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Modeling the Expressivity of Input Text
Semantics for Chinese Text-to-Speech Synthesis

in a Spoken Dialog System
Zhiyong Wu, Helen M. Meng, Member, IEEE, Hongwu Yang, Associate Member, IEEE, and Lianhong Cai

Abstract—This work focuses on the development of expres-
sive text-to-speech synthesis techniques for a Chinese spoken
dialog system, where the expressivity is driven by the message
content. We adapt the three-dimensional pleasure-displeasure,
arousal-nonarousal and dominance-submissiveness (PAD) model
for describing expressivity in input text semantics. The context of
our study is based on response messages generated by a spoken
dialog system in the tourist information domain. We use the
(pleasure) and (arousal) dimensions to describe expressivity at
the prosodic word level based on lexical semantics. The (domi-
nance) dimension is used to describe expressivity at the utterance
level based on dialog acts. We analyze contrastive (neutral versus
expressive) speech recordings to develop a nonlinear perturbation
model that incorporates the PAD values of a response message
to transform neutral speech into expressive speech. Two levels
of perturbations are implemented—local perturbation at the
prosodic word level, as well as global perturbation at the utterance
level. Perceptual experiments involving 14 subjects indicate that
the proposed approach can significantly enhance expressivity in
response generation for a spoken dialog system.

Index Terms—Expressive text-to-speech (TTS) synthesis, non-
linear perturbation model, response generation, spoken dialog
system (SDS).

I. INTRODUCTION

T HIS work aims to develop an expressive text-to-speech
(E-TTS) synthesizer to serve as an integral output channel

in a spoken dialog system (SDS). Our long-term goal is to per-
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sonify the multimodal system output in the form of an avatar that
can converse naturally with the user. The interchange should
ideally resemble two interlocutors who seek to attain an infor-
mation goal collaboratively through the course of spoken dialog
[1]–[3]. A critical enabler for effective interaction in this context
is E-TTS synthesis. For example, emphasis should be given to
important points in the synthesized speech, while different into-
nations should be applied to different dialog states (e.g., ques-
tion versus confirmation).

There exists a rich repository of previous work in E-TTS
[4]–[7]. Earlier efforts established that recognizable vocal
effects can be generated in rule-based synthesis of vocal emo-
tions [8]–[10]. A comprehensive review of vocal emotions and
their communication process was presented in [11]. This work
also pointed out the lack of a consensual definition of different
vocal emotions (e.g., happy, sad, surprise, etc.) and different
qualitative types of emotions. Many studies have adopted the
categorical definitions of the “big six” emotions (i.e., happy,
sad, surprise, fear, angry, and disgust) [5], [12]. The scope of
emotions was further extended to expressions in [13], which
include paralinguistic events. Studies were devoted to the
realization of expressions through speech prosody and their
acoustic correlates, including intonation, amplitude, duration,
timing, and voice quality [14]–[17]. Large databases of expres-
sive speech have also been collected to support data-driven
research [18], including the Reading–Leeds Emotion Speech
project [19], the Belfast project [20], and the CREST-ESP
project [21]. Explorations have been undertaken in the use of
concatenative methods for E-TTS [22], [23]. Speech record-
ings from different emotion categories were utilized with
TD-PSOLA to mix and match the prosodic information and
diphone inventories for different emotion states [24], [25]. Re-
sults show that consistent selection of the prosodic and diphone
inventories according to the intended emotion for synthesis
gives the highest emotion accuracies. Another engineering ap-
proach converts prosody-related acoustic features from neutral
to emotional speech, using methods such as the linear modifi-
cation model (LMM), Gaussian mixture model (GMM), and
classification and regression trees (CART) [26]. Additionally,
the work in [14] presented a continuum of emotion states in
synthetic speech using psychological emotion dimensions (i.e.,
activation, evaluation, and power). The work also demonstrated
the possibility of synthesizing emotional speech acoustics that
correspond to different locations in the three-dimensional emo-
tion space. Furthermore, enhancement of expressivity has also
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Fig. 1. Overview of the expressive text-to-speech (E-TTS) synthesizer for re-
sponse generation in a spoken dialog system.

been attempted through audiovisual means [27]—by utilizing
the relative timing and influence among audiovisual cues.

