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ABSTRACT
Identifying the emotional state from speech is essential for
the natural interaction of the machine with the speaker. How-
ever, extracting effective features for emotion recognition is
difficult, as emotions are ambiguous. We propose a novel ap-
proach to learn discriminative features from variable length
spectrograms for emotion recognition by cooperating soft-
max cross-entropy loss and center loss together. The soft-
max cross-entropy loss enables features from different emo-
tion categories separable, and center loss efficiently pulls the
features belonging to the same emotion category to their cen-
ter. By combining the two losses together, the discrimina-
tive power will be highly enhanced, which leads to network
learning more effective features for emotion recognition. As
demonstrated by the experimental results, after introducing
center loss, both the unweighted accuracy and weighted ac-
curacy are improved by over 3% on Mel-spectrogram input,
and more than 4% on Short Time Fourier Transform spectro-
gram input.

Index Terms— Center loss, discriminative features,
speech emotion recognition

1. INTRODUCTION

Speech emotion recognition (SER) is crucial for natural
human-computer interaction. An SER system extracts fea-
tures from the speech waveform and then classifies them into
the corresponding emotion categories. And how to extract
features containing enough emotional information has drawn
growing interest.

For SER, traditional methods extract frame-level features
from overlapped frames on speech signals and apply statistic
functions on them to get additional features [1]. Since deep
neural network (DNN) can learn high-level invariant features
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from raw data [2] and deep learning brings a lot of break-
throughs in many fields [3], more and more methods utilizing
neural networks to extract valid features from raw data have
emerged. In [4], DNN and extreme learning machine were
utilized to extract high-level features from low-level features.
A bi-directional Long Short-Term Memory model was used
in [5] to extract high level feature representations for SER. In
[6], representation learning was performed on raw waveform
for end-to-end SER. Convolutional and recurrent neural net-
works were applied to learn high-level representations from
spectrograms in SER task [7].

Emotions are naturally ambiguous [8], different types of
emotions might be confusing, increasing the difficulty of ex-
tracting effective features [9]. A trending methodology to re-
lease the ambiguity of emotion is to design an appropriate
loss function instructing the neural network to learn discrim-
inative features which have smaller intra-class variance and
larger inter-class variance. A “pairwise discriminative task”
was introduced in [10] to learn the similarity and distinction
between two audios, which utilized cosine similarity loss to-
gether with binary cross entropy loss. In the task, pairwise
audios were fed into an audio encode networks to extract au-
dio vectors, and a following discriminative network judged
whether the pairwise audios belong to the same emotion cat-
egory using binary cross-entropy loss. The extracted audio
vectors from the same class were made “close” by the effect
of cosine similarity loss and they were classified by a sup-
port vector machine (SVM). In [11], a triplet framework was
proposed to extract discriminative features by using triplet
loss[12], whose input was triplets including two utterances
from the same emotion class and one utterance from other
classes. Then, similarly as [10], an SVM fed with extracted
features was used for classifying.

Recent methods to learn discriminative features for SER
via using cosine similarity loss[10] or triplet loss[11] adopt a
two-step strategy. These methods extract discriminative fea-
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tures in one step, and classify features with SVM in the other
step. However, the two-step strategy may bring a reduction of
SER performance as targets of the two steps may not be com-
pletely consistent. Besides, the performance of these meth-
ods depends heavily on the selection strategy of pairwise au-
dios or triplets. In this paper, we propose a novel approach to
extract discriminative features for SER from variable length
spectrograms in an end-to-end manner using a jointly super-
vised loss consisting of softmax cross-entropy loss and center
loss[13]. Center loss pulls features in the same class closer
to their class center, and softmax cross-entropy loss separates
features from different emotional categories. Through opti-
mizing center loss together with softmax cross-entropy loss,
discriminative features will be learned for better SER results.
Compared with cosine similarity loss method [10] and triplet
loss method [11], center loss could naturally be integrated
in common SER models, which dispense constituting sam-
ple pairs or sample triplets and the additional use of SVM
classifier.

2. THE PROPOSED APPROACH

Fig.1 depicts the framework of the proposed model, which
includes several 2-D Convolutional Neural Network layers
(CNN layers), a bidirectional Recurrent Neural Network layer
(Bi-RNN) and two fully-connected layers (FC1 and FC2).
Softmax cross-entropy loss and center loss are utilized in our
model.

