Probase

Haixun Wang Microsoft Research Asia

Short Text

Search

Document Title

Ad keywords

Caption

Anchor text

Question

The big question

How does the mind get so much out of so little?

 Our minds build rich models of the world and make strong generalizations from input data that is sparse, noisy, and ambiguous – in many ways far too limited to support the inferences we make.

How do we do it?

Science **331**, 1279 (2011);

How to Grow a Mind: Statistics, Structure, and Abstraction

Joshua B. Tenenbaum, 1* Charles Kemp, 2 Thomas L. Griffiths, 3 Noah D. Goodman 4

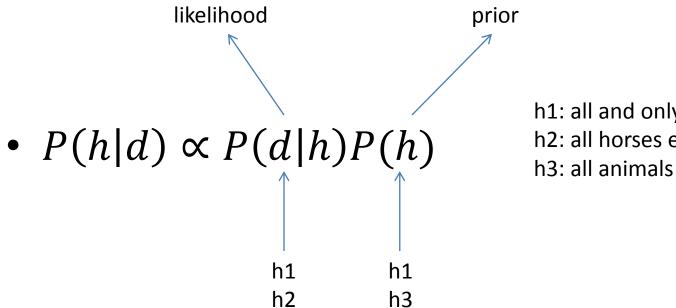
MIT CMU Berkeley Stanford

If the mind goes beyond the data given, another source of information must make up the difference.

h1: all and only horses

h2: all horses except Clydesdales

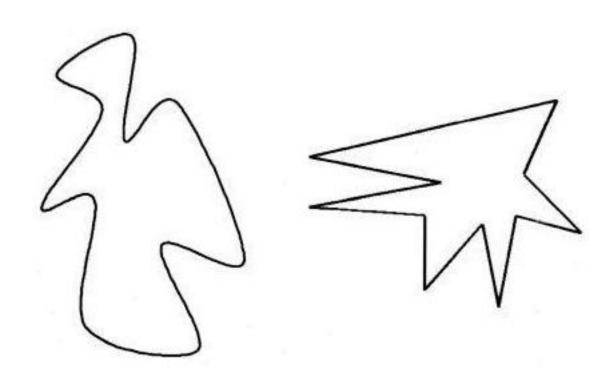
h3: all animals

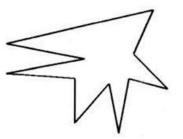


h1: all and only horses

h2: all horses except Clydesdales

Which is "kiki" and which is "bouba"?





sound

shape

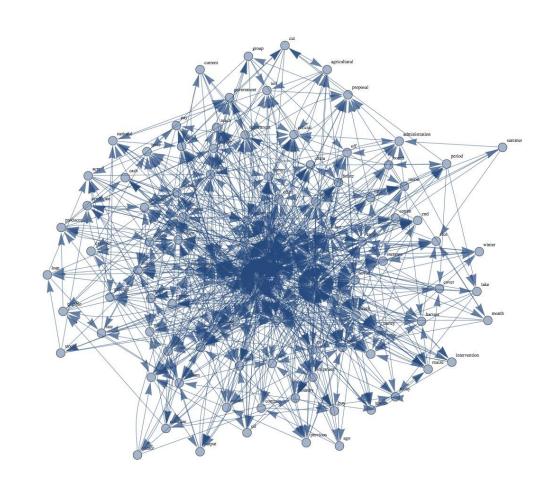
zigzaggedness

Another example

Pablo Picasso 25 Oct 1881

Spanish

Probase: a semantic network for text understanding



Concepts

Entities

isA

isPropertyOf

Co-occurrence

isA Extraction

Hearst pattern

NP such as NP, NP, ..., and or NP such NP as NP,* or and NP NP, NP*, or other NP NP, NP*, and other NP NP, including NP,* or and NP NP, especially NP,* or and NP

- domestic animals such as cats and dogs ...
- animals other than cats such as dogs ...

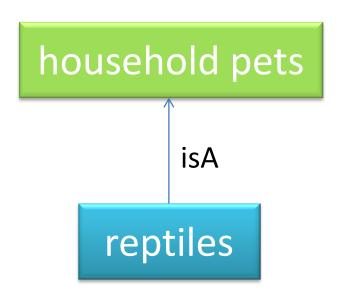
• ... is a ... pattern

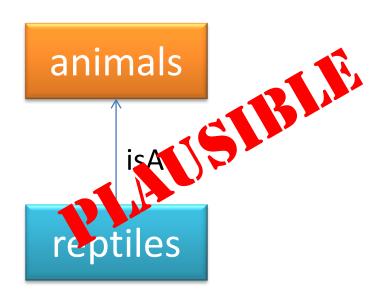
NP is a/an/the NP

- China is a developing country.
- Life is a box of chocolate.

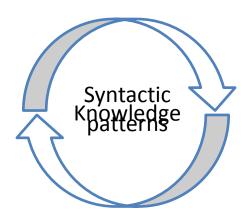
... animals other than cats such as dogs ...

... household pets other than animals such as reptiles, aquarium fish ...

