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Abstract 

In this paper, we propose an HMM trajectory-guided, real 

image sample concatenation approach to photo-real talking 

head synthesis. An audio-visual database of a person is 

recorded first for training a statistical Hidden Markov Model 

(HMM) of Lips movement. The HMM is then used to generate 

the dynamic trajectory of lips movement for given speech 

signals in the maximum probability sense. The generated 

trajectory is then used as a guide to select, from the original 

training database, an optimal sequence of lips images which 

are then stitched back to a background head video. The whole 

procedure is fully automatic and data driven. For as short as 20 

minutes recording of audio/video footage, the proposed system 

can synthesize a highly photo-real talking head in sync with 

the given speech signals (natural or TTS synthesized). This 

system won the first place in the A/V consistency contest in 

LIPS Challenge(2009), perceptually evaluated by recruited 

human subjects.   

 

Index Terms: visual speech synthesis, photo-real, talking 

head, trajectory-guided 

1. Introduction 

Talking heads are useful in applications of human-machine 

interaction, e.g. reading emails, news or eBooks, acting as an 

intelligent voice agent, a computer assisted language teacher 

or a virtual talk show host in a TV program, etc. A lively, lip 

sync talking head can attract the attention of a user, make the 

human/machine interface more engaging or adds 

entertainment ingredients to an application. The major 

drawbacks of existing systems are lack of realistic appearance 

and personalized audio/visual features. An ideal personalized 

talking head should be able to replace a person with a virtual 

agent while mimicking the person’s voice, facial appearance 

and animations, and speak any sentences he/she had never 

spoken before. 

     Generating animated talking heads that look like real 

people is challenging. The existing approaches to talking 

heads use either image-based 2D models [1,2] or geometry-

based 3D ones [32,33]. 3D models provide more power to 

construct the head in any given view, but they are hard to build 

and usually lack the realistic appearance even after texture 

mapping. Image-based approaches have their advantages that 

the photo realistic appearance is guaranteed. A talking head 

needs to be not just photo-realistic in a static appearance, but 

exhibit convincing plastic deformations of the lips 

synchronized with the corresponding speech, realistic head 

movements and natural facial expressions. In this paper, we 

introduce the whole system for constructing personalized 

photo-real talking head from video footage, and focus on the 

articulator movements (including lips, teeth, and tongue), 

which is the most eye-catching region on a talking face. 

Various approaches have been proposed before for 

synthesizing realistic talking head from video training data, 

roughly in three categories: key-frame based interpolation, 

unit selection synthesis and HMM-based synthesis.  

The key-frame-based interpolation method [2] is based 

upon morphing between 2-D key-frame images. The most 

frequently used key-frame set is visemes (visual phonemes), 

which form a set of images spanning a large range of mouth 

shapes. Using morphing techniques, the transitions from one 

viseme to other viseme can be computed and interpolated 

automatically.  

The unit selection, or sample-based method starts with 

collecting representative samples. The samples are then 

parameterized by its contextual label information so that they 

can be recalled according to the target context information in 

synthesis. Typically, minimal signal processing is performed 

to avoid introducing artifacts or distortions unnecessarily. 

Video snippets of tri-phone have been used as basic 

concatenation units [3-5]. Since these video snippets are 

parameterized with phonetic contextual information, the 

resulting database can become too large. Smaller units like 

image samples have shown their effectiveness in improving 

the coverage of candidate units. In LIPS2008 Challenge, Liu 

demonstrated a photo-real talking head [6] in a sample-based 

approach, which is an improved version of the original work 

of Cosatto and Graf [1].  

The Hidden Markov Model (HMM) based speech 

synthesis has made a steady but significant progress in the last 

decade [7]. The approach was also tried for visual speech 

synthesis [8,9]. In HMM-based visual speech synthesis, audio 

and video are jointly modeled in HMMs and the visual 

parameters are generated from HMMs by using the dynamic 

(“delta”) constraints of the features [8]. Convincing mouth 

video can be rendered from the predicted visual parameter 

trajectories. One drawback of the HMM-based visual speech 

synthesis method is its blurring due to feature dimension 

reduction in PCA and the maximum likelihood-based 

statistical modeling. Therefore, further improvement is still 

needed to make a high quality, photo-real talking head. 

