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Abstract 
 
     This paper presents a novel voice activity detection 
(VAD) method using Maximum Values of Sub-band 
SNR (MVSS) as the detection feature. The proposed 
new feature MVSS has different distributions between 
speech and non-speech signal, which is helpful for 
separating the speech signal from heavy noise. An 
adaptive threshold is applied to improve VAD 
accuracies and track the noisy signal rapidly without 
complex computation. Experimental results show that 
the proposed method achieves better performance than 
the conventional ETSI AMR VADs under the NOISEX-
92 database. 
 

1. Introduction 
 

Voice activity detection (VAD) in noisy 
environments is an important and challenging research 
problem for speech processing. It is a critical process 
for robust speech recognition, speech coding, speech 
enhancement, etc. Existing VAD methods are often 
proposed based on general speech features, such as 
short-time energy, linear prediction coefficients (LPC) 
[1], spectral features, entropy [2], etc. These features 
have different VAD performance under conditions with 
different signal-to-noise ratios (SNR) — while they may 
achieve good performance in clean condition, 
performance degrades significantly in low SNR 
conditions. 

Recently, alternative features such as power 
envelopes [3] and sub-band energy [4, 5] have been 
used for VAD. These features demonstrate that they can 
sustain performance in low SNR and require only a 
small number of parameters for optimization. However, 
they still cannot perform well for VAD if different types 
of noise are involved, even with the use of an adaptive 
threshold [6]. Consequently, several new features based 
on the SNR or channel SNR were proposed, such as the 
ETSI Adaptive Multi-Rate (AMR) VAD [7] and AFE 
[9]. The ETSI AMR VAD has two categories: VAD 

option1 uses sub-band energy as the detection feature 
and improves its accuracy by pitch detection technology. 
The VAD option2 considers channel SNR as the 
detection feature and also applies an adaptive 
background noise estimator. 

In this paper, we propose a novel VAD method using 
maximum values of sub-band SNR (MVSS) as a 
detection feature. The idea behind MVSS is that high 
SNR points in sub-bands offer the evidence of speech. 
This novel method can separate the speech and non-
speech signal well, especially global SNR of the 
utterance becomes low. Experimental results 
demonstrate that the proposed method is effective in 
speech/non-speech discrimination compared with 
standard works under the NOISE-92 database. 

This paper is organized as follows: Section 2 
presents the proposed VAD method. Section 3 describes 
experimentation with the proposed method and 
compares it with other standard VAD techniques. 
Section 4 summarizes our work and suggests future 
directions.       
 

2. Approach for VAD  
     

It is well known that the energy distribution of the 
speech signal does not spread evenly over all 
frequencies. For example, the energy of the voiced 
speech mainly concentrates in the formant regions. This 
means local SNR values of those formant regions 
become significantly higher compared to other regions. 
When clean speech is corrupted by the strong 
background noise (See Figure 1), some frequency bins 
of speech frame may still have high SNR values 
(indicated by arrows). On the other hand, when speech 
is absent, SNR values of all frequency bins tend to be 
homogeneously low. Thus it is better to use SNR-based 
features than energy-based features to represent the 
speech signal. In many cases, since the noise signal 
contains low-frequency components and masks the 
speech content, using only the global SNR may not 
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work very well. Therefore, we extract features based on 
SNR points to reduce noise.  

 
Figure 1. Short-time spectrogram of clean 
speech corrupted by Gaussian white noise 
(global SNR = 0db) 
 

Figure 2 shows the block diagram of the proposed 
VAD method. Given the spectrum of a speech utterance 
transformed by DFT, we first divide the whole spectrum 
into several sub-bands. Secondly, sub-band SNRs are 
estimated and maximum values of sub-band SNR 
(MVSS) are extracted as detection features. The 
background noise estimation and final VAD decision 
are made by comparing feature value with an estimated 
threshold. During initialization, the estimated noise 
spectrum and threshold are calculated by assuming that 
speech always follows an initial period of noise. Details 
of proposed method are described in the following 
sections. 
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Figure 2. The block diagram of the proposed 
VAD algorithm 
 
