Search on Graphs

 Theory meets Engineering

Yuqing Wu Indiana University U.S.A.
George Fletcher Eindhoven Univ. of Tech.
The Netherlands

Tutorial Outline

- Graph Data and Search
- The Theory
- The Engineering
- Summary \& Future Directions

Graph Data

Search on Graphs

Data - in the Eyes of DB Researchers

RDB - Relational Database

XML - eXtensible Markup Language

RDF - Resource Description Framework

Graph - an Abstract View

- The Major Ingredients
- Nodes
- Edges
- Variants
- Labeled vs. unlabeled
- Directed vs. undirected
- Connected?
- Weight
- One big graph vs. many smaller graphs
- Certain vs. uncertain

。

Search on Graph - in the Eyes of DB Researchers

- SPARQL query answering
- Triple store, vertical partition, property tables, ...
- MAP, Hexastore, TripleT, ...
-
- Keyword search
- BANKS, BANKS2, BLINK,...
- Community, r-clique,...
-
- Other types of search problems
- PSPARQL, CPSPARQL, SPARQL2L, SPARQLeR, ...
- GraphQL, GADDI, SUMMA, SAPPER, SAGA, TALE, ...

Search on Graph - an Abstract View

- Input
- A node
- A pair of nodes
- A set of nodes
- A sub-graph
- A pattern
- A set of keywords
\qquad
- Constraints
- Size
- Distance
- Weight
- k (for top- k)
- Similarity threshold
-
- Output
- Connectivity
- Distance
- Path
- Sub-structure
- Node set
- Sub-tree
- Sub-graph
-
- Variants
- One / any / all / top- k
- Shortest / smallest / most meaningful
- Precise vs. approximate
-

The Question

How to evaluate search queries efficiently??

- Challenges
- Data access
- Computation
-
- Techniques
- Data modeling and storage
- Filtering and optimization
- Indexing
- Using statistical summary
- Pre-compute partial results
-

The Common Theme

- How to efficiently
- Pick up the smallest superset of the results
- Remove as many non-promising candidates as possible.

The Common Theme

- How to efficiently
- Pick up the smallest superset of the results
- Remove as many non-promising candidates as possible.

The Common Theme

- How to efficiently
- Pick up the smallest superset of the results
- Remove as many non-promising candidates as possible.

The Common Theme

- How to efficiently
- Pick up the smallest superset of the results
- Remove as many non-promising candidates as possible.

Tutorial Outline

- Graph Data and Search
- The Theory
- Methodology
- Relation Algebra on Tree-Structured Data
- Relation Algebra on Graph
- The Engineering
- Summary \& Future Direction

Theoretical Methodology

General methodology

- Coupling of expressive power of query languages with appropriate structural notions
- Fletcher, Van Gucht, Wu, Gyssens, Brenes, Paredaens. Inf. Syst. 2009

Theoretical Methodology

Basic idea

- Restrict focus on a fixed query language L and (an arbitrary) fixed database instance I
- Define an equivalence relation \approx_{I} on objects in the instance, purely in terms of the structure of the instance
- For example, nodes m and n of graph I are structurally equivalent (i.e., $m \approx_{I} n$) iff m and n have the same node-labels
- Define an equivalence relation \approx_{L} on objects in the instance, in terms of their indistinguishability by queries in L, i.e., for every query Q in L, either both of the objects are in $Q(I)$ or both are not in $Q(I)$
- For example, $m \approx_{L} n$ for the language L of simple keyword queries
- Finally, establish the relationship between $m \approx_{I} n$ and m $\approx_{L} n$, preferably iff.
- In this way, the behavior of an infinite object (i.e., the query language L) is reduced to a finite object (i.e., \approx_{I})
- Ideally, \approx_{I} is tractable

Theoretical Applications

- Tarski's "relation algebra" (RA)
- Proposed by Alfred Tarski in the 1940s
- Simple navigational query language at the core of many standards
- As a basic query language for reasoning about paths in trees/graphs

Theoretical Applications

- Study of the RA on trees
- Gyssens, Paredaens, Van Gucht, Fletcher. PODS 2006.
- Wu, Van Gucht, Gyssens, Paredaens. Computer Journal, 2011.
- Study of the RA on graphs
- Fletcher, Gyssens, Leinders, Van den Bussche, Van Gucht, Vansummeren, Wu. ICDT 2011.

Tutorial Outline

- Graph Data and Search
- The Theory
- Methodology
- Relation Algebra on Tree-Structured Data
- Relation Algebra on Graph
- The Engineering
- Summary \& Future Directions

XML and Queries - An Example

- Query 1: / /A/B/C
- Query 2: //B/C
- Query 3: //A/B[./D]/C
- Query 4: //A[./B[./D]]/B/C

Tree Data Model

- Represent XML document D as a finite unordered node-labeled tree
- $\mathrm{D}=(V, E d, r, \lambda)$
- Nodes: V
- Edges: Ed
- Root: r
- Labels: $\lambda: V \rightarrow \mathcal{L}$