Inspired by the newly proposed HMM-guided unit 

selection method in speech synthesis [10,11], we propose the 

trajectory-guided real sample concatenating method for 

generating lip-synced articulator movements for a photo-real 

talking head. In particular, in training stage, an audio/visual 

database is recorded and used to train a statistical Hidden 

Markov Model (HMM). In synthesis, trained HMM is used to 

generate visual parameter trajectory in maximum likelihood 

sense first. Guided by the HMM predicted trajectory, a 

succinct and smooth lips sample sequence is searched from the 

image sample library optimally and the lips sequence is then 

stitched back to a background head video.  
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This paper is organized as follows. Section 2 gives an 

overview of whole procedure of creating personalized talking 

head for a new speaker. Section 3 proposes the HMM 

trajectory-guided sample selection method. Section 4 discusses 

the experimental results, and section 5 draws the conclusions.  

2. Personalized Photo-Real Talking Head 

2.1. System framework 
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Fig. 1. The whole procedure of creating personalized talking head for 

a new speaker. 

 

The system synthesizes a personalized photo-real talking head 

for a new speaker by using a small amount of recorded video 

footage. As Fig.1 shows, to enroll a new speaker, some frontal 

view video of this person is firstly required as the training data. 

In our proposed method, about 20-minute video footage is 

enough to build a high-quality talking head. The recorded 

audio-visual database is used to train the lips animation model 

and to build the speaker’s personalized lips font. Meanwhile, 

the audio stream is used to train the text-to-speech (TTS) voice 

from scratch or to adapt a well-trained TTS voice to this 

specific speaker. At the synthesis stage, for any given text, the 

audio is firstly synthesized by TTS. Then, the video is 

generated synchronously with the lip movement. The final 

synthesized talking head (video + audio) can mimic the 

specific speaker with high fidelity by speaking any sentences 

he/she had never spoken before. Using this framework, we’ve 

built a few talking heads for English and Chinese speakers. 

The demonstration videos of our synthesis results can be found 

at: http://research.microsoft.com/en-us/projects/photo-

real_talking_head/. 

2.2. Video recording and pre-processing 

Training the talking head of a speaker requires about 20-

minute audio-visual recording of the speaker in frontal view 

reciting some prompted sentences. The sentences chosen for 

recording should have good phonetic coverage and contextual 

diversity, and be spoken in a neutral style. The lighting should 

ensure the visible articulators clear in the video and avoid any 

shadow on the face. The speaker can naturally move or rotate 

his/her head when speaking. 

Since the speaker naturally moves/rotates his/her head 

during the recording, we need to do head pose normalization 

among all the raw images. By using the 3D model-based head 

pose tracking technology [9], as shown in Fig. 2&3, the Euler 

angels of the head on three dimensions as well as the 

translation are obtained. Given the 3D rotations and 

translations of head poses, every frame can be normalized to a 

full frontal view and facial aligned by applying an affine 

transform. The lips images are cropped out by using a fixed 

rectangle window on the normalized frames and a mouth 

image sample library is formed. 

 

 
Fig. 2. Capturing 3D head motions from a video clip. 

 

 
 

Fig. 3. 3D Head rotations (in Euler angles) during speaking (“This is 
the VOA special English development report.”). 

2.3. Lips animation synthesis 

We propose the HMM trajectory guided sample selection 

method for lips animation synthesis, which consists of two, 

training and synthesis, stages.  

