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H
idden Markov models (HMMs) and Gaussian mixture models (GMMs) are the two most common types of 
acoustic models used in statistical parametric approaches for generating low-level speech waveforms 
from high-level symbolic inputs via intermediate acoustic feature sequences. However, these models 
have their limitations in representing complex, nonlinear relationships between the speech generation 
inputs and the acoustic features. Inspired by the intrinsically hierarchical process of human speech pro-

duction and by the successful application of deep neural networks (DNNs) to automatic speech recognition (ASR), 
deep learning techniques have also been applied successfully to speech generation, as reported in recent literature. 

This article systematically reviews these emerging speech generation approaches, with the dual goal of help-
ing readers gain a better understanding of the existing techniques as well as stimulating new work in the 

burgeoning area of deep learning for parametric speech generation. 
In speech signal and information processing, many applications have been formulated as machine-learn-

ing tasks. ASR is a typical classification task that predicts word sequences from speech waveforms or fea-
ture sequences. There are also many regression tasks in speech processing that are aimed to generate 

speech signals from various types of inputs. They are referred to as speech generation tasks in this 
article. Speech generation covers a wide range of research topics in speech processing, such as 

text-to-speech (TTS) synthesis (generating speech from text), voice conversion (modifying 
nonlinguistic information of the input speech), speech enhancement (improving 

speech quality by noise reduction or other processing), and articulatory-to-acous-
tic mapping (converting articulatory movements to acoustic features). These 

[Zhen-Hua Ling, Shi-yin Kang, Heiga Zen, Andrew Senior, Mike Schuster,  

Xiao-Jun Qian, Helen Meng, and Li Deng

Deep Learning for Acoustic 
Modeling in Parametric  

Speech Generation
[A systematic review of existing techniques and future trends]

Digital Object Identifier 10.1109/MSP.2014.2359987

Date of publication: 6 April 2015

]



 IEEE SIGNAL PROCESSING MAGAZINE [36] MAy 2015

topics have the common goal of generating speech signals and dif-
fer in the forms of inputs. Statistical parametric speech generation 
(SPSG), which combines statistical acoustic models and vocoding 
techniques to generate speech waveforms, has been the main-
stream approach for solving the speech generation problems. This 
approach first builds statistical acoustic models representing either 
the conditional probability density function (PDF) of output acous-
tic features given the input features or joint PDFs between the 
input and output features. The model structure is usually task 
dependent, but the parameters are estimated from a training data-
base consisting of pairs of inputs and output acoustic features. At 
the speech-generation stage, the input features are given, which 
could be texts for TTS and noisy speech for speech enhancement. 
Then, the conditional distribution of the output acoustic features 
given the input features can be derived from the trained acoustic 
models. The output acoustic features are predicted from the condi-
tional distribution under a certain criterion, e.g., maximizing the 
output probability, and are subsequently sent to a vocoder to recon-
struct a speech waveform. In SPSG, vocoders are used to extract 
acoustic features, such as spectral [e.g., Mel-cepstral coefficients 
(MCCs)] and excitation (e.g., fundamental frequency and aperiodic-
ity) features, from the raw waveforms of training data and to recon-
struct speech waveforms from the generated acoustic features at 
synthesis time. Although both vocoder and acoustic modeling are 
essential for SPSG systems, this article focuses on acoustic model-
ing techniques for SPSG.

GMMs and HMMs with single Gaussian (or GMM) state-out-
put PDFs are the two most popular acoustic models for SPSG 
[1], [2]. HMMs can represent nonstationary distributions of 
acoustic features using a sequence of hidden states, which are 
associated with linguistic features.

GMMs are widely used in frame-by-frame mapping for several 
speech-generation tasks, such as voice conversion, speech 
enhancement, and articulatory-to-acoustic mapping. The SPSG 
approaches using these two types of models have been shown to 
generate highly intelligible and smooth speech [2]–[4]. However, 
the generated speech sounds are noticeably muffled compared to 
recorded speech. Inadequate acoustic modeling is one of the main 
reasons for this deficiency [2], [5].

Take HMM-based speech synthesis, for example. In this ap-
proach, decision-tree-clustered, context-dependent phoneme HMMs 
are typically used to represent distributions of acoustic features 
given linguistic features [6]. The PDF of the acoustic features associ-
ated with each leaf node of the decision trees is typically a single 
Gaussian distribution with a diagonal covariance matrix.

At training time, parameters of the HMMs are usually esti-
mated based on the maximum likelihood (ML) criterion. At syn-
thesis time, given an input sentence and the trained parameters of 
the HMMs, the most likely acoustic features are predicted using 
the speech parameter-generation algorithm [7]. Since single 
Gaussian distributions are used as state-output PDFs, the outputs 
of the speech parameter-generation algorithm tend to distribute 
near the means of the Gaussian distributions, which are estimated 
by averaging all observations associated with a given decision tree 
leaf node. Although this averaging process improves the 

robustness of parameter estimation and generation, the detailed 
characteristics of the speech parameters are often lost. Therefore, 
the reconstructed spectral envelopes are typically oversmoothed, 
which leads to the muffled voice quality of the synthetic speech. In 
recent years, many techniques have been proposed to alleviate the 
oversmoothing problem by introducing better acoustic models 
(e.g., the trajectory HMM [8], product of experts [9], and Gaussian 
process regression [10]), improving the model training criterion 
(e.g., minimum generation error training [11], [12]), or modifying 
the speech parameter-generation algorithm (e.g., integrating a 
global variance model [13], using  segment-wise representation 
[14], and minimizing Kullback–Leibler divergences [15]).

Since 2006, deep learning has emerged as a new area of 
machine-learning research [16], [17] and has also attracted the 
attention of many signal processing researchers. Deep learning 
refers to a class of machine-learning techniques that exploit 
many layers of nonlinear information processing for supervised 
or unsupervised feature extraction and transformation, and for 
pattern analysis and classification. Both unconditional deep 
architectures [e.g., restricted Boltzmann machines (RBMs) [19], 
deep belief networks (DBNs) [16], denoising autoencoders 
(DAEs) [20], [21], deep Boltzmann machines [18], and condi-
tional deep architectures, e.g., DNNs] [17], have been inten-
sively studied and explored by signal processing researchers in 
recent years. Strictly speaking, an RBM is a shallow graphical 
model with only one layer of hidden units; it is the constituent 
of many deep models (e.g., DBNs and DNNs). As a density 
model, RBMs perform much better than the conventional shal-
low structures (e.g., GMMs) [18]. Considering its intrinsic rela-
tionship and similarity to other deep models, RBMs are included 
as an example of deep generative models in this article. 

One example is the successful application of DNNs to the 
acoustic modeling of ASR. In this approach, DNNs are introduced 
to replace GMMs for evaluating the fit between a frame of acous-
tic observations and each HMM state [22]. Deep learning tech-
niques have also been applied to the acoustic modeling of speech 
generation very recently to deal with the limitations of the con-
ventional approaches [23]–[40]. Different from the deep learning 
in ASR where DNN-HMM is the dominant model structure, these 
emerging acoustic modeling approaches for speech generation 
adopted various model structures. Some of them focus on 
improving the density functions of HMM states or GMM mixtures 
using RBMs or DBNs [23], [24], [27]. While some others use 
DBNs or DNNs to model the entire mapping process from input 
to output feature sequences directly [25], [26], [28]–[35].

This article first reviews the conventional and popular statis-
tical framework for speech generation, including HMM-based 
speech synthesis and GMM-based voice conversion, focusing on 
acoustic modeling and not on the vocoder. It then analyzes the 
limitations of these approaches. The key models and techniques 
of deep learning as relevant to speech generation, including 
RBMs, DBNs, and DNNs, are also introduced. 

Subsequently, emerging speech generation approaches using 
deep learning techniques for acoustic modeling are reviewed 
systematically, with an analysis of their motivations and a 
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description of their implementations. Finally, we discuss the 
remaining issues associated with current deep learning meth-
ods for parametric speech generation and point to future direc-
tions in this area.

CONVENTIONAL ACOUSTIC MODELING  
USING HMMs AND GMMs FOR SPSG

HMM-BASED SPEECH SYNTHESIS
Statistical parametric speech synthesis (SPSS) [5] emerged in the 
mid-1990s [6], [41]. In this approach, the relationship between text 
and its acoustic realizations is modeled using a set of stochastic 
generative acoustic models. Decision-tree-clustered, context-depen-
dent phoneme HMMs with single Gaussian state-output PDFs are 
the most popular generative acoustic model used in SPSS [6]. This 
approach is known as HMM-based speech synthesis. An HMM is a 
generative model that generates an observation sequence using a 
discrete and hidden state sequence. An example of a three-state left-
to-right HMM is illustrated in Figure 1. In an HMM, state-output 
PDFs describe the distribution of observed features belonging to 
corresponding states and the transition among states is character-
ized by state-transition probabilities.