This paper seeks to incorporate expressivity in synthetic
speech to convey the communicative semantics of system
response messages in a spoken dialog system. This problem
may be divided into two parts: 1) to develop a mapping from
the text semantics in the system response messages to a set
of descriptors for expressivity; as well as 2) to develop a
perturbation model that can render acoustic features of speech
according to the parameterized descriptors of expressivity. In
relation to the first subproblem, the conventional categories of
vocal emotion cannot be applied in a straightforward manner.
Instead, we adapt Mehrabian’s three-dimensional PAD model
[28] as the descriptive framework for semantic-oriented ex-
pressions. The three dimensions are approximately orthogonal
and the abbreviations include: P for pleasure-displeasure, A for
arousal-nonarousal, and D for dominance-submissiveness. The
PAD model has been successfully applied to describe emotions,
moods, situations [30], and personalities [31]. In relation to
the second subproblem, we present a non-linear perturbation
model that can postprocess the neutral TTS output obtained
from the existing spoken dialog system to generate expressive
TTS outputs for enhanced interactions. Fig. 1 presents an
overview of the E-TTS synthesizer.

The rest of the paper is organized as follows. We first describe
the scope of our investigation which is defined in the tourist
information domain, followed by an introduction of the PAD
framework and its parameterization for describing the expres-
sivity of text semantics. Then we present the nonlinear pertur-
bation model for rendering expressive acoustics, followed by
experiments, analysis of results and conclusions.

II. SCOPE

This research is conducted in the context of a spoken dialog
system in the tourist information domain [32]. Information is
sourced from the Discover Hong Kong website of the Hong
Kong Tourism Board [33]. The use of E-TTS to generate system
responses aims to enhance interactivity between human and
computer. We collected dialog data from 30 recruited subjects
with a Wizard-of-Oz (WoZ) setup. Each subject interacts with a
browser-based interface, behind which “hides” the wizard who
can access the Discover Hong Kong website freely. The user’s
inquiries may be presented with speech, typed text and mouse

TABLE I
EXAMPLE DIALOG BETWEEN USER (U) AND SYSTEM (S). KEY CONCEPTS

(KC) AND DIALOG ACTS (DA) HAVE BEEN LABELED SEMI-AUTOMATICALLY.
UTTERANCES BELONG TO THE INTERACTIVE GENRE

gestures. The wizard attempts to provide cooperative and in-
formative responses in terms of speech and tagged information
(e.g., URLs, highlighted locations on a map, etc.) All dialog
interactions were logged by the system. Analysis shows that the
wizard’s speech may be spontaneous and contain disfluencies.
To ease subsequent processing, we devised a procedure of
data regularization which simplifies the wizard’s responses
into utterances with straightforward grammar structures [32].
Overall we collected 1500 dialog turns, each of which contains
two to five utterances. This amounts to 3874 utterances in user
inquiries and system responses. Tables I and II illustrate that
the tourist information domain presents four genres of response
messages: 1

1) the interactive genre that characterizes dialog interac-
tions (e.g., carry forward to the next dialog turn or bring
it to a close);

2) the descriptive genre that describes the attractive fea-
tures of a scenic spot;

3) the informative genre that presents facts (e.g., opening
hours and/or ticket price of a scenic spot);

4) the procedural genre that gives instructions (e.g., trans-
portation and working directions).

Utterances in the interactive genre (see Table I) have been
semi-automatically annotated with key concepts (KC), dialog
acts (DA), and task goals (TG). KCs correspond to the lexical
semantics of Chinese words and are extracted by homegrown
tokenization and parsing algorithms. The DA denotes the com-
municative goal of an utterance in the context of the dialog and
bears relationships with neighboring dialog turns. We use DAs
that are adapted from VERBMOBIL-2 [34] . The TG refers to
the user’s informational goal that underlies an utterance and our

1English translations are provided in the tables for readability.
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TABLE II
TYPICAL INFORMATION GIVEN ABOUT A SCENIC SPOT.

(SOURCE: DISCOVER HONG KONG WEBSITE [33])

TGs are designed specifically for the tourist information do-
main. We use trained belief networks to infer the DA and TG
in the dialog corpus [32]. Speech synthesis for a response mes-
sage in the interactive genre will need to incorporate appropriate
utterance-level intonation for different DA.

Utterances in the three remaining genres (see Table II) aim
to provide information for the user. The descriptive genre often
contains commendatory words that describe scenic spots and
their specialties. The informative and procedural genres con-
tain useful facts for the tourist. Speech synthesis for a response
message in these genres will need to incorporate appropriate
word-level prosody based on lexical semantics, with suitable
emphasis to draw the attention of the listener.

III. TEXT PROMPTS AND SPEECH CORPUS

We collected contrastive (i.e., neutral versus expressive)
speech recordings of text prompts that cover the four different
genres of response messages, namely, the interactive, descrip-
tive, informative, and procedural genres.