In the training stage, audio/visual footage of a speaker is 

used to train the statistical audio-visual Hidden Markov Model 

(AV-HMM). The input of the HMM contains both the acoustic 

features and the visual features. The acoustic features consist 

of Mel-frequency cepstral coefficients (MFCCs), their delta 

and delta-delta coefficients. The visual features include the 

PCA coefficients and their dynamic features., The contextual 

dependent HMM is used to capture the variations caused by 

different contextual features. Also, the tree-based clustering 

technique is applied to the acoustic and visual features 

respectively to improve the robustness of the HMM.  

In the synthesis stage, the input phoneme labels and 

alignments are firstly converted to a context-dependent label 

sequence. Meanwhile, the decision trees generated in the 

training stage are used to choose the appropriate clustered state 

HMMs for each label. Then parameter generation algorithm is 

used to generate the visual parameter trajectory in maximum 

likelihood sense. The HMM predicted trajectory is used as 

guidance for selecting a succinct mouth sample sequence from 

the image library. Finally the mouth image sequence is 

stitched onto the background head video. 

2.4. Post-processing for full face video generation 

The remaining task is to stitch the lips image sequence into a 

full face background sequence [1]. Local deformations are 

required to stitch the shape of the mouth and jaw line correctly 

and also to avoid the unsmooth problem when the stitches are 

across the jaw line. After local deformation around the jaw 

line, the final stitching process is done by Poisson image 

editing. Poisson image editing [25] permits the seamless 

editing and cloning of a selected region from source image 

into a destination. We use a mouth replacement mask to 
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specify which region of the final video come from the selected 

lips image sequence and which come from the background 

video. Fig. 4 shows an example mouth replacement mask, 

applied to lips images and background images. In a similar 

way, we replace the upperface region like the eyes and eye 

brow by using an eye mask for rendering eye blink. To restore 

the natural head movement in the background sequence, these 

images are been transformed to its original head pose. The 

final rendered video is photo-, video-realistic, lip sync with 

speech, also with natural head motion. 

 

 
Fig. 4. Illustration of image stitching process. 

 

3. HMM Trajectory-Guided Sample 

Selection 

This section introduces the proposed HMM trajectory-guided 

sample selection approach. In training, first the original lip 

image samples �  are encoded in low-dimensional visual 

feature vector  . Then the visual features   along with the 

acoustic features ! are used to train statistical HMM model #. 

In synthesis, for any arbitrary natural or Text-to-Speech (TTS) 

synthesized speech input !, the trained model # generates the 

optimal feature trajectory  $ in the maximum likelihood sense. 

The last step is to reconstruct  $  back to �$  in the original 

sample space by the proposed HMM trajectory-guided real 

sample selection method, so that the synthesis results can be 

seen. In particular, guided by the HMM predicted trajectory  $, 

a succinct and smooth image sample sequence �$ is searched 

optimally from the sample library and the mouth sequence is 

then stitched back to a background head video. To put it 

briefly, there are four main modules: ⇉  ;  (&,  ) ⇉ # ; 

(#, !) ⇉  $; and   $ ⇉ �$.  
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Fig. 5. HMM trajectory-guided sample selection. 

3.1. Visual parameter extraction (� ⇉  ) 

We obtain eigen-lips (eigenvectors of the lips images) by 

applying PCA to all the lips images. The top 20 eigen-lips 

contained about 90% of the accumulated variance. The visual 

feature of each lips image is formed by its PCA vector,  

'* = +*- (1)

where - is the projection matrix made by the top 20 eigen-

lips. 

3.2. Audio-Visual HMM modeling (&,  ⇉ #) 

We use acoustic vectors ./ = [0/*, 20/*, 220/*]*  and visual 

vectors '/ = [3/*, 23/*, 223/*]*  which is formed by 

augmenting the static features and their dynamic counterparts 

to represent the audio and video data. Audio-visual HMMs, 4, 

are trained by maximizing the joint probability 5(., '|4) over 

the stereo data of MFCC(acoustic) and PCA(visual) training 

vectors. In order to capture the contextual effects, context 

dependent HMMs are trained and tree-based clustering is 

applied to acoustic and visual feature streams separately to 

improve the corresponding model robustness. For each AV 

HMM state, a single Gaussian mixture model (GMM) is used 

to characterize the state output. The state q has a mean vectors 

µ7
(8)

 and µ7
(9). In this paper, we use the diagonal covariance 

matrices for ∑7
(88)

and ∑7
(99)

, null covariance matrices for 

∑7
(89)

and∑7
(98)

, by assuming the independence between audio 

and visual streams and between different components.  