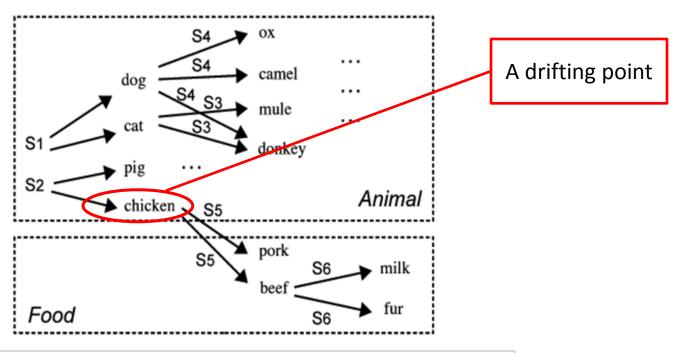




Iterative Information Extraction



Semantic Drifts



S1="Animals such as dogs and cats, grow fast."

S2="Land animals such as chicken and pigs - all of which live on land"

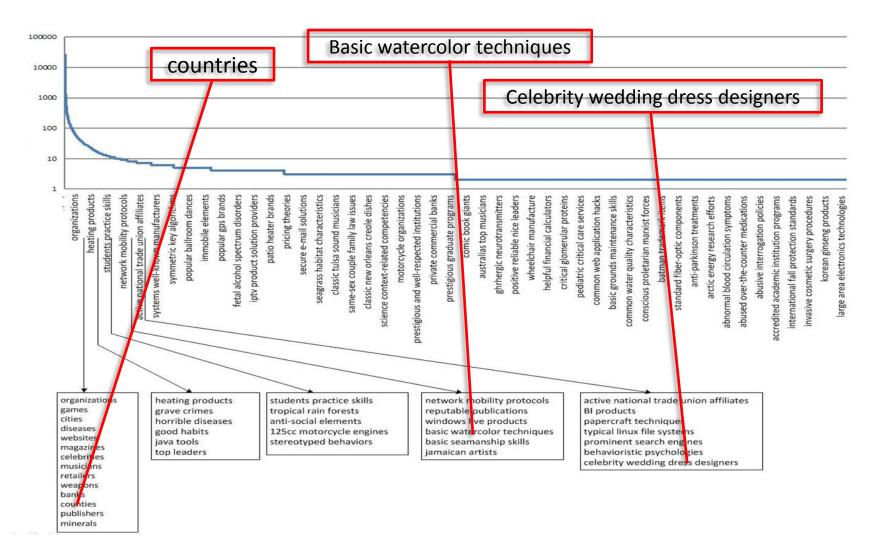
S3="Postures are often named after animals, such as mule, donkey and cat."

S4="... innkeeper, angels, and animals such as ox, camels, donkeys and dog"

S5="Common food from animals such as pork, beef and chicken"

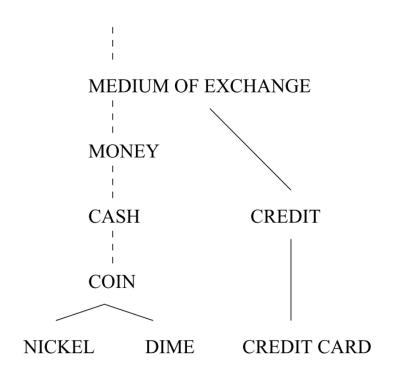
S6="Products from animals such as fur, milk and beef are given to families..."

Probase Concepts (2.7 million+)



Probase is A error rate: <%1 @1 and <10% for random pair

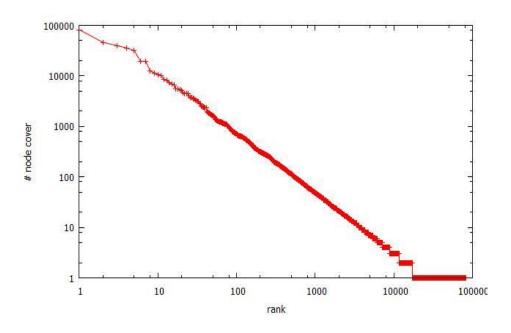
A traditional taxonomy



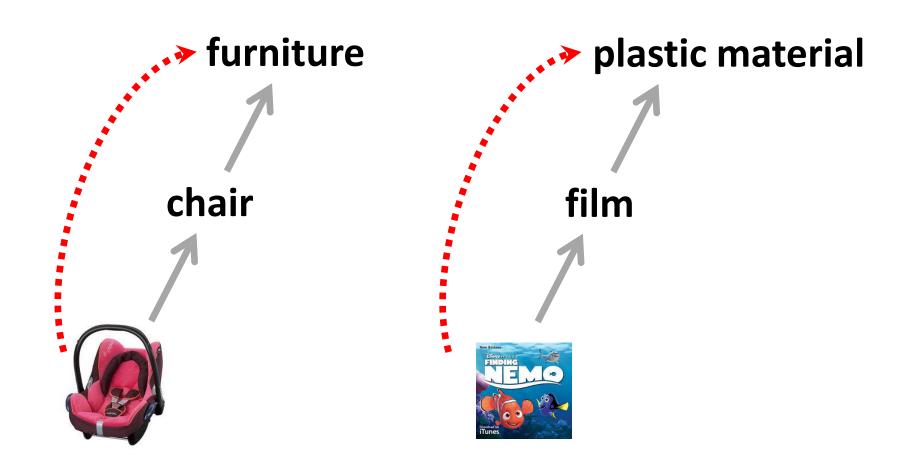
script language technology development_tool environment programming_language modern_programming_language easy_language