A. Text Prompts

Text prompts that belong to the interactive genre include 1063
response messages selected from the WoZ dialogs (see previous
section). These text prompts consist of 6047 Chinese prosodic
words and 13 555 Chinese syllables. Text prompts that belong
to the descriptive, informative, and procedural genres are de-
rived from text passages corresponding to 20 scenic spots in
the Discover Hong Kong website. The text passages include 60
paragraphs, consisting of 357 utterances, 1358 Chinese prosodic
words and 3340 Chinese syllables. The prosodic word is defined
as the smallest constituent at the lowest level of the prosodic
hierarchy, and consists of a group of syllables uttered closely
and continuously in an utterance [35], [36]. We have chosen the
prosodic word as the basic unit for analysis and modeling since
it provides a natural connection between the text semantics and
speech acoustics.

B. Speech Corpus

A male native Mandarin speaker was recruited to record in a
soundproof studio. The speaker has several years of research ex-

perience in expressive speech processing. Therefore, he has con-
siderable understanding of the differences between neutral and
expressive speech. For each text prompt, the speaker was asked
to record contrastive versions of neutral and expressive speech.
For text prompts that belong to the descriptive, informative, and
procedural genres, expressive speech recordings should contain
local, word-level expressivity that conveys the lexical semantics
of the prosodic words. For the text prompts that belong to the
interactive genre, expressive speech recordings should contain
global expressivity that conveys the communicative goal (i.e.,
dialog act) of the utterance. We have 60 text prompts that fall
under the descriptive, informative, and procedural genres. These
prompts tend to be long and each may contain one to eight sen-
tences, leading to 357 utterances in total. We have 1063 text
prompts in the interactive genre and each corresponds to one ut-
terance. Altogether the recordings amount to 225 min of speech.
The sound files are saved in the .wav format (16 bit mono, sam-
pled at 16 kHz). This data is needed for data analysis and mod-
eling. We set aside another disjoint set of 60 utterances from the
descriptive, informative, and procedural genres and 60 from the
interactive genre, to be used as the test set for experimentation.

IV. MODELING EXPRESSIVITY WITH THE PAD FRAMEWORK

As mentioned in Section I, the first of our two subprob-
lems is to develop a mapping from text semantics in response
messages to a set of descriptors for expressivity. We find
that conventional emotion categories do not offer a suffi-
ciently general descriptive framework for semantic-oriented
expressivity. Instead, we adapt Mehrabian’s PAD model [28]
which has three approximately orthogonal dimensions: 1)
“pleasure-displeasure” (P) distinguishes the positive-negative
affective qualities of emotion states; 2) “arousal-nonarousal”
(A) refers to a combination of physical activity and mental
alertness; and 3) “dominance-submissiveness” (D) is defined
in terms of control versus lack of control. The axis for each
dimension ranges from 1.0 to 1.0. It has been shown in
[29] and [30] that the PAD space provides an adequate and
general characterization of emotions, covering 240 emotion
states. Previous work in psychology has also devised elicitation
methods to obtain PAD values for emotion terms [30], e.g.,
“elated” corresponds to and
“inhibited” to . PAD
values can also be used to describe situations [28]. For example,
the situation “you have had a long and exhausting day at work;
you now must wait for about 30 to 40 min for your ride home”
corresponds to all negative PAD values (i.e., –P–A –D). For the
current investigation, we believe that the PAD model offers a
general description framework that can cover local expressivity
at the word level based on lexical semantics, as well as global
expressivity at the utterance level based on dialog acts.

A. Heuristics for PAD Parameterization

We designed a set of heuristics such that the PAD descrip-
tors can be parameterized according to the semantic content of
the response messages. The heuristics are applied at two levels:
the and descriptors are used for local expressivity at the
prosodic word level based on lexical semantics, while the
descriptor is used for global expressivity at the utterance level
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TABLE III
CORRESPONDENCES BETWEEN DIALOG ACTS (DA) AND THEIR � VALUES

based on dialog acts. We elaborate on the details of the heuristic
principles and their motivations as follows.

1) P Values Commendatory words or words with positive
connotations are labeled with , e.g., (pop-
ular), (beautiful), etc. Derogatory words or words
with negative connotations are labeled with ,
e.g., (devious), (crowded), etc. Remaining
words are assumed neutral and are labeled with .

2) A Values: Superlatives and words denoting a high degree
are labeled with the maximum level of arousal as ,
e.g., (most), (very), (super), etc. Compara-
tives and words carrying key facts are labeled with an
intermediate level of arousal as , e.g., (rel-
ative), street names, transportation means, etc. Hence,
these words carry a moderate amount of emphasis. The
remaining words are labeled with . A common
sentence construct found in the text prompts is “ not
only , but also .” We annotate
prosodic words in with and those
in with .

