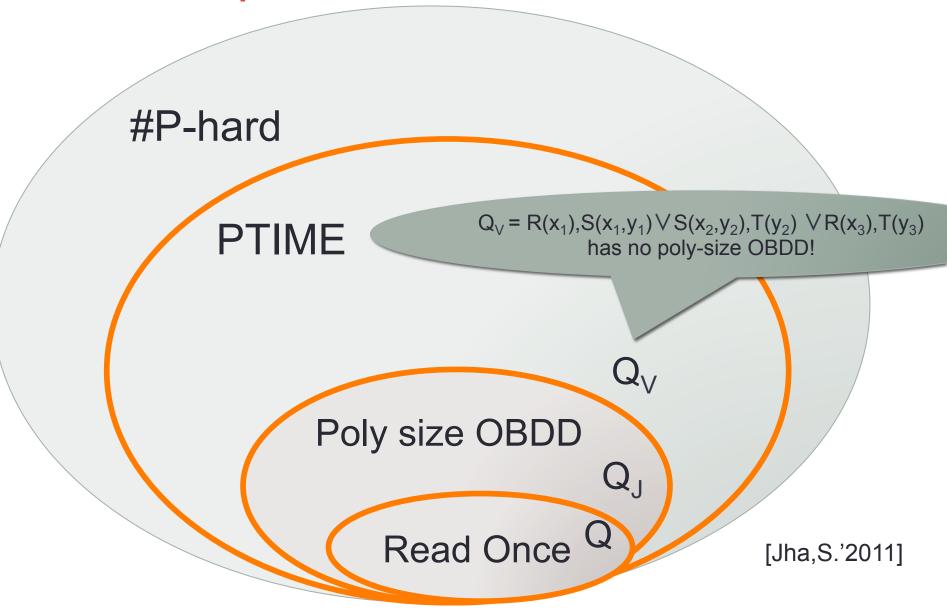
Every path tests the variables in the same order

Fact: any DPLL-with-caching procedure that tests the variables in the same order has a trace that is an OBDD

An Overview of Probabilistic Databases 43

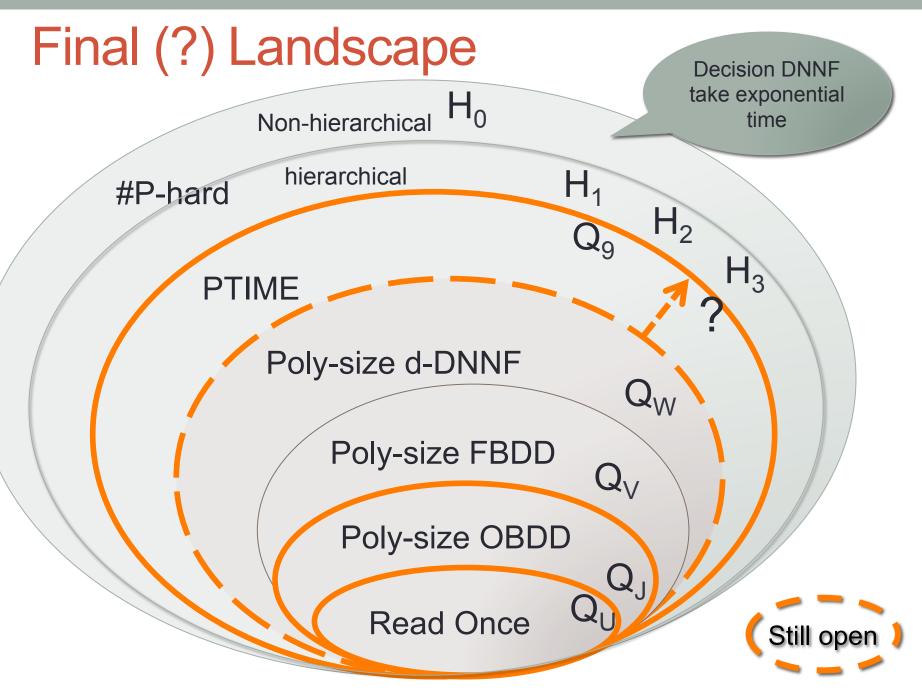


Landscape of SPJU



3. Other Types of DPLL Traces

- FBDD = binary decision diagrams where different paths may test variables in different orders
- Decision-DNNF's = [equivalent to] binary decision diagrams extended with independent ∧[Darwiche'2007]
- d-DNNF's = even more powerful... [Darwiche'2000]



Outline

- Introduction
- Motivation and Background
- Extensional Query Evaluation
- Intensional Query Evaluation
- Conclusions

Summary (1/2)

- There are many applications that require storage/ management of <u>uncertain</u> data
 - Retain data that is not absolutely certain
 - Retain more than one alternative way to clean
- Probabilities are application specific
 - All we care about is that "bigger is better"
- Queries have precise semantics
 - Important for query optimization
 - "Bigger probability" means "more certain answer"
- "Stop worrying about probabilities and start asking queries"

Summary (2/2)

- Extensional query evaluation:
 - Advantage: can use out of the box DBMS
 - Disadvantage: can't handle unsafe queries (but can still give upper/ lower bounds on probabilities)
 - "You don't need a probabilistic database management system to manage probabilistic data"
- Intensional query evaluation:
 - Advantage: can use out of the box model counting system
 - Disadvantage: requires expensive "lineage computation" step; none of the model counting approaches seems complete for SPJU queries.

Thank You !

http://www.cs.washington.edu/homes/suciu/