2.1 Point estimation for SNR 

 
Given an additive noisy speech, 

let ( , ), ( , )Y k S kλ λ and ( , )N kλ  denote the kth spectral 
component L-point FFT of noisy speech, clean speech 
and noise signal, respectively: 

( , ) ( , ) ( , )Y k S k N kλ λ λ= +  (1)
where λ =1,2,...,N is the frame number and k=1,2,…,L. 
We extract a posteriori SNR of each spectral component 
for the current frame λ as follows: 
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where Py(λ,k) is the signal power spectrum of the 
current frame λ and Pn(λ,k) is the noise power spectrum. 
However, Pn(λ,k) could not be obtained directly. The 
expected value of the noise power spectrum 

( , )nP kλ during non-speech periods is estimated instead. 
Therefore, the point estimate for SNR becomes: 
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2.2 Sub-band division and SNR estimation 
      

Since most sonorant regions of speech (e.g. vowels) 
contain harmonic structures, we adopted the ETSI VAD 
standard [7] to divide ( , )SNRG kλ  points into 9 bands 
(between 0Hz ~ 4000Hz). Cut-off frequencies are 
shown in Table 1. Therefore, the set of estimated SNR 
values G(λ)i for the ith sub-band in the frame λ is given 
by: 

( ) { ( , ) | }i SNR ibegin iendG G k k k kλ λ= ≤ ≤  (4)

where kibegin, kiend ∈{1,2,…,L} are the cut-off indexes of 
each sub-band according to frequency.  

 
Table 1. Cut-off frequencies of the 9 sub-bands 
in the ETSI VAD standard 

Band Num. Freq (Hz) Band Num. Freq (Hz) 

1 0 – 250 6 1500 – 2000 
2 250 – 500 7 2000 - 2500 

3 500 – 750 8 2500 - 3000 

4 750 – 1000 9 3000 – 4000 

5 1000 – 1500   

 
2.3 MVSS and feature distance calculation 
      

As we know, low-SNR-value regions most likely 
correspond to non-speech parts while high-SNR-value 
regions are obvious evidences of speech when noise is 
stationary. In other words, points of SNR values in 
harmonic regions become larger if speech is present. 
Therefore, it makes sense to locate the M largest values 
as sub-band SNR key values from each sub-band SNR 
set G(λ)i. We define the maximum value of sub-band 
SNR Gmax(λ)i (MVSS) for the ith sub-band set G(λ)i as 
follows: 

max ( )
1

1( ) ( )
M
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r

G P
M

λ λ
=

= ∑  (5)

where P(r)(λ)i is the rth largest value in the value set 
G(λ)i (M=6 in our experiments).  
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Finally we denote the feature distance gain D(λ) as 
follows: 

9 9
2
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( )  = ( ) ( ( ) ( ))i i
i i

D G G Gλ λ λ λ
= =

+ −∑ ∑ (6)
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=
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Since the high SNR points in the value set G(λ)i are 
considered as speech information with little noise, 
MVSS indicates the distribution of speech given by an 
utterance. In other words, the distance gain D(λ) shares 
the same distribution under different noise levels. 
Figure 3 depicts feature distance gain D(λ) under 
different noise level. From the figure, the curves of 
normalized feature distance gains look similar under 
different noise levels. This verifies that the proposed 
MVSS feature is robust. 

 

 
 

Figure 3. (a) The normalized amplitude of a 
clean Mandarin utterance “1, 2, 3” (b) Final 
feature curves based on MVSS under different 
noise levels (White noise at 0, 5, 10dB)  
 
2.4 Feature interpretation 
 

The detection feature MVSS used in this work is 
based on the assumption that the speech harmonic 
structure is robust to strong noise conditions. Since the 
conventional methods employ sub-band energy or 
global SNR as features, they may include much noise 
information, which degrades performance. In a low 
SNR environment, it is impossible to get rid of noise by 
extracting energy as a feature, especially when the 
energy of noise appears in the lower frequency band. 
However MVSS still works well because it reduces the 
effect of noise corruption by using a set of high SNR 
points. Moreover, important speech harmonic 
information is mainly kept to indicate the presence of 
speech. If the current frame is speech, the distance gain 
D(λ) will become large; otherwise the gain value will 
become very small. 

