A DEEP RECURRENT APPROACH FOR ACOUSTIC-TO-ARTICULATORY INVERSION
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ABSTRACT

To solve the acoustic-to-articulatory inversion problem, this paper
proposes a deep bidirectional long short term memory recurrent neu-
ral network and a deep recurrent mixture density network. The artic-
ulatory parameters of the current frame may have correlations with
the acoustic features many frames before or after. The traditional
pre-designed fixed-length context window may be either insufficient
or redundant to cover such correlation information. The advantage
of recurrent neural network is that it can learn proper context infor-
mation on its own without the requirement of externally specifying a
context window. Experimental results indicate that recurrent model
can produce more accurate predictions for acoustic-to-articulatory
inversion than deep neural network having fixed-length context win-
dow. Furthermore, the predicted articulatory trajectory curve of re-
current neural network is smooth. Average root mean square error
of 0.816 mm on the MNGUO test set is achieved without any post-
filtering, which is state-of-the-art inversion accuracy.

Index Terms— long short term memory (LSTM), recurrent
nueral network (RNN), mixture density network (MDN), layer-wise
pre-training

1. INTRODUCTION

Human speech is bimodal in nature. There are direct connections
between the configurations of the articulators, which are the po-
sitions and movements of the lips, tongue, velum, etc., and the
acoustic speech. The acoustic-to-articulatory inversion mapping
problem involves the inference of the articulator configurations from
the acoustic speech signal. There are several potential benefits of
acoustic-to-articulatory inversion for speech related applications.
In speech recognition, the estimated articulatory parameters or
gestures can provide additional speech production knowledge to
improve the recognition performance [1]. In speech synthesis, ar-
ticulatory features can be incorporated into the traditional speech
synthesis method to modify the characteristics of the synthesized
speech [2]. In computer-aided pronunciation training (CAPT), the
recovered vocal tract outlines can be visualized and presented to the
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users so that they can get a better idea of the articulatory movements
in perceptual training [3].

Recently, abundant articulography datasets which include artic-
ulatory position data and acoustic data have become available. This
promotes the application of machine learning methods such as ar-
tificial neural networks [4] or hidden Markov models [5] to tackle
the acoustic-to-articulatory inversion problem. A trajectory mixture
density network is proposed in [6] to get smooth articulatory param-
eters. In [7], state-of-the-art inversion accuracies have been obtained
by introducing and implementing two deep architectures. But these
works are dependent on a predefined fixed-length context window
for acoustic input and only use piecewised projections to estimate
articulatory configuration, which neglects the temporal correlations
in the whole sequence of acoustic features. The inversion results of
these works are jagged to some extent. Although using maximum
likelihood parameter generation (MLPG) [8] algorithm as a post-
process relieves the problem to some extent, it is still important to
learn the temporal correlations through sequence in the acoustic-to-
articulatory inversion.

Inspired by the success of deep learning architectures in the
speech synthesis task [9, 10, 11, 12, 13], we hypothesize that a recur-
rent architecture would be able to achieve performance improvement
in learning the smooth characteristics in the data. We implement
a deep bidirectional long short term memory (DBLSTM) recurrent
neural network (RNN) and a deep recurrent mixture density network
(DRMDN) for the acoustic-to-articulatory inversion task. With these
two architectures, the predicted articulatory movement trajectories
are quite smooth without the requirement of any post-filtering pro-
cess. Our methods even perform better than deep trajectory mixture
density network [7] and achieve the state-of-the-art inversion accu-
racies.

2. DEEP BIDIRECTIONAL LSTM RECURRENT NEURAL
NETWORK (DBLSTM)

Inserting cyclical connections in a feedforward neural network, we

obtain recurrent neural network (RNN). In principle, RNN can map
the history of previous input vectors to each output vector. The re-
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current connections are able to remember previous inputs and allow
them to persist in the networks internal state. So the previous inputs
influence the current network output. The feedforward process of
RNN is:

h: = H(Wxnxt + Wihnhe—1 + by) (1
y, = Whyht + by (2)
X = (x1,...,X7) is a input sequence for time ¢ = 1 ... T, h =

(hy, ..., hr) is the hidden state sequence computed from x, and y =
(y1,---,¥7) is the output sequence. Wyxpn, Wy, and Wy, denote
the input-hidden, hidden-hidden and hidden-output weight matrices
repectively. by, and by, respectively are hidden and output bias vec-
tors.

Outputs

Forward Layer

Inputs
Fig. 1. Bidirectional recurrent neural network (BRNN).