CNN layers extract spatial information from a variable
length spectrogram to get a variable length sequence, Bi-
RNN compresses the variable length sequence down to a
fixed-length vector. FC1 projects Bi-RNN’s output to the
desired dimensionality. FC2, whose output denotes the pos-
terior class probabilities, is used to calculate softmax cross-
entropy loss. Softmax cross-entropy loss enables the network
to learn separable features, and center loss reduces features’
intra-class variation simultaneously.

2.1. Model details

The model takes a Short Time Fourier Transform (STFT)
spectrogram or Mel-spectrogram as input, whose size is
LT × LF . LT is variable depending on the length of audio,
and LF is the dimension related to the frequency domain.

According to the experience of computer vision, the con-
volutional network, whose first layer uses large convolution
kernels and the remaining layers use small convolution ker-
nels, perform well [14, 15]. Besides, after dozens of tests, we
determined the details of CNN layers as Fig.2-(a).

The Bi-RNN compresses variable length sequence pro-
duced by CNN layers to a fixed-length vector by concate-
nating the last output of forward RNN and backward RNN,
as shown in Fig.2-(b). Bi-RNN is implemented with 128-
width Gated Recurrent Unit (GRU)[16], so the dimension of
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entropy Loss

+

CNN layers Bi-RNN
FC1

FC2

Input

Fig. 1: Model framework. The model takes variable length spectro-
grams as input and learns discriminative features for SER.

Convolution: 48 filters of 7 × 7, strides [2, 2], ReLU nonlinear

Convolution: 64 filters of 3 × 3, strides [1, 1], ReLU nonlinear

Max-pooling: 2 × 2, strides [2, 2] 

Convolution: 80 filters of 3 × 3, strides[1, 1], ReLU nonlinear

Max-pooling: 2 × 2, strides [2, 2] 
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Fig. 2: Model Details.(a) Model details of CNN layers, (b) Bi-RNN
compresses variable length sequence to a fixed-length vector

Bi-RNN’s output is 256.
FC1 projects Bi-RNN’s output to the desired feature space

of target dimension d (d = 64 in our experiments), with
PReLU[17] activation function. We take FC1’s output z ∈ Rd

as the learned feature and calculate center loss according to z.
The output of FC2 denotes the predicted posterior probabil-
ities to corresponding emotion categories. And the parame-
ters in FC2 is used for calculating softmax cross-entropy loss,
which will be described in detail in section 2.2.

2.2. Softmax cross-entropy loss

Softmax cross-entropy loss instructs the model to learn sepa-
rable features, and it is common in multi-classification tasks.
The softmax loss function is presented as equation 1:

L0
s = − 1

m

m∑

i=1

log(
eW

T
yi

zi+byi

∑n
j=1 e

WT
j zi+bj

) (1)

where m means the size of mini-batch and n is the number of
emotion categories. zi ∈ Rd is the i-th deep feature, belong-
ing to yi-th emotion category (yi ∈ {1, 2, ..., n}). Wj ∈ Rd

denotes the j-th column of the weights W ∈ Rd×n in FC2,
b ∈ Rn is the bias in FC2 and bj is the j-th term of b.

2.3. Center loss

To reduce intra-class variation of learned features, we intro-
duce center loss in our model. Our model keeps a global cen-
ter for each class and pulls features closer to their correspond-
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ing centers. The formula of center loss is given as follows:

L0
c =

1

m

m∑

i=1

||zi − cyi ||2 (2)

where cj (j ∈ {1, 2, ..., n}) denotes the global class cen-
ter of features corresponding to the j-th emotion category.
Through optimizing the center loss, the distance between fea-
tures within the same class becomes smaller. cj is initial-
ized with 0 and updated per mini-batch iteration based on
ċj , which is the j-th class center of features from a mini-
batch, caculated by equation 3 when

∑m
i=1 δ(yi = j) > 0.

δ(condition) = 1 if the condition is satisfied, otherwise
δ(condition) = 0.