Tarski's Relation Algebra on Trees

- Path semantics XPath Algebra

$$
\begin{aligned}
\varepsilon(D) & =\{(m, m) \mid m \in V\} \\
\phi(D) & =\phi \\
l(D) & =\{(m, m) \mid m \in V \wedge \lambda(m)=l\} \\
\downarrow(D) & =E d \\
\uparrow(D) & =E d^{-1} \\
\pi_{1}\left(E_{1}\right)(D) & =\left\{(m, m) \mid \exists n:(m, n) \in E_{1}(D)\right\} \\
E_{1} \circ E_{2}(D) & =\left\{(m, n) \mid \exists w:(m, w) \in E_{1}(D) \wedge(w . n) \in E_{2}(D)\right\}
\end{aligned}
$$

- Node semantics

$$
E(D)[\text { nodes }]=\{n \mid \exists m:(m, n) \in E(D)\}
$$

XPath Algebra - Examples

- Query 1: //A/B/C

$$
A \circ \downarrow \circ B \circ \downarrow \circ C
$$

- Query 3: //A/B[./D]/C

$$
A \circ \downarrow \circ B \circ \pi_{1}(\downarrow \circ D) \circ \downarrow \circ C
$$

- Query 4: //A[./B[./D]]/B/C

$$
A \circ \pi_{1}\left(\downarrow \circ B \circ \pi_{1}(\downarrow \circ D)\right) b \downarrow \circ B \circ \downarrow \circ C
$$

Fragments of XPath Algebra

- U algebra XPath algebra - \downarrow, π_{1}
- D algebra XPath algebra $-\uparrow, \pi_{1}$
- Dilalgebra XPath algebra - \uparrow
- $\boldsymbol{U}[反]$ algebra \boldsymbol{U} algebra up to length κ
- $\mathcal{D}[\kappa]$ algebra \mathcal{D} algebra up to length κ
- $\boldsymbol{D}^{[][\kappa]}$ algebra $\boldsymbol{D}^{[]}$algebra up to length κ

D [/] Equivalence

Given an XML document and value κ and $\left(\mathrm{m}_{1}, \mathrm{n}_{1}\right),\left(\mathrm{m}_{2}, \mathrm{n}_{2}\right)$ in $\operatorname{DownPairs(\mathcal {D})}$

$$
\begin{gathered}
\left(m_{1}, n_{1}\right)=\underset{\substack{k]}}{ }\left(m_{2}, n_{2}\right) \\
\Uparrow
\end{gathered}
$$

For any E in $\mathcal{D}[1]$

$$
\left(m_{1}, n_{1}\right) \in E(D) \Leftrightarrow\left(m_{2}, n_{2}\right) \in E(D)
$$

Label Path

- DownPair (D, \mathfrak{k})
- $\mathcal{L} \mathscr{P}(m, n)$
- $\mathcal{L P}(m, n)=(\mathrm{A}, \mathrm{B}, \mathrm{C})$
- $\mathcal{L} \mathscr{P}(n, k)$
- $\mathcal{L P}(n, 0)=(C)$
- $\mathcal{L P}(n, 1)=(B, C)$
- $\mathcal{L P}(n, 4)=(\mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{C})$
- $\mathcal{L P}(n, 7)=(A, A, B, C)$

$\mathcal{N}[\kappa]$ Equivalence

- Given an XML document and value κ

$$
\begin{gathered}
n_{1} \equiv \underset{\mathcal{N}[k]}{ } n_{2} \\
\mathcal{L} \mathscr{P}\left(n_{1}, k\right) \stackrel{\mathcal{L} P}{ }\left(n_{2}, k\right)
\end{gathered}
$$

$\mathcal{N}[$ / $]$ Equivalence

- Given an XML document and value κ

$$
n_{1} \equiv_{\mathcal{N}[k]} n_{2} \quad \Leftrightarrow \quad \mathcal{L} \mathscr{P}\left(n_{1}, k\right)=\mathcal{L} \mathscr{P}\left(n_{2}, k\right)
$$

$$
\begin{aligned}
& B_{1} \equiv_{\mathfrak{N}[1]} B_{2} \\
& B_{1} \not \neq_{\mathfrak{N}[2]} B_{2}
\end{aligned}
$$

$\mathcal{N}[\kappa]$ Partition

- Partition induced by the $\mathcal{M} \mathbb{R}$-equivalence relationship.
- \mathcal{M} 月-partition block \leftrightarrow label path

$\mathcal{N}[k]$ Partition

$$
n_{1} \equiv_{\mathcal{S}_{[k]}} n_{2} \quad \Leftrightarrow \quad \mathcal{L} \mathscr{P}\left(n_{1}, k\right)=\mathcal{L} \mathscr{P}\left(n_{2}, k\right)
$$

$$
\mathcal{M}[1] \begin{array}{|l|l}
\hline \text { (A) } & \left\{\mathrm{A}_{1}\right\} \\
(\mathrm{A}, \mathrm{~A}) & \left\{\mathrm{A}_{2}\right\} \\
\text { (A,B) } & \left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}\right\} \\
(\mathrm{B}, \mathrm{~B}) & \left\{\mathrm{B}_{5}\right\} \\
(\mathrm{B}, \mathrm{C}) & \left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}\right\} \\
& \text { (B,D) } \\
\left\{\mathrm{D}_{1}\right\}
\end{array}
$$

$$
\mathcal{N}[1][(\mathrm{A}, \mathrm{~B})]=\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}\right\}
$$