3) D values: Utterances that provide confirmation or feed-
back are labeled with (i.e., very dominant). Ut-
terances that give introductions, explain facts or bring
dialogs to a close are labeled with (i.e., mod-
erately dominant). Utterances that give suggestions, ex-
press thanks, ask for help or deferment are labeled with

(i.e., submissive). Apologetic utterances and
interrogative utterances are labeled with (i.e.,
very submissive). The remaining utterances are labeled
with . Table III presents some examples of the
correspondences between dialog acts (DA) and their
values.

Recall from Fig. 1 that E-TTS is applied to the response mes-
sage text that is generated by a spoken dialog system [32]. Mes-
sage generation is performed with a template-based approach.
The heuristics presented above can be easily incorporated into

TABLE IV
CORPUS STATISTICS OF THE ANNOTATED � VALUES BASED ON THE DIALOG

ACTS (DA) OF UTTERANCES IN THE INTERACTIVE GENRE

TABLE V
CORPUS STATISTICS OF THE ANNOTATED � AND � VALUES BASED ON THE

LEXICAL SEMANTICS OF PROSODIC WORDS IN THE INTERACTIVE GENRE

TABLE VI
CORPUS STATISTICS OF THE ANNOTATED � AND � VALUES

BASED ON THE LEXICAL SEMANTICS OF PROSODIC WORDS IN THE

DESCRIPTIVE/INFORMATIVE/PROCEDURAL GENRES

TABLE VII
EXAMPLE OF � AND � ANNOTATIONS FOR

PROSODIC WORDS IN AN UTTERANCE

the templates for PAD parameterization based on response mes-
sage text.

B. Corpus Statistics Based on PAD Annotations

Three annotators were asked to follow the heuristic principles
to annotate the response message texts. An agreement for 94%
of the prosodic words is achieved among the three annotators
in the annotation of and values. Ambiguity is resolved by
majority rule or a further pass in annotation. Annotation of
value of an utterance is a straightforward mapping based on the
dialog act inferred by trained belief networks. Hence, there is no
ambiguity. Corpus statistics based on the annotations are shown
in Tables IV–VI. The tourist information domain contains pri-
marily pleasant prosodic words about scenic spots. Table VII
gives an example of annotated and values for prosodic
words in an utterance. Due to the sparseness of prosodic words
with negative value, they are excluded from the subsequent
study.

V. EXPLORATORY DATA ANALYSIS OF THE ACOUSTIC

CORRELATES OF EXPRESSIVITY

Having adopted the PAD framework to produce a mapping
from text semantics of the dialog response messages to the pa-
rameterized descriptors for expressivity; we proceed with an ex-
ploratory data analysis of the acoustic correlates of the descrip-
tors. We capture both the average and the dynamicity of acoustic
features commonly associated with expressive speech:

• Intonation: mean, range, slope;
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Fig. 2. Ratio between expressive and neutral speech acoustic features
� �� for different � and � values. Triangles denote �� � �� and
circles denote �� � ��.

• Intensity: mean and range of the root mean square (RMS)
energy (energy mean and energy range);

• Speaking rate: syllables per minute; and
• Fluency: pause duration before a prosodic word.
The analysis is conducted based on the contrastive record-

ings from our speech corpus. Each recorded utterance is auto-
matically segmented into syllables by forced alignment with an
HMM-based speech recognizer and the syllable boundaries are
checked manually. Measurements are then taken from each syl-
lable. We compute the ratio of each feature value
between the neutral and expressive counterparts ,
where denotes any of the features described above.

To understand local expressivity, we analyze recordings
from the descriptive, informative, and procedural genres. The
prosodic variations in these utterances are primarily due to
local, word-level expressivity for conveying lexical semantics.
There is relatively little variations due to utterance-level dialog
acts (since most of the utterances carry ). Fig. 2
depicts the seven acoustic features for difference combinations
of values. Here, the values are shown on the -axis,
triangles denote cases when and circles denote cases
when . We observe that all ratios between expressive
and neutral speech acoustic features, except for speaking rate,
are larger than one (i.e., ). This agrees with
common perception that expressive speech has higher values
for mean and energy, and lower values for speaking rate.
We also observe that when (referring to the circles
in the figure), the range and speaking rate decrease as the

value increases. This also agrees with common perception
that speakers may emphasize certain words by speaking more
slowly with a steady intonation.

To understand global expressivity, we analyze recordings
from the interactive genre. These utterances should carry low
prosodic variations due to word-level expressivity because the
majority (over 92%) of the words have neutral values
(i.e., and or 0.5, see Table V). Instead, the range
of values covered by this dataset implies that prosodic vari-
ations should primarily be due to utterance-level dialog acts.