ċj =

∑m
i=1 δ(yi = j)zi∑m
i=1 δ(yi = j)

(3)

The global class center cj is updated as equation 4. α
is a hyperparameter controlling the update rate of cj when
there are features corresponding to j-th emotion category in
the new mini-batch, while cj keeps its previous value when
no corresponding features in the new mini-batch. ctj and ċtj
denotes the t-th iteration’s value of cj and ċj respectively.

ct+1
j =

{
(1− α)ctj + αċtj

∑m
i=1 δ(yi = j) > 0

ctj
∑m

i=1 δ(yi = j) = 0
(4)

2.4. Weighted loss and joint loss

Because of class imbalance, instead of using L0
s and L0

c di-
rectly, we assigned weights to softmax cross-entropy loss and
center loss in our experiments, shown in equation 5 and equa-
tion 6. The weight ωj(j ∈ {1, 2, ..., n}) is in inverse propor-
tion to the sample number of the j-th class in training set.

Ls = − 1∑m
i=1 ωyi

m∑

i=1

ωyi log(
eW

T
yi

zi+byi

∑n
j=1 e

WT
j zi+bj

) (5)

Lc =
1∑m

i=1 ωyi

m∑

i=1

ωyi ||zi − cyi ||2 (6)

Our neural network is trained using a joint loss comprised
of softmax cross-entropy loss and center loss, calculated as
equation 7. λ is a hyperparameter trading off center loss
against softmax cross-entropy loss. When λ = 0, the model
is trained using only softmax cross-entropy loss.

L = Ls + λLc (7)

3. EXPERIMENTS AND ANALYSIS

3.1. Experimental setup

Our model was tested on the Interactive Emotional Dyadic
Motion Capture (IEMOCAP) [18] dataset, which was de-
signed for studying multimodal expressive dyadic interac-
tions. It contains approximately 12 hours of audiovisual data,

including video, speech, motion capture of face and text tran-
scriptions. For training and evaluation, we used categorical
emotions neutral, angry, happy, sad and excited which rep-
resent the majority of the emotion categories in the database
(5531 utterances), happy and excited were merged since they
are close in the activation and valence domain [18].

As there is data imbalance between classes – neutral
(30.9% of the total dataset), angry (19.9%), happy (29.6%),
and sad (19.6%), we adopted both the unweighted accuracy
(UA, the mean value of the recall for each class) and the
weighed accuracy (WA, the number of correctly classified
samples divided by the total amount of samples) as metrics
to evaluate SER performance. In our experiments, the dataset
was divided into 5 subsets randomly keeping the emotion
distribution, 4 subsets were used for training, half of the
last subset was used as development set and half as test set.
We repeated cross-validation 5 times to get the final average
result.

Our experiments were conducted on log scale Mel-
spectrogram and log scale STFT spectrogram respectively.
To get spectrogram, a sequence of overlapping Hamming
windows were applied to the speech signal, with window
shift of 10msec, and window size of 40msec. The speech
signal was sampled at 16kHz and the DFT length was 1024.
The number of Mel bands was 128 when calculating Mel-
spectrogram. We assumed that 14s long utterance contains
enough emotional information. So for utterance whose dura-
tion is longer than 14s (2.07% of the total dataset), we only
extracted the middle 14s to calculate spectrogram.

During the training phase, we used Adam [19] optimizer,
set learning rate to 0.0003, and the size of mini-batch was
32. We applied the parameters maximizing the UA of the
development set as the model’s final parameters.

3.2. Experiments on Mel-Spectrogram

As α controls the update rate of class centers and λ dom-
inates the weight of center loss, we conducted experiments
to investigate the effect of hyperparameter α and λ on Mel-
spectrogram input. The experimental results are shown in
Fig.3. Fig.3-(a) illustrates that the UA and WA are not sen-
sitive to α, Fig.3-(b) demonstrates that the SER performance
can be significantly improved with proper value of λ. When
λ = 0 (setting 1), the UA is 63.80% and the WA is 61.83%.
The UA and WA is 66.86% and 65.40% respectively when
λ = 0.3,α = 0.5 (setting 2). The UA and WA are both
increased by over 3% when using center loss with proper hy-
perparameters.