"python"

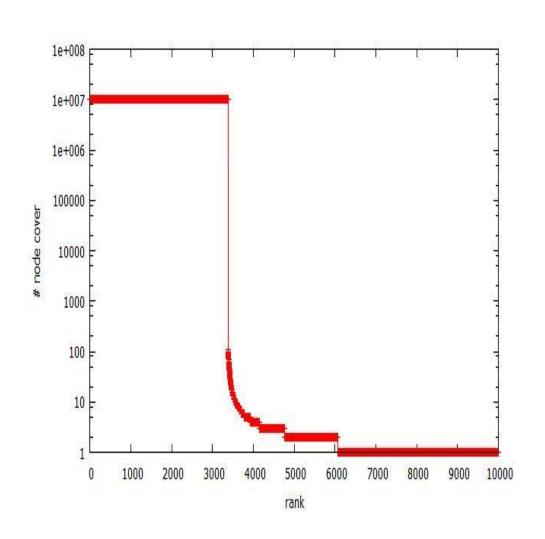
of descendants (WordNet)



Transitivity does not always hold



of descendants (early version of Probase)



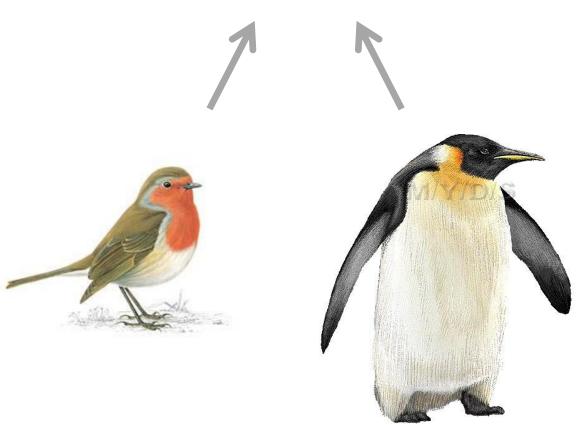
Probase Scores

- Typicality
- Vagueness
- Representativeness
- Ambiguity
- Similarity

foundation for inferencing

Typicality

bird



$$P(e|c) = \frac{n(c,e) + \alpha}{\sum_{e_i \in c} n(c,e_i) + \alpha N}$$

$$P(c|e) = \frac{n(c,e) + \alpha}{\sum_{e \in c_i} n(c_i, e) + \alpha N}$$

"robin" is a more typical bird than a "penguin"

p(robin|bird) > p(penguin|bird)

Representativeness (basic level of categorization)

software company

$$\max_{c} p(c|e) \cdot p(e|c)$$

high typicality p(c|e)

largest OS vendor

high typicality p(e|c)

Microsoft

Vagueness

key players factors items things reasons

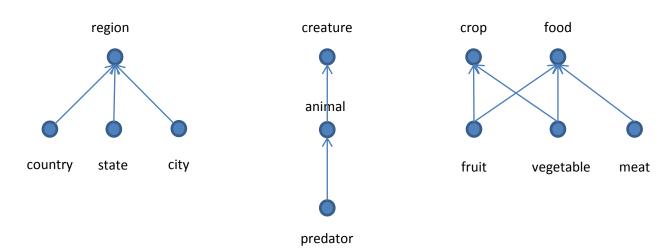
•••

$$V(C) = \frac{|\{e_i|P(C|e_i) \ge c, \forall e_i \in C\}|}{N(C)}$$

(Do people whom you regard highly regard you highly?)

Ambiguity

- Probase defines 3 levels of ambiguity
 - Level 0 (1 sense): apple juice
 - Level 1 (2 or more related senses): Google
 - Level 2 (2 or more senses): python
- Concepts form clusters, clusters form senses (through isa relation)



Similarity

• microsoft, ibm

0.933

• google, apple

0.378 ??

$$sim(t_1, t_2) = \max_{x,y} \ cosine \ (c_x(t_1), c_y(t_2))$$

Applications

- Query Understanding
 - Head/Modifier/Constraint detection

•

- SRL (semantic role labeling) with FrameNet
 - e.g. Tom broke the window.

Example: FrameNet

Frame: Apply_heat

FE1 FE3 FE4

She was FRYING eggs and bacon and mushrooms on a camp stove in Woolley 's billet .