Conventional RNNs can only access previous inputs. However,
in articulatory inversion, the movement of the articulators may also
have the correlations with the future acoustic features, such as the
coarticulation phenomenon. Hence, it is desireable to incorporate
the future acoustic context for the articulatory inversion problem.
Bidirectional RNN (BRNN) [14], as illustrated in Fig. 1, is able to
access past and future context by processing data i 1n both directions.
A BRNN computes both forward hidden sequence h and backward

hidden sequence h . The iterative process is:

- -

hy=HW 3x;+Wpphi1+byp) 3)

ho=HW oxi + Wee by +be) @)
y, = Wﬁyﬁt ¥ w%yit +b, (5)

In the above equations, H is usually a sigmoid function. Un-
fortunately, because of the vanishing gradient problem, RNNs or
BRNNSs can only access a limited range of context. Long short term
memory (LSTM) [15] architecture is proposed to solve the prob-
lem. LSTM network uses purpose-built memory cells to exploit long
range of context. A single memory cell is illustrated in Fig. 2. For
LSTM, H is implemented by the following functions [16]:

it = 0(WxiX¢ + Whihi—1 + Weici—1 + by) (6)
f: = o(Wxexe + Waehe—1 + Weee—1 + by) (7
¢t = fiei—1 + i tan h(Wiexe + Wiche—1 + bg) (8)
0 = U(onxt + Wiohi—1 + Weoer—1 + bo) 9
ht = 0 tan h(ct) (10)
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Fig. 2. Long short term memory (LSTM) cell [15].

where o is a logistic function; ¢, f, o and c respectively represent
input gate, forget gate, outputs gate and cell memory.

Deep bidirectional LSTM (DBLSTM) can be implemented by
combining deep BRNN and LSTM. This architecture can learn long
range of context.

3. DEEP RECURRENT MIXTURE DENSITY NETWORK
(DRMDN)

Articulatory inversion is a challenging task because the same acous-
tic signal may correspond to different articulatory configurations. [4]
used mixture density network (MDN) to represent the uncertainty.
The output layer of a MDN specifies a mixture of Gaussians. The
MDN takes an input data x and maps it to a probability distribu-
tion over the target domain t. The target probability distribution is a
Gaussian mixture model:

M

p(t)x) = Z

X)$; (t[x) an

where M is the number of mixture components, «; (x) is the weight

t e
VANDAN /\\

mixture density
output layer

conditional probability
density

neural network
input vector T X

Fig. 3. Mixture density network[17].

of the jth mixture and ¢;(t|x) is the probability density of the jth
kernel.

A MDN is illustruted in Fig. 3. The network specifies the pa-
rameters as follows: y = [y2, y}“ yi, o yM, yi”, yM] is the
output vector. y?, (j = 1...M) go through a softmax and define the
weights, o; = exp(y%)/ ) exp(y?,) and sum up to 1. The means

are represented directly by the corresponding outputs, 1; = yf;. The



variance parameters are represented by the corresponding outputs
through an exponential function, o; = exp(y2).

MDN can be trained by minimizing the negative log likelihood
of the training data given its parameters. The derivatives with these
parameters can be calculated respectively.

A gradient descent method can be used to train the MDN. A deep
recurrent mixture density network (DRMDN) can be constructed by
replacing the projection output layer of the deep recurrent network
by a mixture density output layer. In this approach, the Gaussian
mixtures are dependent on a bidirectional recurrent lower structure.
We expect that this architecture can learn a more accurate probability
distribution based on abundant context information.

4. NETWORK TRAINING

When training the networks, we first conduct layer-wise pre-training.
We use rmsprop [18] for its fast converging speed. After pre-training
the whole network, we change to stochastic gradient descendent
(SGD) which may converge to a little better result at last.

4.1. Incremental layer-wise pre-training

We train the network by an incremental layer-wise method [19],
which can further enhance the performance. Besides the input and
output layers, the hidden layers are added one by one. The output
connections only exist between the current top hidden layer and the
output layer. When adding a new layer, we discard the previous out-
put weights and initialize new output weights which connect the new
top layer and the output layer; and then all the network weights are
tuned. Note that this method is different from the common layer-
wise pre-training method where only the weights of the added layer
are tuned. This approach assures that each layer has some time in
which it is directly connected to the output layer, and then can be
effectively trained.

4.2. Rmsprop

Rmsprop is a form of stochastic gradient descent where the gradient
is normalized by the magnitude of recent gradients. It has several
benefits: 1) it is robust because it utilizes pseudo curvature informa-
tion, 2) it is applicable of using mini batch learning for it can nicely
handle stochastic objectives.

We used a version of rmsprop mentioned in [20]. The weights
are updated according to the following equations:

ni = Xn; + (1 — N)e? (12)
.
Ay =20A; - ]——— (14)
n;— g2+ 1

We use the following parameters: X = 0.95, 3 = 0.9, J = 0.0001,
T = 0.0001. In the above equations, €; = Bgf), where w; is the
ith weight. In our experiments, rmsprop converges much faster than

the traditional SGD.

5. APPROACHES

We tried 3 systems for articulatory inversion. Layer-wise pre-
training and no pre-training experiments are also conducted for each
system. All 3 systems and training methods are based on a modified
version of RNNLIB [21].

