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Abstract

This paper presents a weighted multi-distribution deep belief
network (wMD-DBN) for context-dependent statistical para-
metric speech synthesis. We have previously proposed the use
of MD-DBN for speech synthesis, which models simultane-
ously both spectrum and fundamental frequency (Fp), and has
demonstrated the potential to generate high-dimensional spectra
with high quality and to produce natural synthesized speech.
However, the model showed only mediocre performance on
low-dimensional data, such as the FO and voiced/unvoiced
(V/UV) flag, resulting in a vibrating pitch contour in the syn-
thesized voice. To address this problem, this paper investigates
the use of an extra weighting vector on the acoustic output
layer of the MD-DBN. It reduces the dimensional imbalance
between spectrum and pitch parameters by giving different
weighting coefficients to the spectrum, FO and the V/UV flag in
the training procedure. Experimental results show that wMD-
DBN can generate smoother pitch contours and improve the
naturalness of the synthesized speech.

Index Terms: speech synthesis, deep belief network, restricted
Boltzmann machine

1. Introduction

Statistical parametric speech synthesis [1] has achieved great
success in the past decade. The crux of this approach is
to build an acoustic model that maps the textual content to
the acoustic parameters. Previously, Hidden Markov Models
(HMMs) was a dominant approach [2], where decision trees
are used to cluster a large number of context-dependent HMM
states into Gaussian Mixture Model (GMM) leaf nodes [3],
and adopted as a regression model for acoustic parameter
prediction. Recently, Multi-distribution Deep Belief Network
(MD-DBN) has been investigated as an alternative acoustic
model for speech synthesis [4]. In this approach, the MD-
DBN models the joint distribution between the input symbolic
representation based on text (e.g. syllables) and the output
syllable-level acoustic parameters. These parameters consist
of multiple frames of spectrum, Fp, and the voiced/unvoied
(V/UV) flags. Experiments show that the spectrum generated
by MD-DBN has less distortion, resulting in a clearer voice in
the synthesized speech. At the same time, several teams also
reported promising results on other variants of deep learning
networks for speech synthesis, including Deep Neural Networks
(DNNSs) [5, 6], Restricted Boltzmann Machines (RBMs) [7, 8]
and the DNN-Gaussian Process hybrid model [9]. These studies
show that deep learning networks have certain advantages over
the HMM-based approach [10]. First, high dimensional data

with cross-dimension correlations can be well modeled by
the deep learning networks, which bypass the independence
assumption that often introduced by the use of GMM with diag-
onal covariance matrix in the HMM-based approach. Thus the
deep learning networks perform well on spectrum modelling,
and can also handle the correlation between the spectrum and
Fb, when they are modeled simultaneously. Second, all training
data are modelled in a centralized network so as to avoid data
fragmentation [11]. Instead of using thousands of GMM leaf
nodes to piece the acoustic space together as in the HMM-
based approach, only one deep learning network is used to
portray the whole acoustic space, which potentially reduces the
training data requirements and increases the efficiency of model
parameters.

However, these attempts have not yet achieved satisfactory
performance on Fp modelling. It can be seen that the one-
dimensional Fp does not contribute to the model as much as
the high-dimensional spectrum data in the training procedure.
Furthermore, the use of the weight decay regularizer during
training [12] also tends to equalize the the learned weights for
each dimension. As a result, the generated F{, contour is more
noisy and degrades the quality of the synthesized voices.

To address this problem, this paper presents a novel,
weighted MD-DBN (wMD-DBN) for speech synthesis. The
enhancement is achieved through the use of a weighting vector
added to the visible layer of the MD-DBN, so that the weight of
spectrum, Fp and the V/UV flags can be controlled individually.
The basic idea is simple — to reduce the dimensional imbalance
between the spectrum and Fy by duplicating the Fj elements
in the acoustic vector until the number of dimensions allocated
for Fj is equal to the number of dimensions of the spectrum.
Duplicating the number of dimensions of Fp is equivalent to
giving Fp a positive integer weight.