3.3. Visual trajectory generation (#, ! ⇉  $) 

Given a continuous audio-visual HMM λ, and acoustic feature 

vectors . = [.?
*, .@

*, ⋯ , .B
*]*, we use the following algorithm 

to determine the best visual parameter vector sequence 

' = ['?
*, '@

*, ⋯ , 'B
*]* by maximizing the following likelihood 

function. 

5('|., 4) = ∑ 5(C|., 4) ∙ 5('|., C, 4)EFF G  ,            (2)                   

is maximized with respect to V, where C is the state sequence.  

At frame t, p(VI|AI, qI, λ) are given by 

     5('/|./, K/, 4) = L M'/; N̂7P
(9); ∑$7P

(99)Q ,               (3) 

where 

    N̂7P
(9) = µ7P

(9) + ∑7P
(98)∑7P

(88)T?
M./ − µ7P

(8)Q  ,               (4) 

    ∑$7P
(99) =  ∑7P

(99) − ∑7P
(98)∑7P

(88)T?∑7P
(89) .                   (5) 

We only consider the optimal state sequence C  by 

maximizing the likelihood function 5(C|., 4) with respect to 

the given acoustic feature vectors A and model λ. Then, the 

logarithm of the likelihood function is written as 

YZ\5('|., C, 4) = YZ\5^'|N̂(9), _$(99)` 

= − 1
2 '*_$(99)T?' + '*_$(99)T?N̂(9) + a,                 (6) 

where 

N̂(9) = cN̂7d
(9), N̂7e

(9), ⋯ , N̂7f
(9)g

*
,                              (7) 

_$(99)T? = ij0\ c∑$7d
(99)T?, ∑$7e

(99)T?, ⋯ , ∑$7f
(99)T?g

*
.      (8) 

The constant K  is independent of V. The relationship 

between a sequence of the static feature vectors m =
[3?

*, 3@
*, ⋯ , 3B

*]*  and a sequence of the static and dynamic 

feature vectors V can be represented as a linear conversion, 

' = -nm,                                               (9) 

where -n  is a transformation matrix described in [7]. By 

setting
r

rs logp(V|A, Q, λ) = 0, we obtain V$yzI  that maximizes 

the logarithmic likelihood function, as given by 

 

           '${}/ = -nm{}/ 

  = -n M-n
*_$(99)T?-nQ

T?
-n

*_$(99)T?N̂(9).      (10) 
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3.4. Trajectory-Guided Sample Selection ( $ ⇉ �$) 

The HMM predicted visual parameter trajectory is a compact 

description of articulator movements, in the lower rank eigen-

lips space. However, the lips image sequence shown at the top 

of Fig. 6 is blurred due to: (1) dimensionality reduction in 

PCA; (2) ML-based model parameter estimation and trajectory 

generation. To solve this blurring, we propose the trajectory-

guided real sample concatenation approach to constructing �$ 

from  $. It searches for the closest real image sample sequence 

in the library to the predicted trajectory as the optimal 

solution. Thus, the articulator movement in the visual 

trajectory is reproduced and photo-real rendering is guaranteed 

by using real image sample.  

 

3.4.1. Cost function 
Like the unit selection in concatenative speech synthesis [29], 

the total cost for a sequence of T selected samples is the 

weighted sum of the target and concatenation costs: 

m^ �!" , +#!"` = $ %/m/( �& , +#&)
"

&'!
+ $ %nmn(+#&*!, +#&)

"

&'-
   (11) 

The target cost of an image sample +#0 is measured by the 

Euclidean distance between their PCA vectors. 

 m/^ �& , +#&` = 2 �& − +#&
342                                               (12) 

The concatenation cost is measured by the normalized 2-D 

cross correlation (NCC) between two image samples +#0 and +#7, 
as Eq. 13 shows. Since the correlation coefficient ranges in 

value from -1.0 to 1.0, NCC is in nature a normalized 

similarity score, which is an advantage superior to other 

similarity metrics.  