Experimental results demonstrate the potential 
advantage of using MVSS as the detection feature. 
Figure 4 shows the comparison of different features in 
low frequency band. From the figure, we see the plot for 
energy varies slowly near the boundary of speech and 

non-speech regions, which makes the speech detection 
difficult. On the contrary, the plot for MVSS changes 
significantly between speech and non-speech regions, 
which makes it easier for detection.  

 
  

 
 
Figure 4. (a) The normalized amplitude of noisy 
mandarin utterance “3, 4” (b) The sum of sub-
band energy (0~1000 Hz) (c) The sum of MVSS 
(0~1000 Hz). 
 
2.5 Threshold calculation and VAD decision 
      

In order to solve the case that speech is corrupted by 
sudden strong noise, we use previous frames 
information to prevent the threshold from degenerating 
suddenly. The final threshold is defined as follows:  
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where K is the number of frames to be averaged. A 
lower limit Eth_MIN is applied to improve the 
performance of the threshold. During the initialization 
phase, we assume that the first N (10~20) frames are 
always in non-speech state. 
    The final VAD decision is made by comparing the 
distance gain D(λ) again the threshold Eth(λ): 
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The indicator function F indicates whether the current 
frame is a speech-like frame (F(λ)=1) or a noise-like 
frame (F(λ)=0). 

A hangover is necessary before the final VAD 
decision is made [10]. Figure 5 shows the applied VAD 
hangover scheme. The flag STATE(λ) indicates the final 
VAD decision of the current frame λ. If STATE(λ)=1, 
the current frame is speech; otherwise speech is absent. 
Suppose that the previous frame is noise (STATE(λ-
1)=0), the current frame will remain in non-speech state 
unless there are more than m consecutive frames with 

Non-speech Speech Non-speech Speech Non-speech
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the following condition D(λ)≥Eth(λ) (F(λ)=1). 
Otherwise it will change to the speech state 
(STATE(λ)=1). On the other hand, suppose that the 
previous frame is in the speech state (STATE(λ-1)=1), 
the current frame will remain in speech state until there 
are n consecutive frames satisfying the condition 
D(λ)<Eth(λ) (F(λ)=0). Otherwise it will switch to the 
non-speech state. Initially, we assume that it is in the 
noise state (STATE(0)=0). 

 

 
 

Figure 5. VAD hangover algorithm 
 
2.6 Parameter update 
      
 In order to estimate the non-stationary noise, we 
continuously update the parameters according to the 
following equations: 

1 1( ) ( ) (1 ) ( 1)i i iG G Gλ α λ α λ= + − −  (10)
1 1( ) ( ) (1 ) ( 1)th th thE E Eλ α λ α λ= + − −  (11)
1 1( ) ( ) (1 ) ( 1)D D Dλ α λ α λ= + − −  (12)

1 1( , ) ( , ) (1 ) ( 1, )y y yP k P k P kλ α λ α λ= + − −  (13)
 If the update flag STATE(λ) is set to be “1”, we will 

update the background noise estimate in the next frame 
by: 

2 2( , ) ( 1, ) (1 ) ( 1, )n n yP k P k P kλ α λ α λ= − + − −  (14
)

where the parameters 1 2,  α α are fixed relevance factors 
for update processes in the whole system. 