The rest of the paper is organized as follows. The math-
ematical details of wMD-DBN are given in Section 2. The
wMD-DBN-based speech synthesis framework is described in
Section 3. Section 4 reports the experimental results, and
Section 5 gives the conclusions.

2. Weighted Multi-distribution
Deep Belief Network

A wMD-DBN is a specialized Deep Belief Network (DBN)
[12] designed for modeling text contextual factors and speech
acoustic parameters in speech synthesis tasks. It differs with
the standard DBN in two aspects: 1) a multi-distribution
visible layer is used to model data with different distributions
jointly, i.e., the spectrum and the log Fy with assumed Gaussian



distribution, the V/UV flags with binary distribution (i.e., the
Bernoulli distribution) and the phoneme identities with Cate-
gorical distribution (i.e., the generalized Bernoulli distribution);
2) an extra weighting vector is attached to the visible layer
to give individual control on each dimension. In acoustic
modeling, the wMD-DBN allows balanced control between
the spectrum and Fp, where the spectrum usually has many
more dimensions and tends to take up more weight during the
model learning process. There is a greedy layer-wised learning
algorithm [12] for estimating the connection weights in a DBN,
which is equivalent to training each adjacent layer pair as an
Restricted Boltzmann Machine (RBM)[13] from bottom-up.

An RBM is an undirected graphical model with one layer
of stochastic visible units and one layer of stochastic hidden
units. There is no direct interaction between units in the same
layer and is thus “restricted”. Here we generalize the three
types of RBMs described in [4] into an unified Weighted Multi-
distribution RBM (wMD-RBM) as the building blocks of the
wMD-DBN. In the wMD-RBM, the visible layer units v =
[v? T,vbT, 1°MT have three different distributions, including
Gaussian units v9, binary units v® and Categorical units 1°, and
the hidden layer units h are binary. Accordingly the weighting
vector is defined as ¢ = [qu,qu,qCT]T. Assuming the
Gaussian distribution has zero mean and unit variance, the
“energy” of a visible-hidden configuration (v, k) in a wMD-
RBM is defined by
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where Q = diag [QY,Q", Q°] = diag|[q] is the weightin
diagonal matrix defined by the weighting vector g; © =
{W9 WP’ We a’ ac, b} is the set of the model parameters;
W9, W W* are the weight matrices of the symmetric con-
nection between the hidden layer units h and the Gaussian
visible layer units v, the Bernoulli visible layer units v° and
the Categorical visible layer units 1; a’, a® and b are their bias
terms. The joint distribution of the configuration (v, h) is given
as
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is the partition function.

Given a training data set, the model parameters © of the
wMD-RBM can be estimated based on the maximum likelihood
criterion by stochastic gradient descent algorithm [14]. To
reduce the computational cost, the contrastive divergence (CD)
algorithm has been proposed by using Gibbs Sampling [15].
The conditional probabilities used by Gibbs sampling can then

be derived as:
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is a sigmoid function, A/(-; u, o) denotes the Gaussian distri-
bution with the mean p and the variance o. It can be seen that
the weighting vector g only exists in the bottom-up inference
direction of the Gibbs sampling process. In the top-down
generation direction, the conditional probabilities are same as
in MD-DBN training.
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Figure 1: Architecture of the wMD-DBN for speech synthesis.

3. wMD-DBN-based Speech Synthesis

Figure 1 illustrates the speech synthesis framework using
wMD-DBN. The text-to-acoustic mapping is achieved by mod-
eling the joint distribution between the input contextual factors
and the output acoustic parameters with wMD-DBN. For each
Mandarin syllable, 39 commonly used contextual factors [16]
are used to form the input contextual vector I°. 21 of them
are symbolic identities (e.g. initial, final and tone of syllable).



They are modeled by the Categorical distribution units. 18 of
them are numerical features (e.g. position of the syllable in
current word, number of words in the previous phrase). They
are normalized to the range of (0.03,0.97) and modeled by the
Bernoulli distribution units. On the output side, the acoustic pa-
rameters of each syllable are represented by a 2700-dimensional
super-vector [v?, 'ub], which is concatenated by 100 uniformly-
spaced frames of 24-order mel-cepstral coefficients (MCEP)
[18] with log-energy, log-Fy, and the V/UV flags extracted
from within the syllable. The log-Fp values in the unvoiced
region are interpolated. Both the MCEPs and the log-Fy are
normalized to have zero-mean and unit-variance before training
the wMD-DBN.