HMM-based speech synthesis is able to synthesize highly 
intelligible and smooth speech sounds. In addition, this model-
based approach makes speech synthesis far more flexible 
 compared to the conventional unit selection and waveform con-
catenation approach. Model adaptation, interpolation, and 
manipulation methods have been applied to control the HMM’s 

parameters and thus diversify the characteristics of the gener-
ated speech [42]–[49]. Figure 2 shows the diagram of a typical 
HMM-based speech synthesis system. At the training stage, 
acoustic features of speech, including vocal tract and vocal 
source parameters, are extracted from the speech waveforms in 
a training database. Context features are also derived from the 
segmental and prosodic labels of the texts corresponding to the 
waveforms. Then, a set of parameters of context-dependent 
HMMs *m  is estimated based on the ML criterion as

 ( , ),arg max y xp* ;m m=
m

 (1)

[FIG1] An example of a three-state, left-to-right HMM.

[FIG2] A block diagram of a typical HMM-based speech synthesis system.
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where ( )p $  is used to denote a PDF (continuous) in this article,  
, , ,y y y yT1 2 f= < < <<6 @  denotes a sequence of acoustic features 

with T  frames, yt  is the acoustic feature at frame ,t  
{ , , }x x xN1 f=  is a sequence of linguistic context features for 

y  that are derived from text automatically or annotated manu-
ally, N  is the number of phonemes, and ( )$ <  denotes the matrix 
transposition operation. The acoustic feature vector at each 
frame typically consists of static acoustic parameters y Rs

D
t

y!  
and their velocity and acceleration components, ystD  and 

ys2
tD , as 

 .[ , , ]y y y ys s st
2

t t tD D= < < <<  (2)

Therefore, the complete acoustic feature sequence y  can be 
considered a linear transform of the static feature sequence 

, , ,y y y ys s s sf= < < < <
T1 2

6 @  as

 ,y M yy s=  (3)

where My  is determined by the velocity and acceleration calcu-
lation functions used in (2) [7].

An HMM-based speech synthesis system typically contains a 
large number of context-dependent HMMs with linguistic context 
features that are far more extensive and can express far more fine-
grained distinctions than those used in HMM-based ASR systems 
[50], [51]. This leads to data sparsity problems, such as overfitting 
in context-dependent models that have only few training examples 
available and the problem that many valid combinations of lin-
guistic context features will be absent from the training database. 
To deal with this issue, a decision-tree-based clustering technique 
[52] is applied after the initial training to cluster state-output 
PDFs of the context-dependent HMMs as shown in Figure 3, where 

the state-output PDFs of the context-dependent HMMs with simi-
lar context descriptions are represented by a shared distribution. 
The question set for decision tree constriction is designed consider-
ing the characteristics of the language being processed. Next, the 
state alignment results using the trained HMMs are utilized to 
train context-dependent state-duration PDFs [6]. A single Gaussian 
distribution is also used to model the state-duration PDF at each 
state. A decision-tree-based model clustering technique is similarly 
applied to these state-duration PDFs [54]. Joint training of state-
output and state-duration PDFs based on hidden semi-Markov 
models have also been used [53].

The acoustic model ( , )y xp ; m  used in HMM-based speech 
synthesis can be rewritten as

 ( , ) ( , , ),y x y q xp p
q

; ;m m=
6

/  (4)

 ( , ) ( , ),q x y qP p
q

; ;m m=
6

/  (5)

 ( , ) ( , ),q x y qP p
q t

T

t t
1

;; m m=
6 =

%/  (6)

where ( )P $  is used to denote a probability mass function  
(discrete) in this article, ( , )y qp t t; m  is a state-output PDF associ-
ated with the q tht  state, which is typically a single Gaussian dis-
tribution with a diagonal covariance matrix and , ,q q qT1 f= " , 
is an HMM state sequence. Note that the derivation from (5) to (6) 
is based on the assumption of HMMs that the frame observations 
are independent from each other given the state sequence.

To perform synthesis, the result of front-end linguistic analysis 
on input text is used to get the context features xu  for synthesis, as 
shown in Figure 2. In the HMM state sequence decision step, a sen-
tence HMM corresponding to the input text is composed, with its 
parameters derived from the training stage. 

In the step of acoustic parameter-generation, the acoustic 
features that maximize their output probabilities given the sen-
tence HMM are determined under the constraints between 
static and dynamic features [7] as

 ( ., )arg maxy y xp* *
y y M y

s
s y s

; m=
=

u  (7)

The solution to (7) can be simplified if only the optimal state 
sequences in (5) is considered; optimization is approximated as 
two sequential steps

 ( , ),arg maxq q xP* *
q

; m= u  (8)

 ( ., )arg maxy yp q* * *
y

y M y

s
t

T

t t
1

s
y s

; m=
= =

%  (9)

Then, the closed-form solution of y*
s  can be derived by setting 

the partial derivative of (9) with respect to ys  to zero once the 
state sequence q*  is given [7]. Finally, these generated parame-
ters are sent to a vocoder to reconstruct the speech waveforms.

GMM-BASED VOICE CONVERSION
The aim of voice conversion is to modify the nonlinguistic infor-
mation (e.g., speaker characteristics) of input speech while 

[FIG3] A decision-tree-based modeling clustering for HMM-
based speech synthesis.
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keeping the linguistic information unchanged. Different from the 
linguistic features, which are used as inputs for speech synthesis, 
the input features for voice conversion are typically continuous 
acoustic representations of a source voice. Many statistical 
approaches to voice conversion have been studied since the late 
1980s, such as codebook mapping [55], GMM [2], [56], frequency 
warping [57], neural networks [58], partial least square regres-
sion [59], noisy channel model [60], etc. Among them, GMM-
based voice conversion is the most popular [2], [56]. Figure 4 is a 
diagram of a typical GMM-based voice conversion system with 
parallel training data, which means that the training database 
contains the speech waveforms uttered by the source and target 
voices for the same texts. At the training stage, the acoustic fea-
tures of the source and target speech in the training database are 
extracted by a vocoder and are aligned frame by frame by dynamic 
time warping. Then, the aligned pairs of the source acoustic fea-
ture vector xt  and the target acoustic feature vector yt  are con-
catenated to construct a joint feature vector .,z x yt t t= < < <6 @  
Similar to HMM-based speech synthesis, the acoustic features 
xt  and yt  consist of static and dynamic components. There-
fore, the acoustic feature sequences , , ,x x x xT1 2 f= < < < <6 @  and 

, , ,y y y yT1 2 f= < < < <6 @  can also be written as a linear transform 
from the static feature sequences , , ,x x x xs s s s1 2

f= < < < <
T

6 @  and 
, , ,y y y ys s s s2
f= < < < <

T1
6 @  as x M xx s=  and ,y M ysy=  where Mx  

and M y  are determined by the velocity and acceleration calcula-
tion functions [2]. Then, a joint distribution GMM (JD-GMM) m  
with a set of parameters { , , }( ) ( )

m m
z

m
z

m
M

1na R =  is estimated to model 

a joint PDF between the source and target acoustic features, 
where M  denotes the total number of mixture components in 
the JD-GMM, and ,ma  ,( )

m
zn  and ( )

m
zR  correspond to the mixture 

weight, mean vector, and covariance matrix associated with the 
mth  Gaussian component. The mean vector and covariance 
matrix are structured as

 , .( )
( )

( )
( )
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z m
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m
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= == =G G  (10)

To reduce the number of model parameters and computational 
cost, ,( )

m
xxR  ,( )

m
yyR  ,( )

m
xyR  and ( )

m
yxR  are commonly set to be diago-

nal [2]. These model parameters are typically estimated by the 
ML criterion as

 ( , ),arg max x yp* ;m m=
m

 (11)

 ( ) .arg max zp
t

T

t
1

; m=
m

=

%  (12)

The conditional PDF given an input source acoustic feature xu  
can be further derived from the trained JD-GMM *m  as

 ( , ) ( , , ),y x y m xp p* *

m
; ;m m=

6

u u/  (13)

 ( , ) ( , , ),m x y xP p m* *

m
t

t

T

t t
1

; ;m m=
6 =

u u%/  (14)

where { , , }m m mT1 f=  denotes the sequence of mixture com-
ponents. ( , ) ( , )m x xP P m* *

t

T
t t1

; ;m m=
=

u u%  and ( , )xP m *
t t; mu  
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[FIG4] A block diagram of a typical GMM-based voice conversion system.
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can be determined from the marginal PDF of ,xt  which is a GMM 
of M  mixture components with the set of model parameters 

.{ , , }( ) ( )
m m

x
m
xna R  The conditional PDF ( , , )y xp mt t t; m  is a Gauss-

ian distribution with a mean vector

 x,
( ) ( ) ( ) ( )

m t
y x

m
y

m
yx

m
xx

t m
x1n n nR R= + -; - ^ h (15)

and a covariance matrix

 .( ) ( ) ( ) ( )
m
y x

m
yy

m
yx

m
xx

m
xy1R R R R R= -; -  (16)

Figure 5(a) shows the PDF of an example JD-GMM with two mix-
tures, where the source and target acoustic features are simply 
represented by scalars. Two examples of the conditional distribu-
tions derived from the JD-GMM are illustrated in Figure 5(b), 
which are also two-mixture GMMs.