Partition Refinement

$$
\begin{gathered}
\mathcal{N}[2] \prec \mathscr{N}[1] \\
\mathcal{N}[8] \cong \mathcal{N}[10]
\end{gathered}
$$

$\mathbb{P}[\mathcal{C}]$ Equivalence

- Given an XML document and value κ

$\mathscr{P}[\mathcal{\beta}]$ Equivalence

- Given an XML document and value κ

$\mathscr{P}[\mathcal{K}]$ Partition

- Partition induced by the $\mathscr{P}[k]$-equivalence relationship.
- $\mathscr{P}[\kappa]$-partition block \leftrightarrow label path

$\mathscr{P}[\mathcal{\beta}]$ Partition

$\mathscr{P}[\mathcal{K}]$ Partition

2

Coupling Theorem

Let D be a document and κ is an integer.

- The $\mathbb{P}[\mathrm{l}]$-partition of D and the $\mathscr{D}[\mathrm{k}]$-partition of D are the same under the path semantics
- The $\mathcal{N}[\mathrm{l}]$-partition of D and the $\mathcal{D}[\mathrm{A}]$-partition of D are the same under the node semantics

$$
\begin{array}{ll}
\mathcal{D}[k] \cong \mathcal{N}[k] & \mathcal{D} \cong \mathcal{N}[\infty] \\
\mathcal{D}[k] \cong \mathscr{P}[k] & \mathcal{D} \cong \mathscr{P}[\infty]
\end{array}
$$

Label-Union Theorem

Let D be a document, κ an integer, and E is an $D[k]$ expression. Then there exists a class of partition blocks of the $\mathbb{P}[\kappa]$-partition $(\mathcal{N}[k]-$ partition) of D such that

$$
\begin{aligned}
E(D)[\text { nodes }] & =\bigcup_{l p \in L P S} \mathcal{N}[k][l p] \\
E(D) & =\bigcup_{l p \in L P S} \mathscr{P}[k][l p]
\end{aligned}
$$

Tutorial Outline

- Graph Data and Search
- The Theory
- Methodology
- Relation Algebra on Tree-Structured Data
- Relation Algebra on Graph
- The Engineering
- Summary \& Future Directions

Tarski's Relation Algebra on Graphs

- Path semantics, for graph G with edge labels R

$$
\begin{aligned}
R(G) & =G(R) ; \\
\emptyset(G) & =\emptyset ; \\
i d(G) & =\{(m, m) \mid m \in \operatorname{adom}(G)\} ; \\
e_{1} \circ e_{2}(G) & =\left\{(m, n) \mid \exists p\left((m, p) \in e_{1}(G) \&(p, n) \in e_{2}(G)\right)\right\} ; \\
e_{1} \cup e_{2}(G) & =e_{1}(G) \cup e_{2}(G) .
\end{aligned}
$$

Tarski's Relation Algebra on Graphs

Example: doctors of friends, by person knows o patientOf $(G)=\{(u m i$, saori $),($ kotaro, saori $), \ldots\}$

Tarski's Relation Algebra on Graphs

Example: friends and friends of friends knows \cup knows $\circ \operatorname{knows}(G)=$

$$
\begin{aligned}
& \{(\text { sue }, \text { umi }),(\text { sue }, \text { kotaro }),(\text { umi }, \text { kotaro }), \\
& \\
& \qquad(\text { umi }, \text { saori }),(\text { kotaro }, \text { saori }), \ldots\}
\end{aligned}
$$

Tarski's Relation Algebra on Graphs

- Path semantics, cont.

$$
\begin{aligned}
\operatorname{di}(G) & =\{(m, n) \mid m, n \in \operatorname{adom}(G) \& m \neq n\} ; \\
e^{-1}(G) & =\{(m, n) \mid(n, m) \in e(G)\} ; \\
e_{1} \cap e_{2}(G) & =e_{1}(G) \cap e_{2}(G) ; \\
e_{1} \backslash e_{2}(G) & =e_{1}(G) \backslash e_{2}(G) ; \\
\pi_{1}(e)(G) & =\{(m, m) \mid m \in \operatorname{adom}(G) \& \exists n(m, n) \in e(G)\} ; \\
\pi_{2}(e)(G) & =\{(m, m) \mid m \in \operatorname{adom}(G) \& \exists n(n, m) \in e(G)\} ; \\
\bar{\pi}_{1}(e)(G) & =\{(m, m) \mid m \in \operatorname{adom}(G) \& \neg \exists n(m, n) \in e(G)\} ; \\
\bar{\pi}_{2}(e)(G) & =\{(m, m) \mid m \in \operatorname{adom}(G) \& \neg \exists n(n, m) \in e(G)\} ; \\
e^{+}(G) & =\bigcup_{k \geq 1} e^{k}(G) .
\end{aligned}
$$