The training procedure is similar to the training of MD-
DBN [4], except for the bottom layer weighed Gaussian-
Bernoulli RBM (wGB-RBM), where the acoustic super-vector
is weighted by the weighting vector [q°F, g™, q"V] in the
bottom-up inference step as shown in the equation 4. After
the wGB-RBM is trained, we can stack up as many layers
of Bernoulli RBMs (B-RBMs) as we want to construct the
deep architecture. At last, a Categorical-Bernoulli RBM (CB-
RBM) is used to model the joint distribution between contextual
factors I° and the acoustic parameter transformations kN ~1).

At synthesis time, the contextual factors I are first de-
termined for each syllable by the text analysis module. Then
alternative Gibbs sampling using P(hEN> =1J1¢, A=Y and
P(h;N_l) = 1|h™)) are conducted to update AN~ while
keeping the input ¢ clamped, until convergence or a maximum
number of iterations is reached. Then, the acoustic super-vector
[v9,v°] are generated with a single down-pass from kN1
to h™. The MCEPs and F, are recovered by the global
mean and variance. Finally, the generated acoustic features
are interpolated according to the predicted syllable durations
and are sent into the Mel Log Spectral Approximation (MLSA)
filter [18] to reconstruct the speech waveforms. Note that the
weighting vector [¢°F, ¢f°, V"] is not used in the synthesis
procedure.

4. Experiments
4.1. Experiment Setup

A manually transcribed Mandarin corpus recorded from a
female speaker is used for the experiments. The training set
contains 1,000 utterances with a total length of 80.9 minutes,
including 23,727 syllable samples. Another test set with 100
utterances is used for model architecture optimization and the
evaluations.

A HMM-based speech synthesis system is built as the
evaluation baseline using a standard recipe [16]. 24-order
MCEPs and log-Fy together with their A and A? are modeled
by the multi-stream MSD-HMMs. Each syllable HMM has
a left-to-right topology with 10 states. Initially, 416 mono-
syllable HMMs are estimated as the seed for training the
context-dependent HMMs. The candidate question set for the
decision tree-based context clustering contains 2596 effective
questions (i.e., the questions which can divide the parameter
space into 2 non-empty sub-spaces). In the synthesis stage,
speech parameters including MCEPs and log-FO are generated
obtained by the maximum likelihood parameter generation
algorithm [19], and are later used to synthesis the speech
waveform using the MLSA vocoder. The duration predicted
by the HMM baseline are used for all the synthesis systems.

Two DBN-based systems are built for the evaluation. One

uses the proposed wMD-DBN model, the other one uses the
MD-DBN without the extra weighting control. Both of these
two systems use the same input contextual factors and the
output acoustic parameters as described in the previous section.
The RBMs are trained using CD algorithm with a mini-batch
size of 200 training samples. The weighting vectors are set
to 0.32, 4.0 and 4.0 for the spectrum, Fp and the V/UV
flags respectively. This setting is trying to balance the data
dimensions between the spectrum (800 = 0.32 x 2500) and
the excitation including Fy and V/UV flags (800 = 4.0 x
(100 + 100)). For wGB-RBMs and GB-RBMs 400 epochs are
executed with a learning rate of 0.01 while for B-RBMs and
CB-RBM 200 epochs are executed with a learning rate of 0.05.
During the weight updates, we apply a momentum of 0.9 and
a weight decay of 0.001. The model parameters are obtained
from the mean of the final 20 epochs. The training procedure
is accelerated by the NVIDIA CUDA BLAS library on one
Tesla K20 GPU. For an wMD-DBN with 5 hidden layers and
2000 units per layer, the training takes about one hour. Since
it eliminates the serialized decision tree training procedure as
in the HMM system, the wall time of training a wMD-DBN is
actually shorter using the proper parallel computing hardware.