Fig. 3. Ratio between expressive and neutral speech acoustic features
� �� for different � values.

Fig. 3 shows variations in six acoustic features. Pause durations
in between prosodic words are ignored because they associate
mainly with the local level. We observe that the ratio between
expressive and neutral speech acoustic features increases with
the value. This agrees with the common perception that dom-
inance often leads to exaggerated expressions. In particular,

has a negative slope at , corresponding to rising
intonation (i.e., interrogative intonation) at the utterance-final
position.

VI. PERTURBATION MODEL FOR EXPRESSIVE SYNTHESIS

We proceed to develop a model that can render expressive
speech acoustic features based on parameterized descriptors
of expressivity. Based on the exploratory data analysis, we
observe a nonlinear relationship between PAD descriptors
and their acoustic correlates. Hence, we propose a nonlinear
perturbation model for transforming neutral speech acoustic
features into expressive renditions. The approach involves two
levels of perturbation: 1) the prosodic word level based on the
lexical semantics and their values; and 2) the utterance
level based on the dialog acts and their values.

A. Local Perturbation at the Prosodic Word Level

The model for local perturbation is driven by values,
as shown as follows:

(1)

where denotes any of the seven features (see Section V)
from expressive speech, is the corresponding feature from
neutral speech, is the ratio between expressive and
neutral speech acoustic feature, and are coefficients.
This equation captures the observed trends when , the ex-
pressive measurement increases linearly with (from 0 to 0.5).
However, the linear relationship changes to exponential when

. This is captured by the factor for incre-
ments of from 0.5 to 1. Nonlinear least-squares regression2 is
used to estimate the coefficients from utterances in the descrip-
tive, informative, and procedural genres.

2Coefficients are initialized at 1 and maximum number of iterations is set at
100.
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Fig. 4. Integrated local and global perturbation model for expressive speech
synthesis.

B. Global Perturbation at the Utterance Level

A similar nonlinear model is used for global perturbation and
driven by values, as shown as follows:

(2)

where , , and have the same meaning as
in (1), and , , are coefficients. Similar to the above,
nonlinear least-squares regression is used to estimate the coef-
ficients from utterances in the interactive genre.

C. Integrated Local and Global Perturbation

To integrate the local and global perturbations, we refer to
Chao’s theory [37] for Chinese speech, which states that the ex-
pressive intonation is the combination of “small ripples” (syl-
labic tone) and “large waves” (intonation). Such integration en-
ables us to render expressivity based on different combinations
of PAD values, encountered in the different genres of response
messages. For example, the dialog response “OK” may con-
firm the user’s statement; while “OK?” seeks confirmation from
the user. These two messages with identical textual content will
have the same local expressivity due to the prosodic word, but
different global expressivity due to the dialog act. “OK” should
have declarative intonation while “OK?” should have interrog-
ative intonation.

Fig. 4 illustrates the sequential framework for integration.
The first step uses the local perturbation model in (1) to modu-
late the seven acoustic measurements according to values
in each prosodic word. Modulation is realized for each syl-
lable by means of STRAIGHT [38]. Pause segments with ap-
propriate durations are concatenated to the beginning of each
prosodic word. Modulated, expressive speech segments from all
the prosodic words are then concatenated to generate a synthetic
speech utterance with local expressivity. The second step further
applies global perturbation in (2) to modulate the six acoustic
measurements according to the value of each utterance. Mod-
ulation is also realized by STRAIGHT [38].

D. Implementing Perturbations With STRAIGHT

The STRAIGHT algorithm [38] provides an “analysis-modi-
fication-resynthesis” framework for converting input speech to
target speech with desired characteristics (e.g., new acoustic
features or new spectrum). This presents a very desirable plat-
form for the incorporation of the proposed perturbation model.
Neutral speech input is first analyzed by STRAIGHT to obtain
the spectrum, pitch and energy features, and durations. These

acoustic features are then modulated with the proposed pertur-
bation model to generate the target acoustic features for expres-
sive speech. Fig. 1 shows that the final step involves feeding the
perturbed acoustic features and spectrum into STRAIGHT to
resynthesize expressive speech.

1) Analysis: To describe the process of analysis, we denote
the neutral, synthetic speech generated by our existing TTS syn-
thesizer with . Since we use syllable concatenative syn-
thesis, can also be represented as syllable waveforms

(3)

where is the discrete time index measured in milliseconds. We
denote the known boundaries of th syllable waveform
with , i.e., begin/end times in milliseconds. We compute
the RMS energy for every millisecond of the syllable waveform

to generate .
STRAIGHT analysis computes the speech spectrum with a

1024-point FFT, with the analysis rate (i.e., window advance-
ment) of 1 ms. From each spectrum, the pitch is extracted
between the search range of 40 to 800 Hz. We denote the spec-
trum and pitch contour for syllable with and ,
where .