Tarski's Relation Algebra on Graphs

Example: people with untreatable diseases

$$
\text { hasDisease } \backslash\left(\text { hasDisease } \circ \pi_{2}(\text { treatsDisease })\right)(G)=
$$

$$
\{(\text { sue }, \text { migraine }), \ldots\}
$$

Tarski's Relation Algebra on Graphs

Example: the social network

$$
\text { knows }^{+}(G)=\{(\text { sue }, \text { umi }),(\text { sue }, \text { kotaro }),(\text { sue }, \text { saori }), \ldots\}
$$

k-Bisimilarity on Graphs

- Let $\mathrm{G}=\left\langle\mathrm{N}, \mathrm{E}, \lambda_{\mathrm{N}}, \lambda_{\mathrm{E}}>\right.$ be a graph and k be a nonnegative integer.
- Node $u, v \in N$ are called \mathbf{k}-bimsimilar (u $\approx^{\kappa} \mathrm{v}$), iff the following holds
- $\lambda_{\mathrm{N}}(\mathrm{u})=\lambda_{\mathrm{N}}(\mathrm{v})$
\circ If $k>0$, then, $\forall u^{\prime} \in N\left[\left(u, u^{\prime}\right) \in E \Rightarrow \exists v^{\prime} \in N\left[\left(v, v^{\prime}\right) \in E\right.\right.$, $u^{\prime} \approx^{k-1} v^{\prime}$ and $\left.\left.\lambda_{\mathrm{E}}\left(\mathrm{u}, \mathrm{u}^{\prime}\right)=\lambda_{\mathrm{E}}\left(\mathrm{v}, \mathrm{v}^{\prime}\right)\right]\right]$
\circ If $k>0$, then, $\forall v^{\prime} \in N\left[\left(v, v^{\prime}\right) \in E \Rightarrow \exists u^{\prime} \in N\left[\left(u, u^{\prime}\right) \in E\right.\right.$, $v^{\prime} \approx{ }^{\kappa-1} u^{\prime}$ and $\left.\left.\lambda_{E}\left(v, v^{\prime}\right)=\lambda_{E}\left(u, u^{\prime}\right)\right]\right]$

k-Bisimilarity on Graphs - An Example

$n_{1} \approx n_{2} \quad \sqrt{ }$
$n_{1} \approx n^{1} \quad \sqrt{2}$
$n_{1} \approx^{2} n_{2} \times$

k-Partition

A partition of N based on k -bisimilarity

Variations and Applications

- Appropriate variations of bisimilarity can be defined for fragments of the RA
- Positive fragments (i.e., those without difference) correspond to a weaker notion of "similarity"
- Both bisimilarity and similarity are tractable structural equivalence notions
- Applications
- establish coupling of language and structural equivalence, as with trees
- use these couplings to separate many basic fragments of the RA

Tutorial Outline

- Graph Data and Search
- The Theory
- The Engineering
- Indexing Tree Structured Data
- Bi-Similarity Partition on Graphs
- Summary \& Future Directions

XML and Queries - An Example

- Query 1: //A/B/C
- Query 2: //B/C
- Query 3: //A/B[./D]/C
- Query 4: //A[./B[./D]]/B/C

XML and Queries - An Example

XML and Queries - An Example

- Query 1: //A/B/C
- Query 2: //B/C
- Query 3: //A/B[./D]/C
- Query 4: //A[./B[./D]]/B/C

XML and Queries - An Example

Query Evaluation Using Label-Union Theorem

- Query 1: //A/B/C
- $\operatorname{LPS}(\mathrm{E}, 2)=\{(\mathrm{A}, \mathrm{B}, \mathrm{C})\}$

$$
\begin{array}{rll}
\mathcal{N}[2] & (\mathrm{A}) & \left\{\mathrm{A}_{1},\right\} \\
& (\mathrm{A}, \mathrm{~A}) & \left\{\mathrm{A}_{2}\right\} \\
& (\mathrm{A}, \mathrm{~B}) & \left\{\mathrm{B}_{1}, \mathrm{~B}_{4}\right\} \\
& (\mathrm{A}, \mathrm{~A}, \mathrm{~B}) & \left\{\mathrm{B}_{2}, \mathrm{~B}_{3},\right\} \\
& (\mathrm{A}, \mathrm{~B}, \mathrm{~B}) & \left\{\mathrm{B}_{5}\right\} \\
\hline & \\
\hline & \mathrm{A}, \mathrm{~B}, \mathrm{C}) & \left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\right\} \\
\hline & \mathrm{B}, \mathrm{~B}, \mathrm{C}) & \left\{\mathrm{C}_{4}\right\} \\
& (\mathrm{A}, \mathrm{~B}, \mathrm{D}) & \left\{\mathrm{D}_{1}\right\}
\end{array}
$$

Query Evaluation Using Label-Union Theorem

- Query 2: //B/C
- $\operatorname{LPS}(\mathrm{E}, 2)=\{(\mathrm{A}, \mathrm{B}, \mathrm{C}),(\mathrm{B}, \mathrm{B}, \mathrm{C})\}$

$\mathcal{N}[2]$	(A)	$\left\{\mathrm{A}_{1},\right\}$
	(A, A)	$\left\{\mathrm{A}_{2}\right\}$
	(A, B)	$\left\{\mathrm{B}_{1}, \mathrm{~B}_{4}\right\}$
	$(\mathrm{A}, \mathrm{A}, \mathrm{B})$	$\left\{\mathrm{B}_{2}, \mathrm{~B}_{3},\right\}$
	$(\mathrm{A}, \mathrm{B}, \mathrm{B})$	$\left\{\mathrm{B}_{5}\right\}$
	$(\mathrm{A}, \mathrm{B}, \mathrm{C})$	$\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\right\}$
$(\mathrm{B}, \mathrm{B}, \mathrm{C})$	$\left\{\mathrm{C}_{4}\right\}$	
	$(\mathrm{A}, \mathrm{B}, \mathrm{D})$	$\left\{\mathrm{D}_{1}\right\}$

I-Index - An Example

An index based on $\mathcal{N}[d]$ partition.
(d : height of XML tree)

I-index

Tova Milo, Dan Suciu: Index Structures for Path Expressions. ICDT 1999.