 5mm(9, :) = ∑ [9(<, >) − I]̅[:(<, >) − J]̅@,A
B∑ [9(<, >) − I]̅- ∑ [:(<, >) − J]̅-@,A@,A CD.F     (13) 

Assume that the corresponding samples of +#0 and +#7 in the 

sample library are S} and S;, i.e., +#0 = S}, and +#7 = S;, where, 

p and q are the sample indexes in video recording. And hence 

S} and S}L!, S;*!and S;  are consecutive frames in the original 

recording. As defined in Eq. 14, the concatenation cost 

between +#0 and +#7is measured by the NCC of the S}  and the 

S;*! and the NCC of the  S}L! and S;.  

          mn^+#&, +#M` = mn^+}, +;` 

= 1 − 1
2 N5mm^+}, +;*!` + 5mm^+}L!, +;`O               (14) 

Since 5mm^+}, +}` = 5mm^+; , +;` = 1, we can easily derive, 

mn^+}, +}L!` = mn^+;*!, +;` = 0 

So that it would encourage the selection of consecutive frames 

in original recording.  

3.4.2. Optimal sample sequence 
The sample selection procedure is the task of determining the 

set of image sample +#!"so that the total cost defined by Eq. 11 

is minimized: 

+#!" = ET\VjX
Y#d,Y#e,⋯,Y#f  

m^ �!" , +#!"`                           (15) 

Optimal sample selection can be performed with a Viterbi 

search. However, to obtain near real-time synthesis on large 

dataset, containing tens of thousands of samples, the search 

space must be pruned. This has been implemented by two 

pruning steps. Initially, for every target frame in the trajectory, 

K-nearest samples are identified according to the target cost. 

The beam width K is 40 in our experiments. The remaining 

 samples are pruned with the concatenation cost.  

4. Experimental Results 

4.1. Experimental setup 

We employ the LIPS 2008/2009 Visual Speech Synthesis 

Challenge data [12] to evaluate the proposed trajectory-guided 

sample selection methods. This dataset has 278 video files 

with corresponding audio track, each being one English 

sentence spoken by a single native speaker with neutral 

emotion. The video frame rate is 50 frames per sec. For each 

image, Principle Component Analysis projection is performed 

on automatically detected and aligned mouth image, resulting 

in a 60-dimensional visual parameter vector. Mel-Frequency 

Cepstral Coefficient (MFCC) vectors are extracted with a 

20ms time window shifted every 5ms. The visual parameter 

vectors are interpolated up to the same frame rate as the 

 
Fig. 6. Illustration for the HMM trajectory-guided sample selection approach. The top-line lips images (gray) are the HMM predicted visual trajectory. 

The bottom images (colored) are real samples lips candidates where the best lips sequence (red arrow path) is selected by Viterbi decoding. 
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MFCCs. The A-V feature vectors are used to train the HMM 

models using HTS 2.1 [7]. 

In objective evaluation, we measured the performance 

quantitatively using mean square error (MSE), as defined in 

Eq. 16-17.  In a closed test where all the data are used in 

training, the evaluation is done on all the training data. In open 

test, leave-20-out cross validation is adopted to avoid data 

insufficiency problem. In subjective evaluation, the 

performance of the proposed trajectory-guided approach was 

evaluated by 20 native language speaking subjects in the 

audio/visual consistency test in LIPS2009 challenge.  

a! = b � −  b = 1
c $ 2 �/

3 −  /32
"

/'!
              (16) 

a- = b+# − +b = 1
c $ 2+#/

3 − S/32
"

/'!
               (17) 

4.2. Objective test 

Fig. 7 shows an example of the HMM predicted trajectory QZ in 

both the closed and open tests. Comparing with the ground 

truth Q, the predicted visual trajectory QZ  closely follows the 

moving trends in  Q . To objectively evaluate the predicted 

trajectory, we calculated the mean square error of QZ  with 

respect to the ground truth trajectory Q. Fig. 8 shows the total 

MSE between  V and VZ, and also the respective MSE of the 

first four PCA components, both in the closed and open tests. 