From these measurements, we obtain the seven acoustic fea-
tures mentioned in Section V. Acoustic features for intonation,
i.e., mean and range for syllable are
calculated as follows:

(4)

(5)

We apply linear regression to the pitch contour
. The slope is the slope :

(6)

The intercept is calculated from mean and slope as

(7)

Acoustic features for intensity, i.e., energy mean and
energy range for syllable are computed as

(8)

(9)

The duration of syllable and the duration of its preceding
pause are measured as follows:

(10)

(11)
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2) Modification and Resynthesis: Perturbations at the local
and global levels are realized by multiplication with the ratios

from (1) and (2), respectively. We denote the
expressive rendition for syllable with . Resynthesizing
using STRAIGHT requires three parameters: 1) the spectrum
of the expressive speech , 2) the pitch contour , and
3) the time-axis mapping information (we will elaborate
on this later). The spectrum and pitch contour are used in
STRAIGHT to resynthesize speech in the frequency domain;
while the time-axis mapping information is used for changing
the speaking rate in the time domain. The spectrum and pitch
contour should have the same temporal length.

The spectrum is not modified in our current work. Hence,

(12)

The pitch contour of expressive syllable should have the
same temporal length as the spectrum, and hence the same syl-
lable boundaries as neutral speech. The new pitch con-
tour is calculated from the neutral pitch contour with
two steps. First, the slope of the pitch contour is changed by sub-
tracting the fitted straight line of the neutral pitch contour
[see (6) and (7)] followed by incorporating the desired slope

as with zero as mean

(13)

Thereafter, the pitch contour is shifted and scaled to match the
desired mean and range

(14)

We denote the target boundaries for expressive speech of syl-
lable with , which are computed as

(15)

The durations and can be computed from the perturbation
models, i.e., (1) and (2). Then we can obtain the time-axis map-
ping information which maps the time index on expressive

speech to the time index on neutral speech, to find appropriate
parameters for resynthesizing expressive speech:

(16)

STRAIGHT begins with resynthesis of (without energy
modification) based on , , and :

(17)

where represents the synthesis process of the STRAIGHT
algorithm, details of which are presented in [38].

Thereafter, energy level of is adjusted by scaling with
the desired energy mean and range :

(18)
Then, the energy of is scaled by and further
smoothed by a Hamming window in preparation for syl-
lable waveform segment concatenation to produce the final ex-
pressive speech segment of syllable :

(19)

The Hamming window is defined as

(20)
Finally, the entire expressive speech is generated by concate-
nating the syllable waveforms:

(21)

VII. PERCEPTUAL EVALUATION

We conducted a set of perceptual experiments to evaluate
the expressive speech synthesized by the integrated perturba-
tion framework. To minimize learning effects which may affect
the evaluation results, we divided the test set (as described in
Section III-B) into three non-overlapping subsets and conducted
three evaluations with one-month intervals. The first subset con-
tains 20 utterances from the descriptive, informative, and proce-
dural genres, which aims to focus on perceiving expressivity at
the prosodic word level. The second contains 20 utterances from
the descriptive, informative, and procedural genres, as well as
30 utterances from the interactive genre, which focuses on per-
ceiving expressivity at the utterance level. All remaining testing
data are grouped into the third subset. Preprocessing of the text
prompts includes applying a homegrown tool for prosodic word
tokenization, trained belief networks for dialog act inference,
as well as the heuristic mapping to obtain the PAD values for
prosodic words and utterances. We also verified that all the data
subsets have good coverage of the possible combinations in the
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TABLE VIII
PERCEPTUAL EVALUATION OF LOCAL PERTURBATION, MEASURED BY THE

� OF PROSODIC WORDS JUDGED TO BE CLOSER TO THE EXPRESSIVE

RATHER THAN NEUTRAL RECORDINGS

PAD space. Thereafter, E-TTS is applied to generate expressive
utterances from the text prompts.