At conversion time, the converted acoustic features can be pre-
dicted using either the minimum mean-square error [56] or the 
maximum a posteriori criterion [2], given the source acoustic fea-
ture sequence .xu  If the maximum a posteriori criterion is adopted, 
the static acoustic features of the target voice are predicted as

 .( , )arg maxy y xp* *
y y M y

s
s sy

; m=
=

u  (17)

Similar to HMM-based speech synthesis, the solution to (17) is 
simplified by only considering the mixture components with the 
highest posterior probability at each frame in (14). Thus, we have

 ( , ),arg max xm P m* *
mt t t
t

; m= u   (18)

 ( ., , )arg maxy y xp m* * *
y

y M y

s
t

T

t t t
1 s

s
y

; m=
= =

u%  (19)

Then, a closed-form solution to (19) can be achieved in a similar 
way to solve (9) [2]. Finally, the converted acoustic features are sent 
to a vocoder to reconstruct the corresponding speech waveform.

This GMM-based voice conversion framework has also been 
successfully applied to other frame-by-frame-mapping speech 
generation tasks, such as bandwidth extension [61], speech 
enhancement [62], [63], and articulatory-acoustic mapping [64].

THE COMMON STRUCTURE: TWO-STEP MAPPING
As shown in (8), (9), (18), and (19), both HMM- and GMM-based 
SPSG share the common structure of two-step mapping to rep-
resent the conditional PDF of the acoustic features ,y  given the 
input features .x

1) Input-to-cluster mapping using hidden discrete variable: 
In this step, each input feature vector is mapped to hidden 
discrete clusters of the acoustic features to be generated, i.e., 
the HMM state q*

t  in (8) or the GMM mixture component m*
t  

in (18). In HMM-based speech synthesis, q*  is determined 
using the decision trees for state-output PDFs and the state-
duration PDFs. In GMM-based voice conversion, this is 
achieved by the posterior probabilities .( , )xP m *

t t; mu

2) Cluster-to-feature mapping using Gaussian distributions: 
Given the input features, once the cluster sequence is deter-
mined, the conditional PDF for generating the acoustic fea-
tures can be determined by combining the PDFs describing 
each cluster in the sequence, i.e., ( , )yp q* *

t t; m  in (9) and 
( , , )y xp m* *

t t t; mu  in (19). In the current SPSG approaches, 
the PDF associated with each cluster is typically an ML-esti-
mated single Gaussian distribution with a diagonal covari-
ance matrix [2], [6].
Although the acoustic modeling approach described earlier 

works reasonably well in SPSG, it has well known limitations. 
First, decision-tree-based input-to-cluster mapping in HMM-
based speech synthesis is inefficient for expressing complex con-
text dependencies, such as the exclusive OR (XOR) problem. This 
may lead to overfitting to the training data because of the data 
partitioning issue [65]. Second, the cluster-to-feature mapping 
using single Gaussian distributions with diagonal covariance 
matrices is established based on two independence assumptions: 
1) conditional independence between frames given the state or 
the Gaussian component and 2) independence of acoustic fea-
tures within a frame. As discussed earlier, this leads to recon-
structed spectral envelopes being oversmoothed and the quality 
of synthetic speech is degraded.

Compared with the statistical models used in the conventional 
acoustic modeling of SPSG (such as decision trees, HMMs, and 
GMMs), deep learning techniques are better at representing the 
intrinsic correlations among the units of input vectors (e.g., the 
input context features for speech synthesis), among the units of out-
put vectors (e.g., the output spectral features for speech synthesis), 
and between the input and output vectors (e.g., the aligned spectral 
features of the source and target speakers for voice conversion) using 
a joint (e.g., RBM and DBN) or conditional (e.g., DNN) modeling 
framework. Therefore, it is promising that the deep learning tech-
niques can help the acoustic modeling of speech generation to 

[FIG5] PDFs of (a) a joint distribution GMM ( , )p x y  with two 
mixtures and (b) and (c) the conditional distributions ( )p y x;  
derived from it. (b) .p y x 1=-^ h  (c) .p y x 1=^ h  
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overcome the limitations of the current approach mentioned earlier, 
so as to achieve better input-to-cluster or/and cluster-to-feature map-
ping. Furthermore, human speech production mechanisms involve 
clearly layered hierarchical structures in transforming the informa-
tion from the linguistic level to the acoustic level via intermediate 
levels of motor control and articulation [66]–[69], also suggesting 
the need for deep model structures for SPSG applications.

This article reviews a number of recent approaches, based on the 
deep learning techniques, for overcoming these limitations and 
improving acoustic modeling for SPSG. A few basic models for deep 
learning are first reviewed in the section “Basic Models for Deep 
Learning,” including some mathematical details that are uncom-
mon in the literature but essential for using these models in SPSG. 

BASIC MODELS FOR DEEP LEARNING
Since 2010, deep learning techniques have been successfully 
applied to the modeling of speech signals, such as speech recog-
nition [70]–[74], spectrogram coding [20], voice activity detection 
[75], and acoustic-articulatory inversion mapping [76]. One sig-
nificant advantage of deep learning techniques is their strong 
ability to represent the intrinsic correlation or mapping relation-
ship among the units of a high-dimensional stochastic vector 
using a joint (e.g., RBM and DBN) or conditional (e.g., CRBM and 
DNN) modeling framework. Considering that speech generation 
is a regression task and the aim of its acoustic modeling is to 
describe the joint or conditional distribution of continuous 
acoustic features, we will review these basic models from the 
viewpoint of density models in this section. 

RBMs
An RBM is an undirected graphical model (i.e., a Markov random 
field) that can model the dependency among a set of random vari-
ables using a two-layered architecture [19]. In an RBM, visible sto-
chastic units , ,v v vV1 f= <6 @  are connected to hidden stochastic 
units ,, ,h h hH1 f= <6 @  as shown in Figure 6, where V  and H  
are the numbers of units at the visible and hidden layers, respec-
tively. When { , }v 0 1 V!  and { , }h 0 1 H!  are both binary stochas-
tic variables, the energy function of the state { , }v h  is defined as

 ( , ; ) ,v hE a v b h w v hi
i

V

i j
j

H

j
j

H

i

V

i j
1 1 11

ijm =- - -
= = ==

/ / //  (20)

where wij  represents the symmetric interaction between vi  and 
j,h  ai  and bj  are bias terms, and m  denotes the set of model 

parameters consisting of ,, ,a a aV1 f= <6 @  ,, ,b b bH1 f= <6 @  and 
.{ }W w RV H

ij != #  The joint PDF over the visible and hidden 
units is given by a Boltzmann distribution as

 ( , ) ( , ; ) / ,expv h v hP E C1
Z T; m m= -
m

" ,  (21)

where CT  is a temperature parameter, which is assumed to be 1 
in the rest of this article, and

 ( , ; )exp v hEZ
hv

m= -
66

m " ,//  (22)

is the partition function, which can be estimated using the 
annealed importance sampling (AIS) technique [18]. The mar-
ginal PDF over the visible vector v  can be calculated as

 ( ) ( , ; ) .expv v hP E1
Z h

; m m= -
6m

" ,/  (23)

Given a training set, m  can be estimated based on the ML crite-
rion by stochastic gradient descent. The derivative of 

( )log vP ; m  with respect to the model parameters, e.g., ,wij  can 
be derived using (20)–(23) as

 
(

[ ] [ ],
)log v

w
P

v h v hE EP i j P i j
ij

Data Model2
2 ; m

= -  (24)

where [·]EPData  denotes an expectation with respect to the distribution 
of the training data and [·]EPModel  denotes an expectation with respect 
to the distribution of the model .( )vP ; m  Because computation of 

[·]EPModel  is intractable, the contrastive divergence (CD) algorithm has 
been proposed to approximate [·]EPModel  by Gibbs sampling [77].