Concept	P(c FE)	Instance	P(w FE)
heat source	0.19	Stove	0.00019
Large metal	0.04	Radiator*	0.00015
Kitchen appliance	0.02	Oven	0.00015
		Grill*	0.00014
		Heater*	0.00013
		Fireplace*	0.00013
		Lamp*	0.00013
		Hair dryer*	0.00012
		Candle*	0.00012

Example: Head and Modifier Detection

toy kid

cover iphone (accessory, smart phone)

seattle hotel jobs

When concepts are too specific

Example:

mobile windows operating system / head large and inferential software vendor / modifier

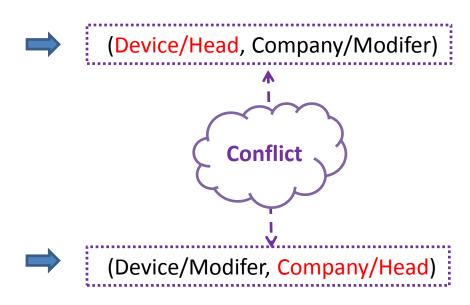
No generalization power

• million² patterns

When concepts are too general

Head	Modifier	
modem	comcast	
wireless router	comcast	

Head	Modifier	
netflix	touchpad	
skype	windows phone	



Knowledge Bases

	WordNet	Wikipedia	Freebase	Probase
	Gossipmonger; Rumormonger; Rumourmonger; Newsmonger; Woman; Adult female;	Domesticated animals; Cats; Felines; Invasive animal species; Cosmopolitan species; Sequenced genomes; Animals described in 1758;	TV episode; Creative work; Musical recording; Organism classification; Dated location; Musical release; Book; Musical album; Film character; Publication; Character species; Top level domain; Animal; Domesticated animal;	Animal; Pet; Species; Mammal; Small animal; Thing; Mammalian species; Small pet; Animal species; Carnivore; Domesticated animal; Companion animal; Exotic pet; Vertebrate;
IBM	N/A	Stock Exchange; IBM; Cloud computing providers; Companies based in Westchester County, New	Business operation; Issuer; Literature subject; Venture investor; Competitor; Software developer; Architectural structure owner; Website owner; Programming language designer; Computer manufacturer/brand; Customer; Operating system developer; Processor manufacturer;	Company; Vendor; Client; Corporation; Organization; Manufacturer; Industry leader; Firm; Brand; Partner; Large company; Fortune 500 company; Technology company; Supplier; Software vendor; Global company; Technology company;
	Communication: Auditory		Employer; Written work; Musical recording: Musical artist: Musical album:	Instance of: Cognitive function; Knowledge; Cultural factor;

Communication; Auditory

cognitive process; Faculty;

Textual matter;

Language

communication; Word; Higher Languages; Linguistics; Human

Mental faculty; Module; Text; Wikipedia articles with ASCII art

communication; Human skills;

recording; Musical artist; Musical album;

Type profile; Journal; Quotation subject;

Type/domain equivalent topic; Broadcast

Literature subject; Query; Periodical;

genre; Periodical subject; Video game

content descriptor; ...

Cultural barrier; Cognitive process;

difference; Ability; Characteristic;

Attribute of: Film; Area; Book;

Publication; Magazine; Country;

Work; Program; Media; City; ...

Cognitive ability; Cultural

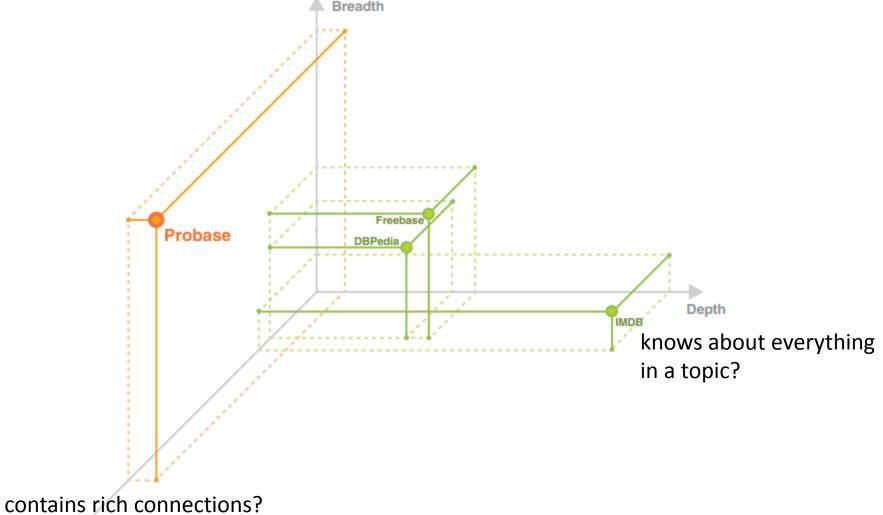
What can Probase do?