A. Local Perturbation on Neutral Speech Recordings

We use the first testing data subset to focus on local expres-
sivity for lexical semantics in each prosodic word. We recruited
14 native speakers of Mandarin (nine male, five female, without
hearing impairment) to be subjects for the listening test. All the
subjects are engineering students who have experiences with
speech and language technologies but not in expressive speech
synthesis. Each text prompt was presented to the subject in the
form of three speech files:

1) the neutral speech recording from the original
male speaker who recorded the speech corpus (see
Section III);

2) the expressive speech recording from the same speaker;
3) a locally perturbed signal originating from the neutral

speech recording 1).
The three speech files were played for the subjects in the order of
1)-2)-3)-1)-2)-3). The subject was presented with the prosodic
words of the text prompt while listening, and was asked to judge
whether a prosodic word in 3) sounded more similar to its coun-
terpart 1) or 2). Results shown in Table VIII indicate that over
76% of the locally perturbed prosodic words are perceived to be
closer to their expressive counterparts than the neutral one. This
reflects that the local perturbation model can effectively synthe-
size expressivity for lexical semantics.

B. Integrated Perturbation on Neutral Speech Recordings

We conducted another listening test with the second testing
data subset to focus on the integrated (i.e., both local and global)
perturbation model. Each text prompt was presented to the sub-
ject in the form of five speech files:

1) the neutral speech recording from the male speaker who
recorded the speech corpus;

2) the expressive speech recording from the same speaker;
3) a locally perturbed speech signal from 1);
4) a globally perturbed speech signal from 1); and
5) an integrated (both locally and globally) perturbed

speech signal from 1).
The same 14 subjects were recruited for listening evaluation.
The speech files were played either in the order 1)-2)- or
2)-1)- . Order selection was randomized. refers to per-
turbed speech and may either be 3), 4) or 5). The subject was
presented with the text prompt while listening, and was asked to
judge whether utterance sounded more similar to its coun-
terpart of 1) or 2). Results shown in Table IX indicate that local
perturbation generates appropriate expressivity for over 73% of
the utterances, global perturbation generates appropriate expres-

TABLE IX
PERCEPTUAL EVALUATION OF LOCAL, GLOBAL, AND INTEGRATED

PERTURBATIONS, MEASURED BY THE � OF UTTERANCES JUDGED TO BE

CLOSER TO THE EXPRESSIVE VERSUS NEUTRAL RECORDING

Fig. 5. Comparison between neutral speech recordings, neutral synthetic
speech, and their perturbed renditions, based on MOS and absolute ranking.

sivity for 65% of the utterances, and integrated perturbation of-
fers further enhancements to over 83%.

C. Integrated Perturbation on Neutral TTS Outputs

Thus far, perturbation is applied to neutral recordings pro-
vided by the male speaker in our speech corpus. In the spoken
dialog system (see Fig. 1), perturbation should be applied
to neutral synthetic speech generated by the existing speech
synthesizer. This synthesizer is based on the concatenative
approach and utilizes voice libraries developed from different
speakers (male and female). To assess the extensibility of the
proposed perturbation framework, we devised an evaluation
that compares between perturbation of neutral speech record-
ings and neutral synthetic speech. This evaluation involves
mean opinion scores (MOS) provided by the same 14 subjects.
Each text prompt was presented in the form of seven speech
files:

• the neutral and expressive speech recordings from the orig-
inal male speaker (denoted as NEU_REC and EXP_REC
respectively);

• neutral synthetic speech in a male or female voice (denoted
as NEU_MTTS and NEU_FTTS, respectively);

• the signal obtained from integrated perturbation of
NEU_REC, denoted as PER_REC;

• the signal obtained from integrated perturbation of
NEU_MTTS, denoted as PER_MTTS; and

• the signal obtained from integrated perturbation of
NEU_FTTS, denoted as PER_FTTS.

Subjects were asked to score each speech file based on a five-
point Likert scale:

5 Expressive—natural and expressive like human speech;
4 Natural—appropriate for the semantics of the message;
3 Acceptable—flat intonation with some expressivity;
2 Unnatural—robotic with little expressivity;
1 Erratic—low intelligibility and weird.

Results are shown in Fig. 5. Integrated perturbation applied to
NEU_REC, NEU_MTTS and NEU_FTTS increases the av-
erage MOS by 0.4, 0.6 and 0.7, respectively. These increments
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are shown to be statistically significant based on paired -test
with . 3 We also observe variations in the range of
MOS across subjects. Some subjects never give the full score
of 5, or the lowest score of 1. To normalize for such variations
across subjects, we also mapped the MOS scores into absolute
rankings4 for the seven speech files. Comparative trends remain
consistent, as shown in Fig. 5. These results demonstrate the
efficacy and extensibility of the integrated perturbation frame-
work as we migrate from inputs of neutral speech recordings to
neutral synthetic speech.