RBMs can also be applied to model the distribution of real-
valued data (e.g., mel-frequency MCCs in ASR), categorical data 
(e.g., some linguistic context features in TTS), or a mixed vector 
of binary, real-valued, and categorical data by defining different 
forms of energy functions [25]. For a Gaussian-Bernoulli RBM, 
which means v RV!  are real-valued and { , }h 0 1 H!  are 
binary, the energy is defined as
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where the variance parameters i
2v  are commonly fixed to a prede-

termined value instead of learning them from training data [17]. 
While training a Gaussian–Bernoulli RBM using the CD algorithm, 
the two conditional PDFs for Gibbs sampling are derived as

 ( , ) ,v vP h g b w1j j 2
1

·; m R= = + < -
j` j  (26)

 ( , ) ( ; , ),v h v Wh ap N; m R= +  (27)

where ( ) / ( ( ))expg x x1 1= + -  is a sigmoid function, w · j  
denotes the jth  column of a matrix ,W  ( ; , )vN n R  denotes a 
Gaussian distribution of v  with a mean vector n  and a covari-
ance matrix ,R  and { , , }diag V1

2 2fv vR =  is diagonal. If { }i i
V2

1v =  
are fixed to 1, R  turns into an identity matrix. 

RBMs have been successfully used in unsupervised pretraining 
of DNN-based acoustic models in ASR [22]. RBMs have also been 
used as density models to represent the distributions of acoustic 

v

h

[FIG6] A graphical model representation for an RBM.
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features for SPSG [23], [24], [27]. The marginal PDF of a Gaussian–
Bernoulli RBM can be derived from (23) and (25) as [the variance 
parameters i

2v  in (25) are fixed to 1 for notational simplicity]
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which shows that a Gaussian–Bernoulli RBM can be considered 
either a product of experts (PoEs) or a GMM.

 ■ PoE [78]: A PoE represents a probability distribution by 
multiplying several simpler distributions, followed by nor-
malization. PoEs can produce much sharper distributions 
than their individual experts and perform more efficiently 
than mixture models in high-dimensional space [77]. As 
shown in (28), elements in the first product represent single-
variable experts without cross-dimensional correlations. The 
elements in the second product represent constraints 
between input variable using the model parameters corre-
sponding to each hidden unit.

 ■ GMM: An RBM can also be considered as a GMM with 2H  
mixture components with structured mean vectors and iden-
tity covariance matrices. For example, if ,H 0=  
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is a single Gaussian distribution with a mean vector .a  If H  
is increased to 1, ( )vp ; m  in (28) can be rewritten as
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where l  is a constant value determined by the model parame-
ters. We can see that ( )vp ; m  becomes a GMM with two mixture 

components, where their mean vectors become a  and ,a w 1·+  
respectively. Generally speaking, as the number of hidden units is 
incremented, the number of mixture components is doubled by 
copying and shifting the mean vectors. These structured mean 
vectors and the tied covariance matrices provide better general-
ization. Thus, they are robust toward data sparsity.
RBMs can also be used to model conditional PDFs between two 

groups of visible units using their variation form, i.e., the condi-
tional RBM (CRBM). The CRBM was originally proposed to model 
the temporal dependency of human motion features [79]. The 
model structure of a CRBM representing the conditional PDF 
( , )y xp ; m  is illustrated in Figure 7. In this model, the links 

between the visible units y  and the hidden units h  are undi-
rected. If x  is known, y  and h  form an RBM and its model 
parameters depend on x  through the two directed links from x  to 
y  and .h  If { , }h 0 1 H!  are binary and x RDX!  and y RDY!  are 
real-valued, the energy function of a CRBM can be written as
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where { , }A Bm =  is the set of parameters in the CRBM, 
{ }A A RD V

ki
X!= #  and { }B B RD H

kj
Y!= #  are matrices corre-

sponding to the directed links in Figure 7. The conditional PDF 
of y  given x  can be written as
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Similar to RBMs, m  can be trained based on the ML criterion 
using the CD algorithm [79].

DBNs
A DBN is a probabilistic generative model that is composed of 
many layers of hidden units [16]. The graphical model represen-
tation for a three-hidden-layer DBN is shown in Figure 8. In this 
model, each layer captures the correlations among the activities 
of hidden features in the layer below. The top two layers of the 
DBN form an undirected graph. The lower layers form a directed 
graph with a top–down direction to generate the visible units. 
Assuming that v  is real-valued and { }h( )l

l
L

1=  are binary, the joint 
PDF of a DBN over the visible and hidden units can be written as
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 , ,h hP· ( ) ( )L L1 ; m-^ h  (36)[FIG7] The graphical model representation for a CRBM.
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where , ,h h h( ) ( ) ( )l l
H
l

1 lf=
<6 @  is the hidden stochastic vector at the 

lth  hidden layer, Hl  is the dimensionality of ,h( )l  and L  is the 
number of hidden layers. ( , )h hP ( ) ( )L L1 ; m-  is represented by an 
RBM as (21) with the weight matrix W( )L  and the bias vectors a( )L  
and .b( )L  ( , )v hp ( )1; m  and { ( , )}h hP ( ) ( )l l

l
L1

2
1; m-

=
-  are represented 

by sigmoid belief networks [80]. Each sigmoid belief network is 
described by a weight matrix W( )l  and a bias vector .a( )l  Assum-
ing that v  is real-valued and { }h( )l

l
L

2=  are binary, the conditional 
PDF ( , )v hp ( )1; m  of a sigmoid belief network is described by (27). 
For { , , , },l L2 3 1f! -  the dependency between two adjacent 
hidden layers is represented by
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For an L-hidden-layer DBN, its model parameters are composed 
of .{ , , , , , , , }a W a W a b W( ) ( ) ( ) ( ) ( ) ( ) ( )L L L L L1 1 1 1f - -  Furthermore, the 
marginal PDF of the visible variables for a DBN can be written as

 , , , .v v h hp p ( ) ( )

h h
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g f; ; mm =
6 6

^ ^h h/ /  (38)

Given the training samples of the visible units, it is difficult to 
estimate the model parameters of a DBN directly based on the ML 
criterion due to the complex model structure with multiple hidden 
layers. Therefore, a greedy learning algorithm has been proposed 
and popularly applied to train DBNs in a layer-by-layer manner 
[16]. A stack of RBMs are used in this algorithm. First, it estimates 
the parameters { , , }a b W( ) ( ) ( )1 1 1  of the first-layer RBM to model the 
visible training data. Then, it freezes the parameters { , }a W( ) ( )1 1  of 
the first layer and draws samples from ( , )h vP 1( )1 ; m=  using (26) 
to train the next-layer RBM .{ , , }a b W( ) ( ) ( )2 2 2  This training proce-
dure is conducted recursively until it reaches the top layer and gets 

.{ , , }a b W( ) ( ) ( )L L L  It has been shown that this greedy learning algo-
rithm can improve the lower bound on the log-likelihood of the 
model, given training samples by adding each new hidden layer 
[16], [18]. Once the model parameters are estimated, the calcula-
tion of the log probability that a DBN assigns to training or test 
data by applying (38) directly becomes computationally intractable. 
A lower bound on the log probability can be estimated by combin-
ing the AIS-based partition function estimation with the approxi-
mate inference [18].

DNNs
A DNN is a feed-forward, artificial neural network that has more 
than one layer of hidden units between its input and output lay-
ers [22]. The model representation for a two-hidden-layer DNN is 
shown in Figure 9. At each hidden layer, each hidden unit typi-
cally maps the weighted sum of its inputs from the layer below to 
a deterministic value using a nonlinear activation function and 
passes it to the layer above. If a sigmoid function ( )g $  is used as 
an activation function, its output is given as

 ,h g b h w( ) ( ) ( ) ( )
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where h( )
j
l  is the jth  hidden unit at the lth  layer (h x( )

i i
0
=  is 

the ith  dimension of input feature), b( )
j
l  is the bias of the jth  

unit at the lth  layer, and w( )l
ij  is the weight associated with the 

link from h( )
i
l 1-  to .h( )

j
l  The form of activation functions at the 

output layer depends on the task. For multiclass classification 
tasks, a softmax function is typically used
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where y h( )
j j

L 1
=

+u  gives the posterior probability of the jth  
class and L  is the number of hidden layers. For regression 
tasks, a linear activation function is often used

 j .y b h w( ) ( ) ( )
j
L

i
L

i

L1 1
ij= +

+ +u /  (41)

The set of parameters of an L-hidden-layer DNN consists of 
.{ , , , , }b W b W( ) ( ) ( ) ( )L L1 1 1 1fm = + +  They can be optimized in a 

supervised way by minimizing a loss function that measures the 
difference between data and predicted outputs using the back-
propagation algorithm [81]. For classification tasks, the cross 
entropy between correct and predicted class posterior probabili-
ties is often used as the loss function

 ( , ; ) ( ),logy y y yL j
j

jm =-u u/  (42)