enable understanding

and

make up for the lack of depth

covers every topic? Knowledgebases



breadth and density enable understanding

Concept Learning

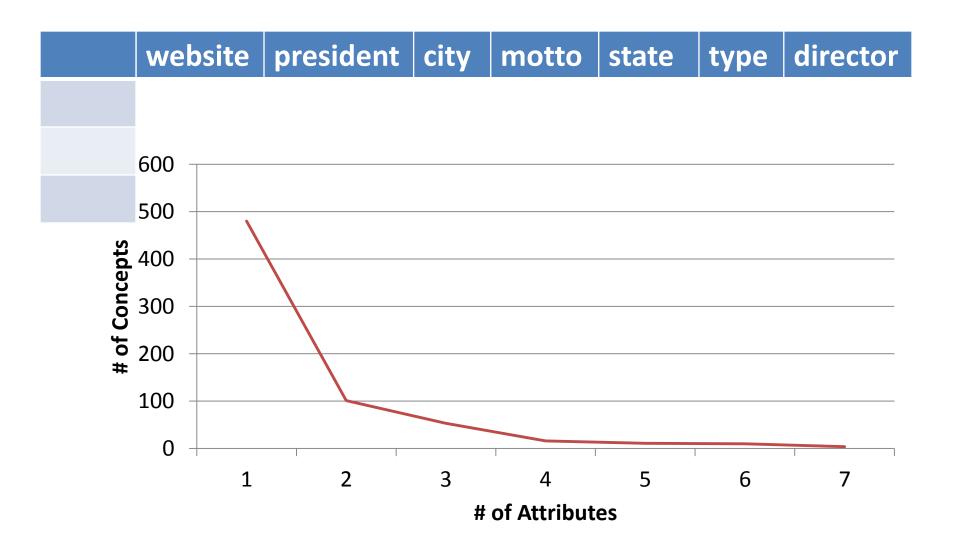
China Brazil India

emer**g**iag tryarket

body smell taste

wine

Understanding Web Tables



china population

country

collector of fine china

earthenware

Bayesian

$$P(c_k|E) = \frac{P(E|c_k)P(c_k)}{P(E)} \propto P(c_k) \prod_{i=1}^{M} P(e_i|c_k).$$

For a mixture of instances and properties: Noisy-Or model

$$P(c|t_l) = 1 - (1 - P(c|t_l, z_l = 1))(1 - P(c|t_l, z_l = 0))$$

where $z_l=1$ indicates t_l is an entity, $z_l=0$ indicates t_l is a property

Bayesian rule gives:

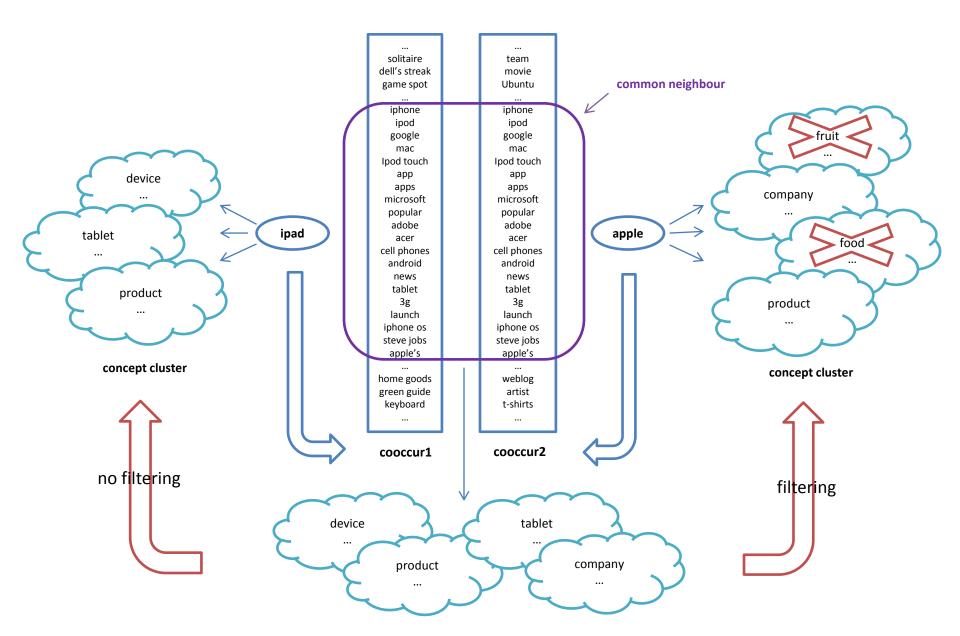
$$P(c|T) \propto P(c) \prod_{l}^{L} P(t_{l}|c) \propto \frac{\prod_{l} P(c|t_{l})}{P(c)^{L-1}}$$