Answering Queries with I-Index

- Query I://A/B/C
- Query 2://B/C
- Query 3://A/B[/D]/C

1-Index

Answering Queries with I-Index

- Query I://A/B/C
- Query 2: //B/C
- Query 3://A/B[./D]/C

1-Index

A(k)-Index - Examples

An index based on $\mathcal{N}[\kappa]$ partition.

Raghav Kaushik et al.: Exploiting Local Similarity for Indexing Paths in Graph-Structured Data. ICDE 2002.

A(k)-Index - Examples

A(3)-Index (DataGuide)

Back to Theory

- Observation
- These indices are based on node partition.

$$
\begin{gathered}
n_{1} \equiv_{\mathscr{N}[k]}^{\mathbb{V}} n_{2} \\
\mathcal{L P} \quad\left(n_{1}, k\right)=\mathbb{L P} \quad\left(n_{2}, k\right)
\end{gathered}
$$

- Label paths are remembered, the head of the paths are forgotten.
- Partition blocks are organized in a graph
- Searches start at different nodes when evaluating $\mathcal{D}[k]$ - query on index based on $\mathcal{N}[k]$ - partition, $\kappa<\kappa^{\prime}$.
- Proposal
- Alternative organization of \mathcal{N} [/]- partitions $\rightarrow \mathcal{N}$ [月]index
- Partition node pairs $\rightarrow \mathscr{P}[\mathrm{A}$ - index

M 2 月-Trie Index

- Keep track of the \mathcal{N} [月]- partitions
- Use the reverse label path as key

TrieRoot

Query Evaluation with \mathcal{N} [月-Trie Index

- Query 1: //A/B/C
- $\operatorname{LPS}(\mathrm{E}, 2)=\{(\mathrm{A}, \mathrm{B}, \mathrm{C})\}$

TrieRoot

$\mathcal{N}[2]$

(A)	$\left\{\mathrm{A}_{1},\right\}$
(A, A)	$\left\{\mathrm{A}_{2}\right\}$
(A, B)	$\left\{\mathrm{B}_{1}, \mathrm{~B}_{4}\right\}$
$(\mathrm{A}, \mathrm{A}, \mathrm{B})$	$\left\{\mathrm{B}_{2}, \mathrm{~B}_{3},\right\}$
$(\mathrm{A}, \mathrm{B}, \mathrm{B})$	$\left\{\mathrm{B}_{5}\right\}$
$(\mathrm{A}, \mathrm{B}, \mathrm{C})$	$\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\right\}$
$(\mathrm{B}, \mathrm{B}, \mathrm{C})$	$\left\{\mathrm{C}_{4}\right\}$
$(\mathrm{A}, \mathrm{B}, \mathrm{D})$	$\left\{\mathrm{D}_{1}\right\}$

Query Evaluation with \mathcal{N} [月-Trie Index

- Query 2: //B/C
- LPS(E,2) = \{(A,B,C), (B,B,C)\}

Recall $\mathbb{P}[\curvearrowright]$ Equivalence

- Given an XML document and value κ

Recall $\mathbb{P}[\kappa]$ Partition

2

\mathscr{T} 月-Trie Index

- Keep track of the $\mathscr{P}[$ 月- partitions
- Use the reverse label path as key

$\mathbb{P}[2]-$ Trie

Query Evaluation with $\mathscr{P}[$ ด-Trie Index

- Query 1: //A/B/C

$\mathscr{P}[2]$-Trie

Query Evaluation with $\mathscr{P}[$ ด-Trie Index

- Query 2: //B/C

\mathscr{P} [2]-Trie

Query Evaluation with $\mathscr{P}[$ 风-Trie Index

- Query 3: //A/B[./D]/C

$$
E_{1}(D) \bowtie \pi\left(E_{2}(D)\right) \bowtie E_{3}(D) \begin{aligned}
& E_{1}=A \circ \downarrow \circ B \\
& E_{2}=B \circ \downarrow \circ D \\
& \\
& E_{3}=B \circ \downarrow \circ C
\end{aligned}
$$

\mathscr{P} [2]-Trie

Query Evaluation with $\mathscr{P}[$ 凤-Trie Index

- Query 3: //A/B[./D]/C

$$
E_{1}(D) \bowtie\left(E_{2}(D)\right)^{-1} \bowtie E_{3}(D) \quad \begin{aligned}
& E_{1}=A \diamond \downarrow \circ B \diamond \downarrow \circ D \\
& \\
& E_{2}=B \circ \downarrow \circ D \\
& E_{3}=B \diamond \downarrow \circ C
\end{aligned}
$$

Other Applications

- Workload-aware Trie indices for XML
- Wu, Brenes, Yi. Workload-aware Trie Indexes for XML. In CIKM 2009.
- Algebra-based index comparison
- Wu, Brenes, Totade, Damani, Joshua, Salim. ASIC: Algebra-based Structural Indices Comparison. In CIKM, 2009
- XML Benchmarking
- Wu, Lele, Aroskar, Chinnusamy. XQGen - An Algebra-based XPath Query Generator For MicroBenchmarking. In CIKM, 2009.