[FIG8] The graphical model representation for a three-hidden-
layer DBN.
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[FIG9] The model representation for a two-hidden-layer DNN.
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where y j  denotes the correct class posterior probability given 
input, which is typically a binary value. For regression tasks, the 
mean square error is commonly adopted as the loss function

 ( , ; ) ( ) ,y y y yL
j

j j
2m = -u u/  (43)

where y j  and jyu  are the jth  dimension of the correct and pre-
dicted outputs, respectively. A DNN for regression can be con-
sidered a probabilistic model representing a conditional PDF of 
y  given x  using a Gaussian distribution, i.e.,

 ( , ) ( ; , ),y x y y Ip N; m = u  (44)

where I  is an identity matrix and yu  depends on x  and .m  Thus, 
minimizing the mean square error between yu  and y  with 
respect to m  is equivalent to the ML estimation of .m

DNNs can be powerful models of the highly complex and non-
linear relationship between inputs and outputs. However, it is diffi-
cult to train a DNN with many hidden layers. The error signal in 
back-propagation training decays as it is back-propagated along 
many hidden layers, which leads to the vanishing gradient prob-
lem [82], i.e., the lower layers cannot get much information about 
how to update their model parameters. Supervised training of 
DNNs can also result in overfitting to training data because of the 
power of DNNs to represent training samples. To avoid this prob-
lem, unsupervised pretraining techniques, which use DBN 
(stacked RBMs) weights to initialize a DNN, were proposed [17]. 
To build an L-hidden-layer DNN, an L-hidden-layer DBN is first 
trained. Then, weights of the DBN are used to initialize the 
weights of the DNN. After initializing the DNN weights, supervised 
fine-tuning is conducted using back-propagation to adjust the 
weights estimated in pretraining. This unsupervised pretraining 
strategy can provide a better starting point for supervised fine-tun-
ing than random initialization and reduce overfitting significantly.

Besides RBMs, autoencoders (AEs) are another form of 
model that can be used for pretraining DNNs in a layerwise 
manner. An AE is a particular type of one-hidden-layer neural 
network [83]. It first maps an input vector x  to a hidden repre-
sentation h  using a weight matrix W  and then maps h  back 
into a reconstruction xu  of the same shape as x  using a weight 
matrix .W l  The two weight matrices may optionally be con-
strained: .W W= <l  The parameters are optimized such that 
the average reconstruction error from x  to xu  is minimized. 
The reconstruction error can be measured using either the 
mean square error or the cross-entropy criterion depending on 
the assumed distribution on the input features.

To prevent the hidden layer from simply learning the identity 
transform, a common modification of the AE is the DAE [21], 
which is trained to reconstruct the original input from a cor-
rupted copy. Compared with RBMs, one of the advantages of 
using AEs and DAEs is that many traditional optimization algo-
rithms for neural networks can be used in training. The DAE can 
also be stacked to form a particular type of DNN, called a deep 
DAE, through unsupervised pretraining and supervised fine-tun-
ing. While pretraining each layer, the hidden representations 

given by the DAE of the layer below are used as the input to the 
current layer. For supervised fine-tuning, an output layer is added 
on top of the network and the weights of the entire network are 
adjusted to minimize the cost function [83].

ACOUSTIC MODELING USING DEEP  
LEARNING TECHNIQUES FOR SPSG
Given the success of applying deep learning to a variety of 
speech tasks, we believe that the approach can also be applied to 
acoustic speech modeling in speech generation to overcome the 
limitations mentioned earlier and to achieve better input-to-
cluster and/or cluster-to-feature mapping. Applications of the 
deep learning techniques to SPSG had not been investigated 
until very recently. During the last year, several articles on the 
topic for speech synthesis [23]–[26], [33], [34], voice conversion 
[27]–[29], and speech enhancement [30]–[32] have been pub-
lished. They reported positive results that the deep learning 
techniques improved the naturalness, similarity, and/or quality 
of generated speech. These deep learning approaches can be 
classified into three categories according to the modeling steps, 
as well as the relationship between the input and output fea-
tures represented in the model.

CLUSTER-TO-FEATURE MAPPING  
USING DEEP GENERATIVE MODELS
In this approach, the deep learning techniques are applied to the 
cluster-to-feature mapping step of acoustic modeling for SPSG, i.e., 
to describe the distribution of acoustic features at each cluster. The 
input-to-cluster mapping, which determines the clusters from the 
input features, still uses conventional approaches, such as decision 
trees and state-duration PDFs in HMM-based speech synthesis and 
posterior probabilities of mixture components in GMM-based voice 
conversion. One example of this approach is HMM-based speech 
synthesis using RBMs and DBNs for spectral modeling [24]. This 
work improves the conventional spectral modeling approach in 
HMM-based parametric speech synthesis. Improvement was 
achieved in two aspects: First, raw spectral envelopes extracted by 
speech transformation and representation based on adaptive inter-
polation of weighted spectrum (STRAIGHT) analysis [84] rather 
than the low-dimensional representations, such as MCCs or line 
spectral pairs (LSPs) derived from these spectral envelopes, were 
modeled. Second, RBMs and DBNs were adopted to replace single 
Gaussian distributions at the leaf nodes of decision trees. The 
model structure of this approach is shown in Figure 10. To simplify 
model training with high-dimensional spectral features, decision 
trees and state alignments were assumed to be given.

At the acoustic feature extraction stage using STRAIGHT anal-
ysis, original spectral envelopes were stored in addition to spectral 
parameters. The context-dependent HMMs for low-dimensional 
spectral parameters and F0  features were estimated according to 
the approach introduced in the section “HMM-Based Speech Syn-
thesis.” A single Gaussian distribution was used to model the spec-
tral parameters at each leaf node of the decision trees. Then, a 
state-level forced alignment was carried out with the trained 
HMMs. The state boundaries obtained were used to gather the 
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spectral envelopes for each decision tree’s leaf node. Then, an RBM 
or a DBN was trained at each leaf node according to the ML crite-
rion. In this approach, the spectral envelope features at each frame 
consisting of static, velocity, and acceleration components corre-
spond to the visible vector v  in (23) for RBMs and (38) for DBNs.

To simplify model estimation, each dimension of the spectral 
envelope features was normalized to zero mean and unit vari-
ance before training RBMs or DBNs, and the variance parame-
ters i

2v  in (25) were fixed to 1 for each leaf node. As a result, a 
set of context-dependent RBM-HMMs or DBN-HMMs is trained 
for modeling the spectral envelopes.

At synthesis time, the speech parameter-generation algorithm 
was used to generate the spectral envelopes. The optimal 
sequences of spectral envelopes were determined so as to maxi-
mize their output probability given the RBM-HMM or the DBN-
HMM. If a single Gaussian distribution is adopted as the 
state-output PDFs of HMMs, and the state sequence is given, there 
is a closed-form solution to determine the optimal acoustic feature 
trajectories [7]. However, the marginal PDFs of RBMs and DBNs 
are much more complicated than a single Gaussian distribution. 
Thus, there is no closed-form solution to find the optimal acoustic 
feature trajectories. To avoid this problem, a Gaussian approxima-
tion was applied before the parameter-generation stage as a simpli-
fication. At each decision tree leaf node of decision trees, a 
Gaussian distribution ( ; , )vN n R  was constructed, where

 ( )arg max vp
v

;n m=  (45)

was the mode vector estimated [24] from ( )vp ; m  for each RBM 
or DBN and R  was a diagonal covariance matrix computed from 
the training samples associated with the leaf node. Because each 
dimension of the training samples of v  was normalized to zero 
mean and unit variance, a denormalization processing was con-
ducted before parameter-generation to derive the distributions 
of the original spectral envelope features from the estimated n  
and .R  The RBMs/DBNs at the leaf nodes were replaced by these 
Gaussian distributions at the synthesis stage. Therefore, the 
speech parameter-generation algorithm can be followed to pre-
dict the spectral envelopes. For details about the mode estima-
tion algorithm, refer to [24].