apple

company

iPad

device



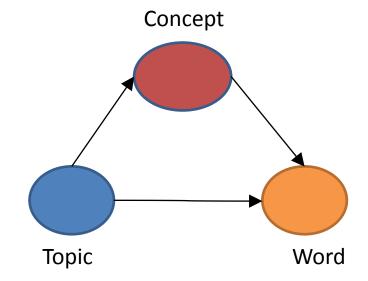
concept cluster

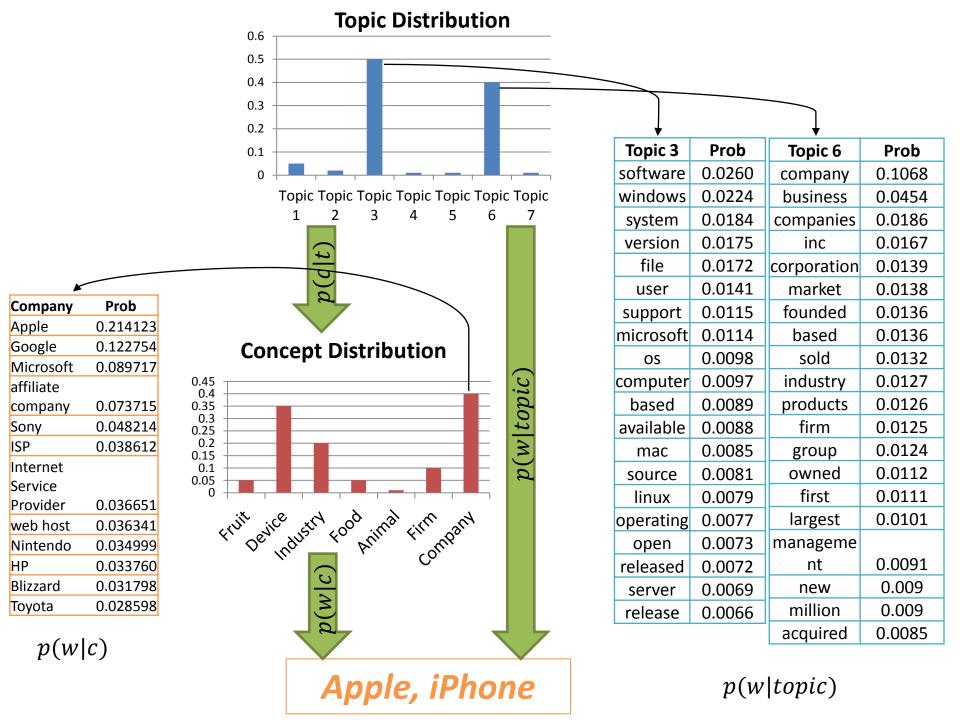
Modeling Co-occurrence

Probase

LDA model

Wikipedia





 Infer topics z from text s using collapsed Gibbs sampling:

$$p(z_i = k | \vec{s}, z_{-i}, C) \propto (n_{\cdot k} + \alpha) \times \frac{C_{s_i k} + n_{s_i k} + \beta}{\sum_w C_{wk} + n_{wk} + |W|\beta}$$

 Estimate the concept distribution for each term w in s:

$$p(c|w,z) \propto p(c|w) \sum_{k} \pi_{wk} \phi_{ck},$$
$$\phi_{ck} = \frac{C_{ck} + \beta}{\sum_{w} C_{wk} + |W|\beta},$$

Examples

ShortText: fox fur Conceptualize

Show Parameters

Elapsed Time = 00:00:00.2360236

fox fur

[159/wild animal/pet/animal][v] [4/texture/material][v] c/channel/network] 159/wild animal/pet/animal 0.5956765 4/texture/material 0.2107609 nel/network 0.6562241 wild animal 0.0169223 texture 0.01112421 0.1072035 feral animal 0.01490341 organic material 0.007871442 0.0970483 introduced animal soft material 0.01263432 0.007446955 0.06378444 pest animal 0.01216037 luxury material 0.007329956 0.05830856 small animal 0.01138677 luxurious material 0.007232076 0.0403064 nocturnal animal 0.01060585 raw material 0.006870993 0.0391444 native animal natural material 0.006293016 0.01022427 0.03133982 real world surface predatory animal 0.009197926 0.00589916 locally available raw material 0.005892543 0.0295761 animal 0.008580011 large animal 0.007967799 dead material 0.005889004 0.02876115 0.02717765 wild animal 0.004003763 electronic product 0.01436949 feral animal 0.003526101 electronic good 0.01051342 introduced animal high-tech product 0.00298924 0.009497663 pest animal 0.002877105 electrical good 0.006462679 small animal 0.002694075 consumer electronic product 0.006424694 nocturnal animal 0.002509312 electrical product 0.006299805 native animal 0.002419031 consumer product 0.005079063 produtory animal range electrical product 0.004220661

Examples

ShortText: read harry potter	Conceptualize
○ Good ○ HalfGood ○ NotGood Report	

Show Parameters

Elapsed Time = 00:00:00.0156005

read[v]

harry potter

[67/book]

 67/book
 0.543426

 book
 0.07531892

 fantasy book
 0.04780534

 popular book
 0.03634102

 children's book
 0.022661931

 fiction book
 0.02292863

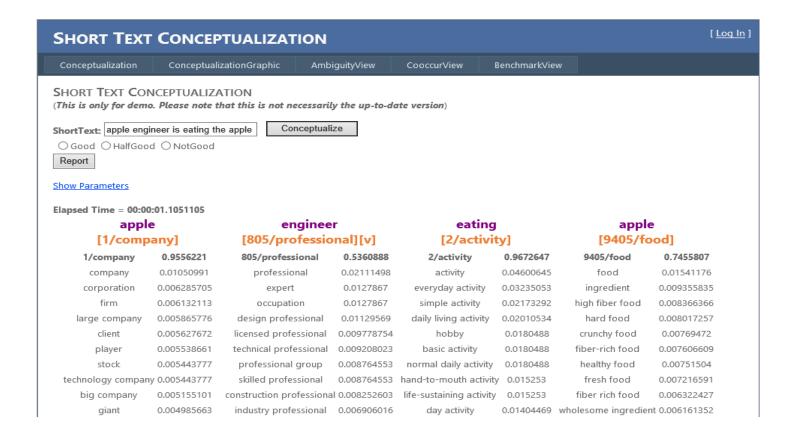
 chapter book
 0.01817051

 long book
 0.01146431

 interesting book
 0.01146431

254/novel	0.2113914		
novel	0.03902724		
fantasy novel	0.03693517		
popular novel	0.01231172		
great novel	0.01231172		
madara naval	A A122117		