To illustrate the discriminative power provided by center
loss, we applied Principal Component Analysis(PCA) to em-
bed learned features. The PCA embeddings (of features pro-
duced by once experiment in cross-validations on setting 1
and on setting 2 respectively) are drawn in Fig.4. Comparing
Fig.4-(b) with Fig.4-(a) or Fig.4-(d) with Fig.4-(c), we could
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(a) (b)

Fig. 3: UA and WA on log scale Mel-spectrogram input.(a) model
with different α when fixing λ = 0.3 (b) model with different λ when
fixing α = 0.5

(a) (b)

(c) (d)

Fig. 4: PCA embedding of features from, (a) training set on setting
1, (b) training set on setting 2, (c) test set on setting 1, (d) test set on
setting 2

find that features belonging to the same class are more com-
pact when using center loss. After introducing center loss
together with softmax cross-entropy loss to train the model,
the discriminative power can be enhanced, which leads to the
model learning more effective features for SER.

The final confusion matrix was calculated by averaging
confusion matrices from 5 times cross-validations, the results
on setting 1 and setting 2 are shown in table 1-(a) and table 1-
(b). As can be seen, after introducing center loss for enhanc-
ing discriminative power, the accuracy of each emotion has
been improved to different degrees.

Hyperparameters Input
setting1 λ=0 Mel
setting2 λ=0.3, α=0.5 Mel
setting3 λ=0 STFT
setting4 λ=0.3, α=0.5 STFT

Fig. 5: The UA and WA on setting 1 ∼ setting 4.

Table 1: confusion matrix on, (a) setting 1, (b) setting 2
neu ang hap sad

neu 0.575 0.095 0.164 0.166
ang 0.119 0.691 0.155 0.035
hap 0.211 0.162 0.511 0.115
sad 0.138 0.026 0.060 0.776

(a)

neu ang hap sad
neu 0.637 0.067 0.167 0.127
ang 0.108 0.705 0.167 0.020
hap 0.219 0.131 0.556 0.094
sad 0.128 0.025 0.070 0.777

(b)

Table 2: confusion matrix on, (a) setting 3, (b) setting 4
neu ang hap sad

neu 0.544 0.093 0.185 0.177
ang 0.127 0.681 0.167 0.025
hap 0.216 0.186 0.476 0.122
sad 0.161 0.039 0.062 0.737

(a)

neu ang hap sad
neu 0.573 0.073 0.196 0.157
ang 0.103 0.720 0.153 0.022
hap 0.205 0.161 0.518 0.114
sad 0.125 0.028 0.053 0.793

(b)

3.3. Experiments on STFT spectrogram

We conducted experiments to prove that introducing center
loss is also useful for learning effective features for SER on
STFT spectrograms input, by comparing experiment result
when λ = 0 (setting 3) with λ = 0.3,α = 0.5 (setting 4).
The final confusion matrices are shown in table 2-(a) and ta-
ble 2-(b), which show that each emotion’s accuracy has been
improved after introducing center loss. The UA and WA are
60.98% and 58.93% on setting 3, while 65.13% and 62.96%
on setting 4. Both the UA and WA are improved by more than
4% after introducing center loss.

We presented the UA and WA on setting 1 ∼ setting 4
shown in Fig.5. We can conclude that introducing center loss
could effectively improve the SER performance by compar-
ing setting 2 with setting 1 or setting 4 with setting 3 in Fig.5.
By comparing experimental results on setting 1 with setting 3
or setting 2 with setting 4 in Fig.5, we could find that learning
effective features for SER on Mel-spectrogram input, which
reduces the dimension based on human hearing characteris-
tics, is easier than on STFT spectrogram input.

4. CONCLUSIONS

In this paper, we presented an approach to learn discrimina-
tive features from variable length spectrograms by integrat-
ing center loss in the SER model. The 2-D PCA embedding
illustrated the discriminative power when using center loss,
which enables the neural network to learn more effective fea-
tures for SER. Our experiment results demonstrated that cen-
ter loss with proper hyperparameters is useful for improving
the performance of SER on both Mel-spectrogram input and
STFT spectrogram input. As center loss mainly focuses on
reducing the intra-class variation of features, in future work,
we will explore more in the loss function, hoping to increase
the features’ inter-class variation to further improve the SER
performance.
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