A group of subjective evaluations has been conducted to prove 
the effectiveness of this approach [24]. Some evaluation results are 
summarized and shown in Table 1. In this table, each line presents 
the preference percentages given by a preference listening test con-
ducted between two systems. For example, the first row means that 
48% of the stimuli generated by the GMM system was judged by 
the listeners to be better than those of the baseline system. The 
percentage of converse preference was 18.67%. The baseline sys-
tem was constructed using Mel-cepstra and single Gaussian distri-
butions for cluster-to-feature mapping. At training time, 
Mel-cepstra were derived from the spectral envelopes extracted by 
STRAIGHT. At synthesis time, the spectral envelopes recovered 
from the generated mel-cepstra were sent into STRAIGHT to 
reconstruct speech waveforms. A system using spectral envelopes 
and single Gaussian distributions for cluster-to-feature mapping 

was also constructed. However, it was found that this system had 
very similar synthetic results to the baseline system. Some detailed 
explanation can be found in [24], which means that simply replac-
ing mel-cepstra with spectral envelopes is not helpful if the model 
structures are not modified accordingly. Therefore, the baseline 
system was adopted as a representative for these two systems in the 
subjective evaluation to simplify the test design. The GMM and 
RBM systems adopted GMMs of eight mixtures and RBMs of 50 
hidden units to model the distribution of spectral envelopes at each 
leaf node of the decision trees. No postfiltering techniques, such as 
GV-based parameter-generation [13], were applied to any of these 
systems. It can be seen from the table that the use of RBMs to 
model the spectral envelopes at each leaf node achieved signifi-
cantly better naturalness than the use of single Gaussian distribu-
tions and GMMs. A comparison between the spectral envelopes 
generated by the baseline system and the RBM system is shown in 
Figure 11. From this figure, we can observe the enhanced formant 
structures after modeling the spectral envelopes using RBMs.

In addition to speech synthesis, this approach was also applied to 
other speech generation tasks, such as voice conversion [27]. Simi-
lar to conventional GMM-based voice conversion, the input-to-clus-
ter mapping in [27] was determined by the posterior probabilities of 
mixture components of a trained GMM, given the input acoustic 
features. Then, RBMs were adopted to model the joint PDFs 
between the source and target acoustic features for each cluster. The 
subjective evaluation results also demonstrated the effectiveness of 

[FIG10] A model structure of cluster-to-feature mapping using 
RBMs for HMM-based speech synthesis [24].
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[TABLE 1] THE SUBJECTIVE PREFERENCE SCORES (%)  
AMONG SPEECH SYNTHESIZED USING THE BASELINE, GMM, 
AND RBM SYSTEMS. 

BASELINE GMM RBM N/P* p

18.67 48 – 33.33 0.0014 
5.33 – 70.67 24 0
– 16 69.33 14.67 0 

* N/P denotes “no preference” [24].
The systems that achieved significantly better preference at the p < 0.05 level are in bold font.
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this approach when either MCCs or spectral envelopes were used as 
spectral features. The mean opinion score (MOS) of similarity of the 
converted speech improved from 2.83 to 3.13, and the MOS of natu-
ralness increased from 2.90 to 3.45, respectively [27].

INPUT-TO-FEATURE MAPPING  
USING DEEP JOINT MODELS
This approach uses a single deep generative model to achieve 
the integrated input-to-feature mapping by modeling the joint 
PDF between the input and output features. For example, a syn-
thesis method using a multidistribution DBN (MD-DBN) has 
been proposed in [25] with input features capturing linguistic 
contexts and output features being acoustic features. More spe-
cifically, the input contextual features for speech synthesis were 
the tonal syllables in Mandarin Chinese, which were encoded 
within a 1-of- k  code following the categorical distribution (i.e., 
the generalized Bernoulli distribution). The output acoustic fea-
tures to be generated consisted of syllable-level spectrum and 
excitation features. Each syllable was represented by an acoustic 
feature supervector, which consisted of multiple frames of Mel-
generalized cepstral coefficients (MGCs), log-energy, ,logF0  and 
voiced/unvoiced (U/V) flags. These frames were uniformly 
spaced within the boundary of a syllable. Different types of 
acoustic features including spectrum and excitation parameters 
are modeled by a single network so that the correlation between 
them can be modeled. Syllable duration was modeled and pre-
dicted separately in this framework.

To model the different distributions of the binary data (i.e., the 
U/V flags) and the continuous data (i.e., the MGCs and ),logF0  the 
approach used an MD-DBN, as shown in Figure 12. This consisted 
of the building blocks of RBMs, with different types of distribution 
units in the visible layer. Gaussian distributions were used for the 
spectral data and ,logF0  and Bernoulli distributions for the U/V 
flags, to form the Gaussian–Bernoulli RBM (GB-RBM) for the bot-
tom layer. Training of the MD-DBN began with unsupervised 

learning, where an MD-DBN with L 1-  hidden layers was first 
trained using the acoustic features as observations as shown in the 
right part of Figure 12. The MD-DBN was built by stacking up 
multiple Bernoulli RBMs (B-RBMs) on top of the bottom GB-RBM 
layer; thus, the depth of the model could be easily controlled.  
This was followed by supervised learning where the ( )L 1- th 
layer was extended with a 1-of- k  vector x  that encoded Mandarin 
syllable IDs and then learned one more layer on top. This addi-
tional layer modeled the joint distribution between the syllable IDs 
and the hidden activations of the supervector using the Categori-
cal-Bernoulli RBM (CB-RBM).

This training paradigm has three advantages over HMM-based 
synthesis: 1) It models all training data in a centralized network 
and avoids data partitioning. Instead of using thousands of Gauss-
ian distributions to piece the acoustic space together as in the 
HMM-based approach, this approach uses only one MD-DBN to 
portray the whole acoustic space, which potentially reduces the 
requirements of training data and increases the efficiency of 
model parameters. 2) The supervector consists of multiple acous-
tic frames from a syllable with temporal dynamics intact, which 
can be captured by the MD-DBN. This differs from the HMM-
based synthesis, which assumes that acoustic observations are 
dependent only on the current hidden state. Since the correla-
tions in the temporal domain can be captured directly by the MD-
DBN, the use of dynamic features can be eliminated. 3) In the 
frequency domain, the correlations between spectral coefficients 
within a single frame can also be modeled by the MD-DBN, which 
does not adopt any independence assumptions such as those 
introduced by the use of a GMM with a diagonal covariance 
matrix. As a result, the decoupling process in the speech feature 
extraction can be eliminated to preserve more information.

At synthesis time, the contextual features x  were first deter-
mined for each syllable by text analysis. Then, alternative Gibbs sam-
pling using ( , , )x hP h 1( ) ( )

i
L L 1; m= -  and ( , )hP h 1( ) ( )

j
L L1

; m=
-  

were conducted with the x  clamped to update h( )L 1-  until con-
vergence or a maximum number of iterations was reached. Then, 
the acoustic feature supervector was predicted as the mean vector 
of ( , ),y hp ( )1; m  which was determined by recursively generating 
hidden variables from h( )L 1-  to .h( )1  Finally, the generated 
acoustic features were interpolated according to the predicted 
syllable durations and were sent into the Mel log spectrum 
approximation filter [85] to reconstruct the speech waveforms. 
No postfiltering or global-variance-based voice enhancement 
techniques were incorporated.

It is worth noting that this acoustic modeling method dis-
carded HMMs and modeled the joint PDF between the input 
contextual features and the output acoustic features using one 
single MD-DBN without the conventional two-step mapping. 
Table 2 shows the five-point Likert scale MOSs of the HMM 
baseline (HMM), the system predicting MGCs using the pro-
posed MD-DBN approach [DBN (MGCs)], and the system pre-
dicting both MGCs and logF0  using the MD-DBN approach 
[DBN (MGCs + )]logF0  [25]. Comparing DBN (MGCs) with 
HMM, we can see that the proposed MD-DBN approach outper-
forms the conventional HMM baseline for modeling and 
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[FIG11] The spectrograms of a segment of synthetic speech 
using (a) the baseline system and (b) the RBM system [24].
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predicting spectral features. The quality degradation from 
DBN(MGCs) to DBN(MGCs + logF )0  suggests that the low-
dimensional F0  features are not well modeled when combined 
with high-dimensional spectrum features.

INPUT-TO-FEATURE MAPPING USING  
DEEP CONDITIONAL MODELS
Similar to the previous approach, this one predicts acoustic fea-
tures from inputs using an integrated deep generative model. The 
difference is that this approach models a conditional PDF of output 
acoustic features, given input features instead of their joint PDF.

A DNN-based speech synthesis approach was proposed in 
[26]. In this approach, context and acoustic features were treated 
as inputs and targets of a DNN, respectively, as shown in Figure 13. 
As introduced in the DNNs section, a DNN describes a condi-
tional PDF of outputs given inputs using a Gaussian distribution. 
A text to be synthesized was first converted to a sequence of 
frame-level linguistic context features. The linguistic context fea-
tures at each frame included binary answers to questions about 
contexts, numeric context descriptors, position of the current 
frame within a segment, and segment durations. The acoustic 
features at each frame were composed of MCCs, ,logF0  excita-
tion aperiodicities, their derived dynamic components [3], and 
binary U/V decisions. The weights of the DNN were trained from 
pairs of inputs and targets extracted from training data. Like the 
DBN-based approach discussed in the section “Input-to-Feature 
Mapping Using Deep Joint Models,” as acoustic features include 
both spectral and excitation parameters and a single DNN is 
trained, correlations between them can be modeled. At synthesis 
time, phoneme durations were first determined by a duration 
prediction module; then, frame-level linguistic context features 
were composed. By feeding the composed linguistic context fea-
tures to the trained DNN, output acoustic features were pre-
dicted. By using these predicted output acoustic features as 
means along with the frame-independent variances of output 
acoustic features computed from all training data, the speech 
parameter-generation algorithm [7] generated the smooth 
acoustic feature trajectories. The generated acoustic feature 
parameters were post-processed by a postfilter (in the experi-
ment reported in [26], postfiltering in the mel-cepstral domain 
[86] was applied to emphasize formant structure) and then sent 
to a vocoder to reconstruct a speech waveform.