Examples



Similarity between Two Short Texts

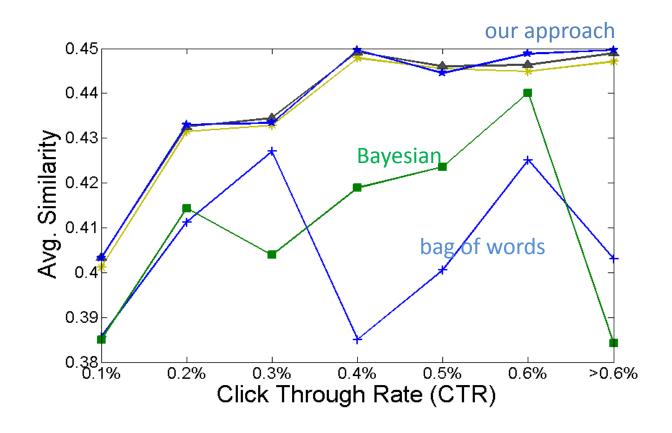
Search and URL title:

	Bayesian	LDA	LDA+Probase
T100	0.31 (0.291)	0.55 (0.311)	0.42 (0.391)
T200		0.52 (0.311)	0.42 (0.391)
T300		0.50 (0.311)	0.43 (0.401)

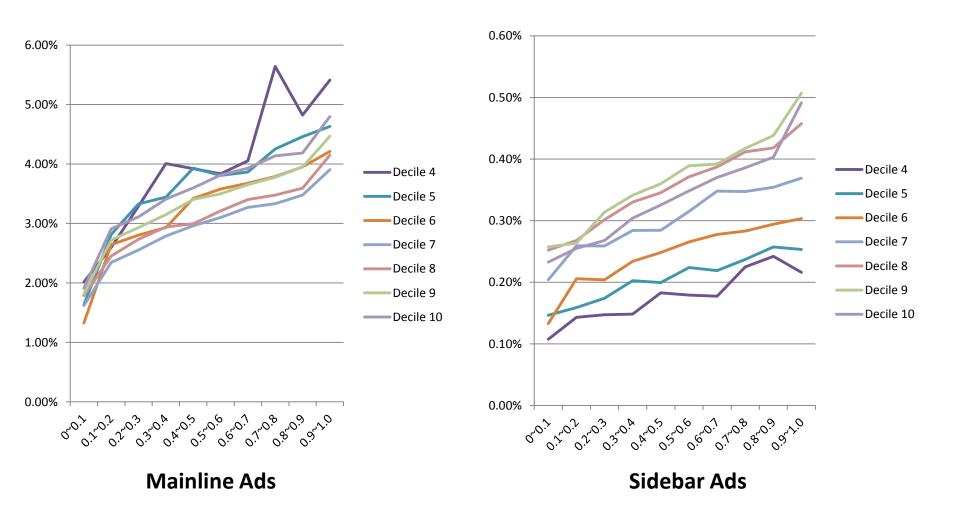
Two random searches:

	Bayesian	LDA	LDA+Probase
T100	0.02	0.24	0.03
T200		0.21	0.03
T300		0.19	0.03

CTR and search/ads similarity



CTR and search/ads similarity (torso and tail queries)



FrameNet Sentences

	Basic	Context Sensitive		
	Basic	T100	T200	T300
Fold 1	-4.716	-3.401	-3.385	-3.378
Fold 2	-4.728	-3.409	-3.393	-3.389
Fold 3	-4.741	-3.432	-3.417	-3.410
Fold 4	-4.727	-3.413	-3.399	-3.392
Fold 5	-4.740	-3.433	-3.417	-3.413

Log-likelihood of frame elements with five-fold validation.

Many applications

We mainly worked in the Search/Ads domain

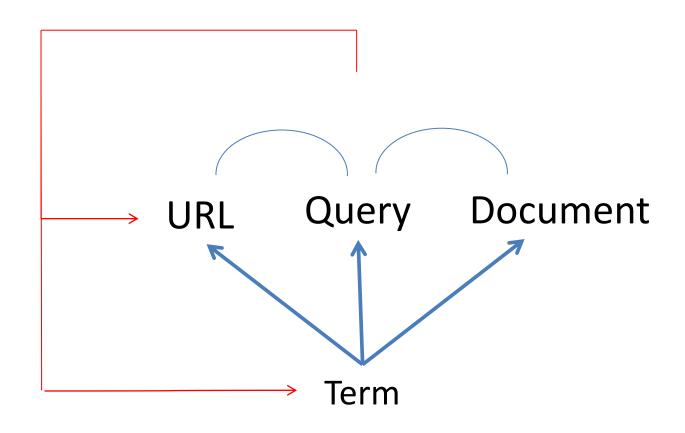
- Related search
- Ads selection
- Bid keyword suggestion
- Search suggestion

— ...