Tutorial Outline

- Graph Data and Search
- The Theory
- The Engineering
- Indexing Tree Structured Data
- Bi-Similarity on Graphs
- Summary \& Future Directions

Recall k-bisimilarity on Graphs

- Let k be a nonnegative integer and $\mathrm{G}=$ $<\mathrm{N}, \mathrm{E}, \lambda_{\mathrm{N}}, \lambda_{\mathrm{E}}>$ be a graph. Node $\mathrm{u}, \mathrm{v} \in \mathrm{N}$ are called k -bimsiminar ($\mathrm{u} \approx^{\mathrm{k}} \mathrm{v}$), iff the following holds
- $\lambda_{N}(\mathrm{u})=\lambda_{\mathrm{N}}(\mathrm{v})$
- If $k>0$, then, $\forall u^{\prime} \in N\left[\left(u, u^{\prime}\right) \in E \Rightarrow \exists v^{\prime} \in N\left[\left(v, v^{\prime}\right) \in E\right.\right.$, u^{\prime} $\approx^{\mathrm{k}-1} \mathrm{v}^{\prime}$ and $\left.\left.\lambda_{\mathrm{E}}\left(\mathrm{u}, \mathrm{u}^{\prime}\right)=\lambda_{\mathrm{E}}\left(\mathrm{v}, \mathrm{v}^{\prime}\right)\right]\right]$
- If $\mathrm{k}>0$, then, $\forall \mathrm{v}^{\prime} \in \mathrm{N}\left[\left(\mathrm{v}, \mathrm{v}^{\prime}\right) \in \mathrm{E} \Rightarrow \exists \mathrm{u}^{\prime} \in \mathrm{N}\left[\left(\mathrm{u}, \mathrm{u}^{\prime}\right) \in \mathrm{E}\right.\right.$, v^{\prime} $\approx^{\mathrm{k}-1} \mathrm{u}^{\prime}$ and $\left.\left.\lambda_{\mathrm{E}}\left(\mathrm{v}, \mathrm{v}^{\prime}\right)=\lambda_{\mathrm{E}}\left(\mathrm{u}, \mathrm{u}^{\prime}\right)\right]\right]$

K-Bisimilarity and k-Partition

$\mathrm{k}=0$	$\left\{\mathrm{n}_{1}, \mathrm{n}_{2}\right\}$
	$\left\{\mathrm{n}_{3}, \mathrm{n}_{4}, \mathrm{n}_{5}, \mathrm{n}_{6}\right\}$
$\mathrm{k}=\mathrm{I}$	$\left\{\mathrm{n}_{1}, \mathrm{n}_{2}\right\}$
	$\left\{\mathrm{n}_{3}, \mathrm{n}_{5}\right\}$
	$\left\{\mathrm{n}_{4}\right\}$
	$\left\{\mathrm{n}_{6}\right\}$
$\mathrm{k}=2$	$\left\{\mathrm{n}_{1}\right\}$
	$\left\{\mathrm{n}_{2}\right\}$
	$\left\{\mathrm{n}_{3}, \mathrm{n}_{5}\right\}$
	$\left\{\mathrm{n}_{4}\right\}$
	$\left\{\mathrm{n}_{6}\right\}$

k-Partition Signature

Signature:

$$
\begin{aligned}
& \operatorname{sig}_{\mathrm{k}}(\mathrm{u})=\left(\mathrm{pID}_{0}(\mathrm{u}), \mathrm{L}\right) \\
& \mathrm{L}=\left\{\begin{array}{cc}
\emptyset & \text { if } k=0 \\
\left\{\left(\lambda_{E}\left(u, u^{\prime}\right), p I D_{k-1}\left(u^{\prime}\right)\right) \mid\left(u, u^{\prime}\right) \in E\right\} & \text { if } k>0
\end{array}\right.
\end{aligned}
$$

Proposition:

$\forall \mathrm{u}, \mathrm{v} \in \mathrm{N}$,

$$
\operatorname{pID}_{k}(\mathrm{u})=\mathrm{pID} \mathrm{D}_{\mathrm{k}}(\mathrm{v}) \Leftrightarrow \operatorname{sig}_{k}(\mathrm{u})=\operatorname{sig}_{\mathrm{k}}(\mathrm{v})
$$

k-Partition Signature - Example

nID	plD ${ }_{0}(\mathrm{nlD})$	$\operatorname{sig}_{1}(\mathrm{nID})$	pID1(nID)	$\operatorname{sig}_{2}(\mathrm{nID})$	plD 2 ($\mathrm{l} \mid \mathrm{D}$)
1	1	1, $\{(\mathrm{w}, 1),(1,2)\}$	3	1, $\{(\mathrm{w}, 3),(1,5)\}$	7
2	1	1, $\{(\mathrm{w}, 1),(1,2)\}$	3	1, $\{(\mathrm{w}, 3),(1,6)\}$	8
3	2	$2,\{(1,1)\}$	4	$2,\{(1,3)\}$	9
4	2	2, $\{(1,2)\}$	5	2, $\{(1,4)\}$	10
5	2	2, $\{(1,1)\}$	4	2, $\{(1,3)\}$	9
6	2	$2,\{ \}$	6	$2,\{ \}$	11

k-Partition Construction

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tID, fill in $E_{t} \cdot$ pID $_{\text {old_tid }}$
4. Sort E_{t} on sID, project on (sID, eLabel, $\mathrm{pID}_{\text {old_tid }}$), remove duplicates, get F
5. Merge join N_{t} and F on nID and sID, get signature
6. Assigning new pID based on signature.