A subjective preference listening test was conducted to com-
pare the performance of the DNN-based systems with HMM-based 
systems [26]. The experimental results are shown in Table 3. In 
this experiment, HMM- and DNN-based systems with similar 
numbers of parameters were compared. The a  in the first column 
of Table 3 is the scaling factor for the penalty term in the mini-
mum description length (MDL) criterion, which is often used to 
control the number of parameters in HMM-based systems. It can 
be seen in the table that, for all three model sizes, the DNN-based 
system achieved better naturalness than the HMM-based system 
according to the p  values given by hypothesis tests.

Other approaches of DNN-based TTS can be found [33], [34]. 
These include a hybrid approach between DNN and Gaussian 

process (GP)-based regression [33] to predict ;logF0  a DNN that 
maps linguistic context features to logF0  was first trained, and 
then the activations at the last hidden layer were used as inputs for 
GP-based nonparametric regression. This approach combined the 
parametric and nonparametric regression models. An alternative 
approach [34] used a vector-space representation of input texts as 
inputs of DNN-based TTS. This vector-space representation was 
derived without using any linguistic resources; only orthographic 
information (graphemes) was used; thus, it did not require any lan-
guage knowledge to build a model. 

The acoustic modeling approach using deep conditional 
models has also been applied to other speech generation tasks, 
such as voice conversion [28], [29] and speech enhancement 
[30]–[32]. A DNN-based voice conversion approach has been 
proposed in [28]. In this approach, acoustic features of a source 

[TABLE 2] THE SUBJECTIVE EVALUATION RESULTS  
FOR THE DBN-BASED SPEECH SYNTHESIS [25].

SYSTEM MOS
HMM 2.86 
DBN (MGCs) 3.09 

DBN (MGCs )log F0+ 2.88 

Context Features

Acoustic Features

x

y

h(L)

h(L–1)

h(1)

[FIG12] The model structure of input-to-feature mapping using 
DBN for speech synthesis [25].
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[FIG13] A model structure of input-to-feature mapping using 
DNN for speech synthesis [26].
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voice were mapped to those of a target voice using a DNN that 
was initialized by concatenating two DBNs. CRBMs have also 
been used to construct conditional models for voice conversion. 
In [29], a CRBM was estimated to model a conditional PDF of 
acoustic features of a target voice given acoustic features from a 
source voice. For speech enhancement, conditional generative 
model-based approaches have been proposed for mapping 
acoustic features extracted from noisy speech to those of clean 
speech using DNNs [32] or DAEs [30], [31]. 

COMPARISONS AMONG THESE THREE APPROACHES
The cluster-to-feature mapping approach using deep generative 
models has the model structure most similar to conventional HMM- 
or GMM-based approaches. The input-to-cluster mapping step is pre-
served, and few modifications to the existing speech generation 
engines are necessary after off-line model training [24]. The input-to-
feature mapping approaches using deep joint models or deep condi-
tional models integrate the two-step mapping of acoustic modeling 
into a single step [25], [26], which can express complicated mapping 
functions more efficiently and provide better generalization than the 
approaches using conventional input-to-cluster mapping, such as 

decision trees and GMM posterior probabilities. Compared with the 
sampling-based parameter-generation from a DBN [25], generating 
acoustic features from a DNN is more straightforward [26]. However, 
the conditional PDF represented by a DNN is relatively simple 
because it is a Gaussian distribution with an identity covariance 
matrix as described in the “DNNs” section. Table 4 summarizes the 
recently proposed acoustic modeling approaches using deep learning 
techniques for SPSG. Some discussions on these approaches will be 
given in the “Discussion” section.

DISCUSSION

PERFORMANCE OF RBMs AS DENSITY MODELS
RBMs are the basis of many deep models such as DBNs and DNNs. 
As introduced in the “RBMs” section, RBMs have some good prop-
erties in describing the distribution of high-dimensional observa-
tions with cross-dimension correlations. The performance of 
GMMs and RBMs in modeling the distribution of mel-cepstra and 
spectral envelopes for a specific context-dependent HMM state was 
investigated in [23]. Spectral envelopes were extracted by 
STRAIGHT analysis [84], and MCCs were derived from the spectral 
envelopes at each frame. In the experiment, a leaf node with  
720 frames was used; 520 frames were used for training and the 
remaining 200 frames were used as a test set. The number of mix-
ture components in a GMM varied from 1 to 32, and the number of 
hidden units in an RBM varied from 1 to 1,000. The average log 
probabilities on the training and test sets for different model struc-
tures are shown in Table 5 for MCCs and the spectral envelopes, 
respectively. It can be seen from the tables that the GMMs overfit 
more to the training data as the model complexity increased. On 
the other hand, the RBMs consistently gave good generalization 
ability even with a large number of hidden units. It can be seen 

[TABLE 3] THE SUBJECTIVE PREFERENCE SCORES (%) 
BETWEEN SPEECH SAMPLES FROM THE HMM-  
AND DNN-BASED SYSTEMS [26]. 

HMM ( )a DNN (# LAYERS #  # UNITS) N/P p

15.8 (16) 38.5 (4 #  256) 45.7 10 61 -

16.1 (4) 27.2 (4 #  512) 56.8 10 61 -

12.7 (1) 36.6 (4 #  1,024) 50.7 10 61 -

The systems that achieved significantly better preference at the p < 0.01 level are shown in 
bold font.

[TABLE 4] A SUMMARY OF THE PROPOSED ACOUSTIC MODELING APPROACHES USING DEEP LEARNING TECHNIQUES FOR SPSG.

TASk 
MODEL  
STRUCTURE INPUT FEATURES 

GENERATED  
ACOUSTIC FEATURES 

LiNG eT AL. 2013 [24] *  sPeeCH syNTHesis RBM/DBN-HMM RiCH CoNTexT feATuRes sPeCTRAL eNveLoPes 

KANG eT AL. 2013 [25] @ sPeeCH syNTHesis DBN siMPLe LiNGuisTiC feATuRes MCCs, ,log F0  AND u/v 

ZeN eT AL. 2013 [26] ? sPeeCH syNTHesis DNN RiCH LiNGuisTiC CoNTexT  
feATuRes 

MCCs, ,log F0  APeRioDiCiTies, AND 
u/v

Lu eT AL. 2013 [34] ? sPeeCH syNTHesis DNN veCToR sPACe  
RePReseNTATioN of TexTs

LsPs, ,log F0  AND APeRioDiCiTies 

feRNANDeZ eT AL. 2013 [33] ? sPeeCH syNTHesis DNN-GP RiCH LiNGuisTiC CoNTexT  
feATuRes 

log F0

CHeN eT AL. 2013 [27] * voiCe CoNveRsioN MixTuRe  
of RBMs

sPeCTRAL eNveLoPes  
of souRCe voiCe 

sPeCTRAL eNveLoPes 

NAKAsHiKA eT AL. 2013 [28] ? voiCe CoNveRsioN DNN MCCs of souRCe voiCe MCCs of TARGeT voiCe 

Wu eT AL. 2013 [29] ? voiCe CoNveRsioN CRBM MCCs of souRCe voiCe MCCs of TARGeT voiCe 

Lu eT AL. 2013 [30] ? sPeeCH eNHANCeMeNT DeeP DAe PoWeR sPeCTRA of  
Noisy sPeeCH 

PoWeR sPeCTRA of CLeAN sPeeCH 

xiA eT AL. 2013 [31] ? sPeeCH eNHANCeMeNT DAe PoWeR sPeCTRA of  
Noisy sPeeCH 

PoWeR sPeCTRA of CLeAN sPeeCH 

xu eT AL. 2014 [32] ? sPeeCH eNHANCeMeNT DNN PoWeR sPeCTRA of  
Noisy sPeeCH 

PoWeR sPeCTRA of CLeAN sPeeCH 

*, @, and § denote the three categories descibed in the section “Acoustic Modeling using Deep Learning Techniques for sPsG.”
* denotes cluster-to-feature mapping using deep generative models.
@ denotes input-to-feature mapping using deep joint models.
§ denotes input-to-feature mapping using deep conditional models.
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from Table 5 that the best GMM and the best RBM had very close 
test-set log probabilities while modeling the MCCs. However, the 
RBMs gave much higher test-set log probabilities than the GMMs 
as shown in Table 5(b). These results can be attributed to the fact 
that mel-cepstral analysis decorrelates spectral parameters, 
whereas the advantage of RBMs is to analyze the latent patterns 
embedded in the high-dimensional raw data with strong interdi-
mensional correlations, such as raw spectral envelopes.