knowledge representation tasks

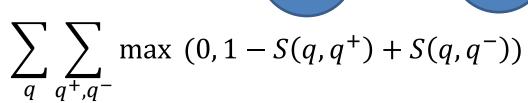
86%

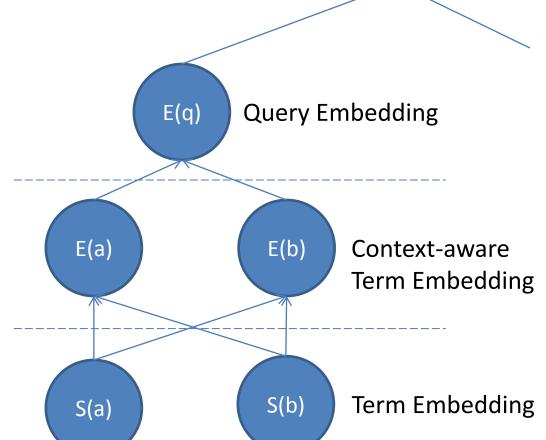
Representation



s(q,q')

- Given a query q
- Positive case q^+
 - Queries in the same session
- Negative case q⁻
 - Generated randomly
- Intuition: $s(q, q^+) > s(q, q^-)$
- Objective function:





Word embedding [Collobert and Weston 2008]

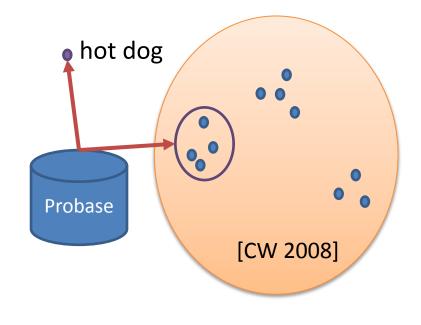
- Positive:
 - $-s^+$: "... UN assists China in developing ..."

- Negative:
 - $-s^-$: "... UN assists **banana** in developing ..."

•
$$J = \max(0, 1 - Score(s^+) + Score(s^-))$$

Extending Embedding using Probase

- For any term not covered by the embedding
 - "hot dog"
- Find its neighbors in Probase conceptual space
 - "bagel", "sandwich", etc.
- Use the average embedding of its top-k neighbors
 - Special case: k = 1
- Handle multi-sense

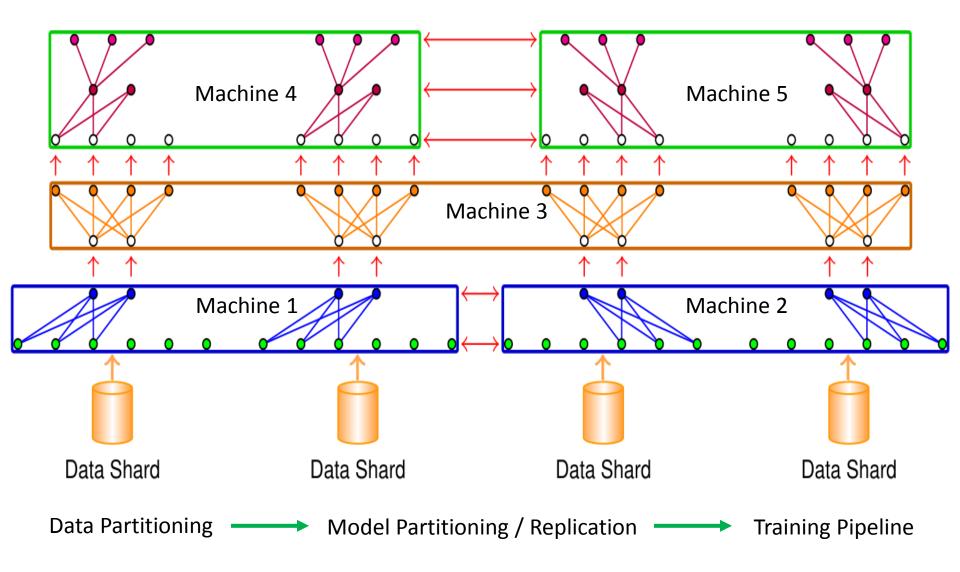


Probase graph embedding

- Probase concept graph G (m concepts)
- w_{ij} : weight (similarity between concept i and j)
- Let $y = (y_1, ..., y_m)^T$ be the embedding of G
- The optimal y is given by minimizing

$$\sum_{i,j} \left| \left| y_i - y_j \right| \right|^2 f(w_{ij})$$

Implementation on Trinity



Probase Publications

- 1. Context dependent conceptualization, IJCAI 2013
- 2. Automatic extraction of top-k lists from web data, ICDE 2013
- 3. Attribute Extraction and Scoring: A Probabilistic Approach, ICDE 2013
- 4. Identifying Users' Topical Tasks in Web Search, WSDM 2013
- 5. Probase: A Probabilistic Taxonomy for Text Understanding, *SIGMOD* 2012
- 6. Optimizing Index for Taxonomy Keyword Search, SIGMOD 2012
- 7. Automatic Taxonomy Construction from Keywords, KDD 2012
- 8. A System for Extracting Top-K Lists from the Web (demo), KDD 2012
- 9. Understanding Tables on the Web, ER 2012
- 10. Toward Topic Search on the Web, ER 2012
- 11. Isanette: A Common and Common Sense Knowledge Base for Opinion Mining, *ICDM Workshops* 2011
- 12. Web Scale Taxonomy Cleansing, VLDB 2011
- 13. Short Text Conceptualization using a Probabilistic Knowledgebase, *IJCAI* 2011

Thanks