k-Partition Construction - Example

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tID, fill in $\mathrm{E}_{\mathrm{t}} \cdot \mathrm{pID}$ old_tid
4. Sort E_{t} on sID , project on (sID, eLabel, pID old_tid), remove duplicates, get F
5. Merge join N_{t} and F on nID and sID, get signature
6. Assigning new pID based on signature.

nID	nLabel	pID $_{0}(n / D)$	sig, $(n I D)$	pID)(nID)
1	M	1		
2	M	1		
3	P	2		
4	P	2		
5	P	2		
6	P	2		

k-Partition Construction - Example

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tiD, fill in $\mathrm{E}_{\mathrm{t}} \cdot \mathrm{pID}$ old_tid
4. Sort E_{t} on sID , project on (sID, eLabel, pID old_tid), remove duplicates, get F
5. Merge join N_{t} and F on nID and sID, get signature
6. Assigning new pID based on signature.

nID	nLabel	pID ${ }_{0}$ (nID)	sig\|(nID)	pID, ${ }^{\text {(nID }}$)
1	M	1		
2	M	1		
3	P	2		
4	P	2		
5	P	2		
6	P	2		

sID	eLabel	tID	pID old tiD
3	l	1	
1	w	2	
2	w	2	
5	l	2	
4	l	3	
1	l	4	
2	l	6	

k-Partition Construction - Example

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tID, fill in $\mathrm{E}_{\mathrm{t}} \cdot \mathrm{pID}_{\text {old_tid }}$
4. Sort E_{t} on sid, project on (sID, eLabel,
pID ${ }_{\text {old_tid }}$, remove duplicates, get F
5. Merge join N_{t} and F on nID and sID, get

6. Assigning new pID based on signature.

nID	nLabel	pID ${ }_{0}(\mathrm{nID})$	sig ${ }_{1}$ (nID)	pID, ${ }^{\text {(nID }}$)
1	M	1		
2	M	1		
3	P	2		
4	P	2		
5	P	2		
6	P	2		

sID	eLabel	tID	pID old tiD
3	l	1	1
1	w	2	1
2	w	2	1
5	l	2	1
4	l	3	2
1	l	4	2
2	l	6	2

k-Partition Construction - Example

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tID, fill in $\mathrm{E}_{\mathrm{t}} \cdot \mathrm{pID}_{\text {old_tid }}$
4. Sort E_{t} on sID, project on (sID, eLabel, pID ${ }_{\text {old_tid }}$), remove duplicates, get F

5. Merge join N_{t} and F on nID and sID, get signature
6. Assigning new pID based on signature.

nID	nLabel	pID ${ }_{0}(\mathrm{nID})$	sig ${ }_{1}$ (nID)	pID, ${ }^{\text {(nID }}$)
1	M	1		
2	M	1		
3	P	2		
4	P	2		
5	P	2		
6	P	2		

sID	eLabel	pID old tiD
1	w	1
1	l	2
2	w	1
2	l	2
3	l	1
4	l	2
5	l	1

k-Partition Construction - Example

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tID, fill in $\mathrm{E}_{\mathrm{t}} \cdot \mathrm{pID}_{\text {old_tid }}$
4. Sort E_{t} on sID, project on (sID, eLabel, $\mathrm{pID}_{\text {old_tid }}$), remove duplicates, get F
5. Merge join N_{t} and F on nID and sID, get
 signature
6. Assigning new pID based on signature

nID	nLabel	pID ${ }_{0}$ (nID)	sig\|(nID)	pID, ${ }^{\text {(nID }}$)
1	M	1	1, $\{(\mathrm{w}, 1),(1,2)\}$	
2	M	1	1, $\{(\mathrm{w}, 1),(1,2)\}$	
3	P	2	$2,\{(1,1)\}$	
4	P	2	$2,\{(1,2)\}$	
5	P	2	2, $\{(1,1)\}$	
6	P	2	$2,\{ \}$	

sID	eLabel	plD
1	w	1
1	l tiD	
2	w	2
2	l	1
3	l	2
4	l	2
5	l	1

k-Partition Construction - Example

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tID, fill in $\mathrm{E}_{\mathrm{t}} \cdot \mathrm{pID}_{\text {old_tid }}$
4. Sort E_{t} on sID, project on (sID, eLabel, $\mathrm{pID}_{\text {old_tid }}$), remove duplicates, get F
5. Merge join N_{t} and F on nID and sID, get signature
6. Assigning new pID based on signature.