The MNGUO [22] database is used to evaluate the systems. It
contains 1,263 utterances spoken by a single speaker. The database
contains parallel electromagnetic midsagittal articulography (EMA)
[23] data and line spectral frequencies (LSFs) [24] acoustic data.
Each EMA data frame is a 12 dimensional vector. Each dimension
corresponds to an x- or y-coordinate of a coil attached in the mid-
sagittal plane of the speaker’s articulator and there are 6 coils in total.
The EMA data are sampled at 200 Hz. The 40 dimentional LSFs to-
gether with a gain value are derived from the audio data with 5 msec
frame shift to match the sampling rate of the EMA data. The LSF
context window is then formed by selecting 10 alternative LSF (and
gain value) frames: 5 frames before and 5 frames after the current
frame.

5.1. Baseline deep neural networks (DNN)

This system is implemented as the baseline, with which the pro-
posed methods are compared. The static EMA data corresponds to
the output of the neural network and a linear projection output layer
is added on the top which minimizes the sum of squared error. The
LSF context window feeds the network at each time step. Following
the configuration setting in [7], we used 4 logistic feedforward layers
and each layer has 300 units.

5.2. Deep bidirectional long short term memory (DBLSTM)

In this architecture, we only use the 7th frame of the LSF context
window which is 15 msec delay from the current EMA frame. This
is the approximate between LSF data and EMA data [25]. The EMA
data includes static and dynamic data and we only use the static data.

The first 2 layers are feedforward layers with 300 units. They
are supposed to act as a feature extractor. The last 2 layers are bidi-
rectional LSTM layers with 100 units and they are supposed to learn
the dynamic property of the training data.

5.3. Deep recurrent mixture density network (DRMDN)

This architecture is formed by replacing the output layer of the pre-
vious DBLSTM architecture by a mixture density output layer. We
use 4 Gaussian mixtures for the mixture density output layer.
Outputs of the DNN and the DBLSTM are used directly as the
predicted articulatory parameters. For DRMDN, we find the mixture
with the largest weight and use its mean value as the prediction.

6. EXPERIMENTS AND RESULTS

Two metrics are used to measure the performance of our systems,
the root mean-squared error:

1

where e; is the network output and ¢; is the actual value at time
i, and the correlation between the predicted trajectories and actual
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articulator trajectories:

= Zz(el —e)(ti —t)
Ve~ (ki — b

an

where € is the mean value of the predicted value and # is the mean of
the actual value.

Table 1. Evaluation of different systems for articulatory inversion.

. No pre-training Layer-wise pre-training
Architecture | SE mm) | r | RMSE (mm) |t
DNN 1.237 0.801 1.000 0.869
DBLSTM 0.963 0.891 0.816 0.921
DRMDN 0.948 0.890 0.832 0914

‘We compare the above 3 systems for acoustic-to-articulatory in-
version on the MNGUO database. The results are shown in Table
1. We can see that incremental layer-wise pre-training enhances
the performance significantly. However, DRMDN performs not as
well as expected. The possible reason will be discussed later in the
next section. Fig. 4 illustrates the results of 3 systems with pre-
training. The predictions of DNN are jagged trajectories. This is be-
cause DNN generates output for each time indepently and is unable
to learn proper temporal correlations through the utterance. The pre-
dicted trajectories of DBLSTM and DRMDN are almost as smooth
as the actural trajectories. We can conclude that DBLSTM and DR-
MDN use rich context information to generate the current prediction
and are able to learn the temporal correlations well.

MNGUO_s1_0140

DNN_T3_x

DNN_T3_y

1_T3_x

T3_y DBLSTM

T3_x DBLSTM,

y DRMDN

-~ target
— predict

DRMDN_T3,

50 100 150 200 250 300 350 400
time steps

Fig. 4. Samples of the acoustic-to-articulatory inversion results of
the 3 systems. T3 is the sensor at tongue dorsum. T3 _x and T3_y are
respectivately the x-, y-coordiante of the T3 sensor.

7. CONCLUSIONS AND DISCUSSIONS

We have implemented two deep recurrent architectures for acoustic-
to-articulatory inversion: a deep bidirectional long short term mem-
ory network (DBLSTM) and a deep recurrent mixture density net-
work (DRMDN). We suppose that deep recurrent architecture is able
to learn the temporal correlations within an utterance. Experiments
indicate both of our approaches produce smooth prediction trajec-
tory without any post-filtering.

Both systems perform better than the deep trajectory mixture
density network (DTMDN) [7]. Layer-wise pre-training plays an
important role in getting good performance. DBLSTM gets the best
result which exceeds DTMDN 0.069mm in average RMSE (from
0.885mm to 0.816mm). Bidirectional LSTM layer can learn useful
context information inherently. But a fixed-length context window,
as used in DTMDN, can only include limited context information
within the window. This may explain why our results are better than
DTMDN.

However, the DRMDN does not perform better than DBLSTM.
[7] also mentioned such phenomenon. A few reasons may explain
this: 1) The mean of the most prominent Gaussian can not represent
the distribution. Using the mode of mixture of Gaussians may be
a better choice. 2) It is difficlut to train a DBLSTM RNN with a
Gaussian mixture density output layer. This may remain a future
improvement to our current work.
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