INPUT AND TARGET FEATURES
In acoustic modeling for SPSG, the forms of input features are 
task dependent. The same is true for the acoustic modeling 
using deep learning techniques. As shown in Table 4, simple to 
rich linguistic context features are typically used as input 
 features for speech synthesis [24]–[26], [33], whereas vector-
space representation of input texts has also been used [34]. 
Input features for voice conversion are typically spectral fea-
tures extracted from a source voice [27]–[29]. Likewise, input 
features for speech enhancement are typically power spectra 
extracted from noisy speech [30]–[32].

Various output acoustic features for speech generation have been 
used, as listed in Table 4. The discussion in the section “Performance 
of RBMs as Density Models” shows that RBMs and other deep gener-
ative models are good at modeling the distribution of high-dimen-
sional acoustic features with cross-dimensional correlations. Thus, 
some approaches took this into account when selecting their output 
acoustic features. The cross-dimensional correlations represented by 
the deep generative models exist in both the frequency domain, e.g., 
by using raw power spectra or spectral envelopes at each frame [24], 
[30]–[32], and the temporal domain, e.g., by concatenating the 
acoustic features of multiple frames [25]. In some speech generation 
tasks, such as speech synthesis, F0 is another important acoustic fea-
ture to be predicted in addition to spectral parameters. F0 together 
with other excitation-related acoustic features, including U/V deci-
sions and aperiodicity ratios, has also been used as a part of target 
features in some deep-learning-based acoustic modeling approaches 
[25], [26]. However, the prediction performance of logF0  was not as 
good as that of spectral features as shown in the experimental results 
in [25] and [26]. 

MODEL STRUCTURES AND MODEL TRAINING
As shown in Table 4, different model structures have been 
adopted in these approaches. RBMs and DBNs were used to repre-
sent joint PDFs and to achieve cluster-to-feature [24], [27] or 
input-to-feature mapping [25]. On the other hand, DNNs, 
CRBMs, and DAEs were adopted to represent conditional PDFs 
and to achieve direct input-to-feature mapping [26], [30]–[32]. 
The depth of architecture, i.e., the number of hidden layers, is an 
important characteristic of a deep model. In DBN–HMM-based 
speech synthesis [24], the experimental results in Table 1 show 
that increasing the number of layers did not improve the natural-
ness of synthetic speech because of the difficulty of estimating the 
mode of a DBN.

In other works [25], [26], [30], [32], the number of hidden lay-
ers was tuned to minimize the mean squared error between targets 

(data) and outputs (predicted acoustic features) on development 
sets. The results show that multiple hidden layers could achieve 
better prediction accuracy than a single hidden layer. However, the 
optimal depth is commonly not as deep as that used in DNN-
HMM-based ASR. It is reasonable considering that the amount of 
training data for speech generation tasks is limited compared with 
ASR. In the DNN-based approaches, different initialization strate-
gies have been employed, e.g., random initialization for speech 
synthesis [26], structured pretraining using DBNs and NNs for 
voice conversion [28], and pretraining using stacked AEs or RBMs 
for speech enhancement [30], [32]. Considering the heavy compu-
tational cost of training RBMs, DNNs, and other deep models, 
graphics processing unit-based acceleration was applied to reduce 
the training time [25], [26].

A COMPARISON BETWEEN SPEECH SYNTHESIS  
AND RECOGNITION BOTH USING DNN-HMMs
The DNN-HMM is the dominant form of acoustic modeling with 
deep structures for ASR [22]. In this approach, a DNN is trained 
to map input acoustic features (e.g., mel-frequency cepstral 
coefficients, log-filterbank features, etc.) to posterior probabili-
ties of leaf nodes of decision trees at each frame. HMMs are used 
to connect the hidden states with the higher-level linguistic rep-
resentations for decoding with language models at recognition 
time. While there seems to be a converging deep learning 

[TABLE 5] THE AVERAGE LOG PROBABILITIES ON THE 
TRAINING AND TEST SETS WHEN MODELING THE MEL-
CEPSTRA AND SPECTRAL ENVELOPES OF A SPECIFIC STATE 
USING DIFFERENT MODELS [23]. 

MEL-CEPSTRA COEFFICIENTS

AVERAGE LOG PROBABILITY NUMBER OF 
PARAMETERSTRAIN TEST

GMM (1)-DiAG −58.176 −56.380 82
GMM (4)-DiAG −51.188 −53.097 328
GMM (16)-DiAG −40.869 −59.492 1,312
GMM (32)-DiAG −29.973 −72.056 2,624
GMM (1)-fuLL −30.883 −54.648 902

RBM (1) −56.464 −55.244 83
RBM (10) −52.416 −52.660 461
RBM (50) −51.840 −53.636 2,141
RBM (200) −53.554 −55.020 8,441
RBM (1,000) −55.797 −56.940 42,041

SPECTRAL ENVELOPES

AVERAGE LOG PROBABILITY NUMBER OF  
PARAMETERSTRAIN TEST

GMM (1)-DiAG −727.915 −728.647 1,026
GMM (4)-DiAG −599.642 −648.818 4,104
GMM (16)-DiAG −485.072 −665.609 16,416
GMM (32)-DiAG −379.980 −717.523 32,832
GMM (1)-fuLL 2,207.177 −89,202.438 132,354

RBM (1) −685.799 −700.938 1,027
RBM (10) −629.906 −649.823 5,653
RBM (50) −587.146 −628.222 30,317
RBM (200) −576.461 −617.480 103,313
RBM (1,000) −562.439 −583.169 514,513

The numbers in the brackets indicate the Gaussian mixture numbers for the GMMs and 
the hidden unit numbers or the RBMs. “DiAG” and “fuLL” denote using diagonal and full 
covariance matrices, respectively.
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architecture based on the DNN-HMM for the dominant use in 
ASR, there has been a greater variety of model structures pro-
posed for SPSG using deep learning techniques, where the vari-
ety can be seen in Table 4. Among them, the DNN-based 
conditional modeling approach [26], [32] adopts a model struc-
ture quite similar to the DNN-HMM for acoustic modeling in 
ASR. One main difference is in the activation functions used at 
the DNN’s output layers: the softmax layer for multiclass classi-
fication in ASR versus the linear layer for regression in SPSG.

In DNN–HMM-based ASR, acoustic features are the input to 
a DNN for classification, while DNN-based SPSG predicts acous-
tic features for speech generation. Therefore, the acoustic fea-
tures used in DNN-based SPSG should take into account the 
requirement of reconstructing speech waveforms. Some acous-
tic features that are not adopted in DNN–HMM-based ASR, such 
as excitation-related features [26] and power spectra [32], have 
been used in DNN-based SPSG.

CONCLUSIONS
This article provides an overview of the emerging speech genera-
tion approaches using deep learning techniques. Compared with 
the conventional acoustic modeling methods in SPSG based on 
the use of HMMs and GMMs, deep joint models (e.g., RBMs and 
DBNs) and deep conditional models (e.g., CRBMs and DNNs), 
which we reviewed in this article, are better able to describe the 
complex and nonlinear relationship between the inputs and tar-
gets of the SPSG system and, therefore, improve the naturalness, 
similarity to the target speaker, and quality of the generated 
speech. Various implementations of building acoustic models 
using deep learning for SPSG in the current literature have been 
reviewed and compared. To facilitate a review of the area and to 
offer insights into the different approaches reported in the litera-
ture, we categorize them into three classes, describe and analyze 
each, and make connections in a systematic manner. 

Despite the empirical successes of a range of deep learning 
methods in SPSG as reviewed in this article, there remain 
important issues that need further investigation to make full 
use of the intrinsic strength of deep learning models and meth-
ods in SPSG. For example, current attempts have not achieved 
positive results in modeling and prediction of F0  using deep 
generative models [25], [26]. Considering the different physio-
logical mechanisms between the production of F0  and of spec-
tral features, deep model structures designed specifically for F0  
modeling and prediction may be necessary. Furthermore, few 
considerations have been made thus far in deep learning 
approaches to model the temporal dependencies among the 
sequence of acoustic features. We believe that a promising 
direction to pursue in the near future is to apply the deep gen-
erative models with better temporal modeling abilities, such as 
recurrent neural networks, to the SPSG tasks in the future.
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