 

3. Experimental Results 
 

The testing database used in this paper was collected 
from 20 individual speakers (10 male and 10 female) in 
our lab. Each speaker read 5 utterances of ten isolated 
Chinese digits “1, 2,…, 10” in a quite environment and 
the speech is recorded. A variety of noise from the 

NOISEX-92 database [11] were used, including the 
white noise, pink noise, volvo (car) noise and the 
military vehicle noise. The input signal was digitized at 
8000Hz. We then extract frames of 32ms long (with 
24ms overlap, or 8ms frame rate) and apply Hamming-
windowed. Finally a 256-point FFT was applied. The 
update factors 1 2,α α were both set to 0.95 and the 
number of frames for threshold estimation K is set to be 
40. The lower limit of threshold Eth_MIN  is set to be 4~7 
and the number m, n are set to be 3, 8 respectively. 

The proposed VAD is evaluated in terms of its ability 
to identify segments of speech or non-speech 
(background noise) at different SNR levels. Reference 
decisions on clean speech were made by manually 
labeling samples. Detection performance is assessed in 
terms of speech hit rate (SHR) and non-speech hit rate 
(NSHR), which are defined by a function of all actual 
speech and non-speech samples accurately detected. 

 
Table 2. Comparison performances of the 
proposed VAD and standard AMR VADs 
(Accuracy rate %) 

AMR VAD1 AMR VAD2 MVSS Noise 
type 

SNR 
(dB)

SHR NSHR SHR NSHR SHR NSHR

15 96.9 71.3 96.4 75.7 95.6 89.4 

10 96.7 64.0 96.3 70.3 95.0 86.0 

5 94.5 50.7 95.2 62.4 90.3 86.6 

White 
noise 

0 92.4 46.4 94.5 50.8 86.2 84.8 

15 99.4 86.7 99.7 88.9 99.6 90.4 

10 99.3 82.7 99.3 85.7 99.4 88.0 

5 97.8 76.6 98.8 83.9 99.0 82.9 

Volvo 
(car) 
noise 

0 95.5 68.5 98.2 78.6 98.0 86.7 

15 93.7 91.4 93.8 92.2 96.3 89.5 

10 89.8 72.9 91.1 89.2 94.2 87.5 

5 88.5 69.4 80.4 87.1 93.8 85.0 

Pink 
noise 

0 81.7 58.9 73.6 72.3 89.8 85.6 

15 97.5 74.2 99.6 88.9 99.5 86.8 

10 98.1 70.7 98.6 82.8 99.1 81.2 

5 91.8 63.9 93.5 81.7 98.6 77.4 

Military 
vehicle 
noise 

0 86.7 60.8 89.7 76.0 94.1 78.5 

 
Table 2 shows the detection results of the novel VAD 

based on the MVSS feature, the standard AMR VAD1 
and the AMR VAD2. The performances of different 
methods are compared in terms of the SHR and NSHR 
ranging from 15 dB to 0 dB in global SNR. We observe 
that AMR VAD1 performances steadily with high SHR 
for the whole range of SNRs. However it performs 
poorly in terms of NSHR when the noise level increases. 
VAD2 demonstrates considerable improvements over 
VAD1 with better NSHR. Unfortunately, it still suffers 

Check 
STATE 

Input 

D(λ) ≥ 
Eth(λ) 

D(λ) ≥ 
Eth(λ) 

STATE(λ-
1)=0 

STATE(λ-

n 
consecutive 

m 
consecutive 

NO (F (λ) 
=0) 

YES (F (λ) 
=1) 

NO (F (λ) 
=0) 

YES (F (λ) 
=1) 

N
O 

N
O 

YE

YE

Speech 
(STATE(λ)

Non-
speech 



 84

fast degradation in the speech detection performance 
under certain unfavorable noisy conditions (e.g. pink 
noise). The proposed method can handle the above 
problems robustly even when SNR decreases and 
achieves best performance on average in term of SHR 
and NSHR. 

 

4. Conclusions 
 
     In this paper, a new VAD method is proposed based 
on maximum values of Sub-band SNR (MVSS). In 
addition, an adaptive threshold updating scheme is used 
in our method. The experimental results prove that the 
proposed method achieves better performance 
compared with AMR VADs under the low SNR 
condition. Finally the proposed method is suitable for 
real-time application since it its computational 
complexity is relatively low. 
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