VIII. DISCUSSION

Previous work in [26] attempted to synthesize four types of
emotional speech (namely happiness, sadness, fear, and anger)
at three levels (i.e., strong, medium, and weak). This amounts
to about 12 categories in all. It was found that the performance
of the linear modification model (LMM) that maps neutral
speech to each emotional category is inferior to the approaches
of GMM and CART. The main reason is because the two latter
approaches involve finer partitioning of the prosodic space
based on stress and linguistic information. The finer partitions
help achieve better models for prosodic conversion to syn-
thesize emotional speech. Although the current work focuses
on expressive synthesis based on text semantics, our findings
seem to be consistent with the previous work. For example,
our global perturbation model aims to modulate neutral speech
into one of five categories (depending on the value). We
performed a listening test that evaluates the effectiveness of
global perturbation in isolation. Results (see Table IX) show
that global perturbation generates improved expressivity for
65% of the testing utterances, which is inferior to local pertur-
bation (73%). However, when both perturbations are used in
conjunction, a further improvement to 84% is observed. We
believe that this improvement is due to the finer partitioning of
the prosodic space based on the parameters at the lexical
word level.

Another noteworthy point is that the current scope of the
tourist information domain involves limited variability in PAD
values. Hence, the simple heuristic mapping from text seman-
tics to PAD values seems to suffice at the present time, which
results in a sparse sampling of PAD combinations. It is conceiv-
able that we can estimate an individual perturbation function for
each PAD combination in the current set (four combinations of

and values, with five values, totally 20 combinations
of PAD values). However, we choose to present a more general
framework where the perturbation functions are defined in terms
of the and parameters. This framework is extensible
to accommodate higher variability across the PAD continuum
as the scope of our domain expands or should we migrate to
another (more complex) domain. Under that situation, we will
need to adapt psychologically motivated methods for eliciting
incremental gradations in the PAD space [28], [30].

3The �-test has 13 degrees of freedom since we pair up the corresponding
average MOS for each subject.

4MOS are ranked in descending order. Tied scores will be assigned the aver-
aged rank, e.g., if speech files B and C have tied scores and should map to ranks
2 and 3, then they will both ranked at 2.5.

Additionally, one may observe that the current perturbation
framework achieves an average MOS of about 3, which lies sig-
nificantly below the desirable upper bound of 5. We believe that
further incorporation of fine-grained linguistic information will
bring about improvements in performance. As an example, con-
sider the two consecutive prosodic words “ (the most) ” and
“ (popular) ”—higher emphasis should be placed on the
superlative “ ” and the adjective “ ” than on the function
words (or syllables) “ ” and “ ”. This will be addressed in our
future work.

IX. CONCLUSION AND FUTURE WORK

This work aims to enhance human–computer interaction in
a spoken dialog system by the use of expressive text-to-speech
(E-TTS) synthesis to generate system responses. Expressivity
in the synthetic speech aims to convey the communicative se-
mantics in the system response text. We organize this research
into two parts: 1) to develop a mapping between the text seman-
tics in the response messages to a set of descriptors for expres-
sivity; and 2) to develop a perturbation model that can render
acoustic features of expressive speech according to the parame-
terized descriptors. We propose to adapt the three-dimensional
PAD (pleasure-arousal-dominance) model for describing local,
word-level expressivity for lexical semantics, as well as global,
utterance-level expressivity for dialog acts. We designed a set
of heuristics to parameterize the PAD values based on the text
semantics of a response message. We also conducted an ex-
ploratory data analysis based on contrastive (neutral versus ex-
pressive) speech recordings, to understand the acoustic corre-
lates of expressivity at both local and global levels. The anal-
ysis led to the development of a nonlinear perturbation model
that can transform input neutral speech into expressive speech.
Transformation involves local perturbation at the prosodic word
level to synthesize expressivity based on lexical semantics; fol-
lowed by global perturbation at the utterance level to synthe-
size expressivity based on the dialog act. Perceptual tests using
neutral speech recordings show that local perturbation gener-
ates appropriate expressivity for 76% of the prosodic words
and 73% of the utterances in the test set. Further integration
with global perturbation generates appropriate expressivity for
84% of testing utterances. In addition, we compared perturba-
tion of neutral speech recordings with neutral, synthetic speech
based on mean opinion scores (MOS). Results show that the
integrated perturbation framework improves the average MOS
significantly based on paired -test with for not only
neutral speech recordings, but also synthetic speech from dif-
ferent speakers. This presents statistically significant evidence
to demonstrate the efficacy and extensibility of the integrated
perturbation framework for E-TTS synthesis.

As has been discussed in Section VIII, future investigation
will include the incorporation of fine-grained linguistic infor-
mation (e.g., syntax) in the perturbation framework to achieve
performance improvements.
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