4.2. Objective Evaluation

In the objective evaluation, we investigates the relationship
between the performance of the acoustic parameter prediction
and the architecture of the wMD-DBN, including the number
of the hidden layers and the number of the units in each layer.
This investigation also helps us to find the optimized model
architecture for the following subjective evaluation.

Figure 2 shows the MCEP distortion of the synthesized
speech. Measuring the spectral distortion [20] is a commonly-
used method for objective evaluation in voice conversion as
well as in speech synthesis. Here we measure the Euclidean
distance between the MCEPs of synthesized speech and that of
original speech recording. The two speech samples are aligned
using the dynamic time wrapping algorithm (DTW). The MCEP
distortion of the HMM baseline in this evaluation is 9.0 dB,
while the wMD-DBN approach achieves better result with a
minimal distortion of 8.7 dB. It can be seen that the distortion
tends to decrease with more hidden layers in the model.
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Figure 2: The distortions (dB) of the MCEPs predicted by the
wMD-DBN-based systems. The MCEP distortion of the HMM
baseline systems is 9.0 dB.

Figure 3 gives the Fy contours predicted by the three
systems. It can be seen that with the weighting control, wMD-
DBN can generate a more smooth Fp contour compared to the
previous MD-DBN approach. Both the wMD-DBN and the
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Figure 3: Fy contour predicted by the wMD-DBN, MD-DBN and HMM systems.
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which may result in a more lively intonation.

The evaluation results for the root mean squared error
(RMSE) in Fy are shown in Figure 4. It can be seen that
the RMSE in F{ from the two systems are close. (i.e, 25.4
for HMM baseline v.s. a minimum of 25.6 for wMD-DBN
approach).
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Figure 4: The RMSE of the F{ predicted by the wMD-DBN-
based systems. The number besides each line denotes the
number of the hidden layer. The Fy RMSE of the HMM
baseline systems is 25.4.

4.3. Subjective Evaluation

In the subjective evaluation, we first conduct a preference test
between the MD-DBN approach and the proposed wMD-DBN
approach. 8 experienced listeners are asked to give preference
on 15 pairs of the synthesized speech samples generated from
these two systems. The samples are played with high quality
headphones in quiet office room.

The result preference scores (%) are shown in Table 1. It
can be seen that the wMD-DBN-based approach are preferred
significantly compared to the MD-DBN approach. Testing
feedbacks suggest that a more fluent voice contributes more to
the preference.

A Mean Opinion Scoring (MOS) test is also conducted to
compare the subjective perception among the three approaches.
In this test, 10 experienced listeners are asked to rate the natu-
ralness of 15 utterances using a five-point scale (i.e. 5:excellent,
4:good, 3:fair, 2:poor, 1:bad). The result is shown in Table 2.
It can be seen that there is a clear naturalness improvement

Table 1: Preference scores (%) between the synthesized speech
samples from the wMD-DBN and the MD-DBN-based sys-
tems, where N/P denotes “No Preference”. The system which
achieves significantly better preference at p < 0.01 level are in
the bold font.

between the MD-DBN and the proposed wMD-DBN approach,
and the performance of the wMD-DBN approach is similar to
that of the context-dependent HMM approach.

System MOS 95% CI
wMD-DNM  3.21 +0.09
MD-DBN 2.93 +0.12
HMM 3.27 +0.14

Table 2: MOS results with the 95% confidence interval (CI),
showing that the naturalness of wMD-DBN-based system is
similar to that of the context-dependent HMM baseline.

5. Conclutions

This paper investigates the use of an extra weighting vector
on the MD-DBN, and proposes the wMD-DBN for speech
synthesis. The wMD-DBN tries to provide balanced control for
different streams in the acoustic parameter such as the spectrum
and Fp. Both the objective evaluation and the subjective
evaluation show a performance upgrade by giving Fj and V/UV
flags a higher weight during the model training procedure, and
the performance of the wMD-DBN approach is similar to the
context-dependent HMM approach. Future directions for the
improvement may include applying weighting control to the
input contextual factors in order to achieve better prosody.
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