nID	nLabel	pID ${ }_{0}$ (nID)	sig\|(nID)	pID, ${ }^{\text {(nID }}$)
1	M	1	1, $\{(\mathrm{w}, 1),(1,2)\}$	3
2	M	1	1, $\{(\mathrm{w}, 1),(1,2)\}$	3
3	P	2	$2,\{(1,1)\}$	4
4	P	2	2, $\{(1,2)\}$	5
5	P	2	2, $\{(1,1)\}$	4
6	P	2	2, $\}$	6

sID	eLabel	plD old tid
1	w	1
1	l	2
2	w	1
2	l	2
3	l	1
4	l	2
5	l	1

k-Partition Construction - Complexity

1. Sort N_{t} on nID
2. Sort E_{t} on tID
3. Merge join N_{t} and E_{t} on nID and tID, fill in E_{t}. pID ${ }_{\text {old_tid }}$
4. Sort E_{t} on sID, project on (sID, eLabel, $\mathrm{pID}_{\text {old_tid }}$), remove duplicates, get F
5. Merge join N_{t} and F on nID and sID, get signature
6. Assigning new pID based on signature.
```
I/O complexity
\[
O\left(k \cdot \operatorname{sort}\left(\left|E_{t}\right|\right)+k \cdot \operatorname{scan}\left(\left|N_{t}\right|\right)+\operatorname{sort}\left(\left|N_{t}\right|\right)\right)
\]
```

Space Complexity $O\left(\left|N_{t}\right|+\left|E_{t}\right|\right)$

Other Applications and Results

- Triple indexing
- Picalausa, Luo, Fletcher, Hidders, Vansummeren. A structural approach to indexing triples. ESWC 2012.
- DAG and tree indexing
- Hellings, Fletcher, Haverkort. Efficient external-memory bisimulation on DAGs. SIGMOD 2012.

Tutorial Outline

- Graph Data and Search
- The Theory
- The Engineering
- Summary and Future Directions

Summary

In this tutorial we have

- motivated the study of graphs and search languages
- introduced a general methodology for studying the design and implementation of graph languages
- demonstrated the application of this methodology to Tarski's RA
- shown the practical impact of the methodology in graph indexing for efficient query processing

Future Directions

- Open problems in theory
- Structural characterizations for uncertain or imprecise data
- Relationships of instance expressivity characterizations to work in logics
- ...
- Open problems in practice
- Design of index data structures for path languages
- Design and study of practical applications of the methodology for more flexible types of search and data (e.g., keyword search and similarity search)
- ...

References

- Yuqing Wu, Dirk Van Gucht, Marc Gyssens and Jan Paredaens: A Study of a Positive Fragment of Path Queries: Expressiveness, Normal Form and Minimization. In the Computer Journal 54(7): 1091-1118, 2011.
- George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Jan Van den Bussche, Dirk Van Gucht, Stijn Vansummeren and Yuqing Wu: Relative expressive power of navigational querying on graphs. In the $14^{\text {th }}$ International Conference on Database Theory. March, 2011.
- Yuqing Wu, Sofia Brenes, and Hyungdae Yi. Workload-aware Trie Indexes for XML. In the $18^{\text {th }}$ ACM Conference on Information and Knowledge Management. November, 2009.
- George H. L. Fletcher, Dirk Van Gucht, Yuqing Wu, Marc Gyssens, Sofia Brenes, and Jan Paredaens. A Methodology for Coupling Fragments of XPath with Structural Indexes for XML Documents. In Information Systems, 2009.
- Sofia Brenes, Yuqing Wu, Dirk Van Gucht, and Pablo Santa Cruz. Trie Indexes for Efficient XML Query Evaluation. In the 11th International Workshop on the Web and Databases. June, 2008
- Marc Gyssens, Jan Paredaens, Dirk Van Gucht, George H. L. Fletcher: Structural characterizations of the semantics of XPath as navigation tool on a document. PODS 2006: 318-327
- Yongming Luo, G. H. L. Fletcher, J. Hidders, Y. Wu, and P. De Bra. I/O-efficient algorithms for localized bisimulation partition construction and maintenance on massive graphs. CoRR, abs/1210.0748, 2012.
- Y. Luo, Y. de Lange, G. H. L. Fletcher, P. De Bra, J. Hidders, and Y. Wu. Bisimulation reduction of big graphs on MapReduce. To appear in BNCOD, Oxford, UK, 2013.
- G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, and Y. Wu. The impact of transitive closure on the boolean expressiveness of navigational query languages on graphs. In FoIKS, pages 124-143, Kiel, Germany, 2012.

Collaborators

- Colleagues:
- Marc Gyssens
- Jan Hidders
- Jan Paredaens
- Jan Van den Bussche
- Dirk Van Gucht
- Stijn Vansummere
- Dirk Leinder
- Paul De Bra
- Supported by FWO

- Ph.D. Students:
- Indiana Univ: Sofia Brenes, Vahid Jalali, Yifan Pan, Mo Zhou, ...
- Eindhoven: Yongming Luo
- MS Students:
- Indiana Univ: Hyungdae Yi, Pablo Santa Cruz, Namrata Lele, Rashmi Aroskar, Sharanya Chinnusamy, ...
- Eindhoven: Yannick de Lange