The MSE distortion is 7.82x105 between the HMM-predicted 

trajectory and the ground truth in open test.  

Fig. 9 shows the performance of the HMM prediction with 

different amount of training data ranging from 4 minutes to 20 

minutes long. The MSE is lowered almost in a linear trend 

when the data size increases. Due to the limited size of the 

database, the saturate point cannot be observed even with all 

the 20 minutes A/V data. We believe that more data can 

further improve the result. We also made some preliminary 

subjective evaluations on the synthesized mouth videos 

(restored image sequence from PCA) using the visual 

parameters generated by the trained HMM models. The results 

show that using 16 and 20 minutes training data can generate 

more convincing and natural mouth animations. 

The measure, bS� − Sb ^VZ = V` , is to evalutate the 

performance of trajectory-guided sample selection by ignoring 

the trajectory prediction error, or ideally we can assume the 

predicted trajectory is perfect, i.e., VZ = V . In this oracle 

experiment, we take the ground truth trajectory as the perfect 

guidance in order to test the sample selection performance 

alone. For each test sentence, we use the image samples from 

other sentences to do the selection and concatenation. The 

MSE distortion of the sample selection is 1.77 x105. 

As summarized in Table I, bS� − Sb  is the total distortion 

in the synthesis, including both the trajectory prediction errors 

and sample selection errors. The total distortion 9.42x105 is 

slightly less than the summation (7.82x105 + 1.77x105 = 

9.59x105) of the first two distortions.   

4.3. Subjective Test 

We participate in the LIPS2009 Challenge contest with the 

proposed photo-real talking head. The contest was conducted 

in the AVSP (Auditory-Visual Speech Processing) workshop 

and subjectively evaluated by 20 native British English 

speaking subjects with normal hearing and vision. All 

contending systems were evaluated in terms of their audio-

visual consistency. When each rendered talking head video 

sequence was played together with the original speech, the 

viewer was asked to rate the naturalness of visual speech 

gestures (articulator movements in the lower face) in a five 

point MOS score. Fig. 10 shows the subjective results. Our 

system got the highest MOS score 4.15 among all other 

participants, which is only inferior to the 4.8 MOS score of the 

original AV recording.  

 
TABLE I 

pairs b � −  b 
b+# − +b 

( � =  ) 
b+# − +b 

MSE (x10
5
) 7.82 1.77 9.42 

 

Fig. 7. Closed test predicted (blue curve), open test predicted (red 

curve) vs. actual (black curve) trajectories of the 1st (up) and 2nd 
(bottom) PCA coefficients for a testing utterance. 

 
Fig. 8. Mean square error (MSE) of the predicted trajectories of visual 

PCA coefficients. 

 

 
Fig. 9. Mean square error (MSE) vs. Training data size. 
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Fig. 10. MOS (Audio-Visual Match) of all the participant systems in 

LIPS Challenge 2009. 

5. Conclusions 

We propose a HMM trajectory-guided, real sample 

concatenating approach for synthesizing high-quality photo-

real articulator animation. It renders a photo-real video of 

articulators in sync with given speech signals by searching for 

the closest real image sample sequence in the library to the 

HMM predicted trajectory. Objectively, we evaluated the 

performance of our system in terms of MSE and investigate 

the pruning strategies in terms of storage and processing 

speed. Our talking head took part in the LIPS2009 Challenge 

contest and won the FIRST place with a subjective MOS score 

of 4.15 in the Audio-Visual match evaluated by 20 human 

subjects. 
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