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ABSTRACT 

 

This paper presents a new approach to cross-lingual voice 

transformation in HMM-based TTS with only the recordings from 

two monolingual speakers in different languages (e.g. Mandarin 

and English). We aim to synthesize one speaker's speech in the 

other language. We regard the spectral space of any speaker to be 

composed of universal elementary units (i.e. tied-states) of speech 

in different languages. Our approach first forces the spectral spaces 

of the two speakers to have the same number of tied-states. Then 

we find an optimal one-to-one tied-state mapping between the two 

spectral spaces. Hence, the mapped speech trajectory in the 

spectral space of the target speaker can be found according to that 

generated in the spectral space of the reference speaker. 

Consequently, we can synthesize high-quality speech for the target 

monolingual speaker’s voice in the other language. This can also 

be used as training data for a new TTS system.  

 

Index Terms— cross-lingual, voice transformation, spectral 

space warping, HMM-based TTS 

 

1. INTRODUCTION 

 

With the sound development of speech technology in recent years, 

various speech service and applications are beginning to have an 

impact on people’s daily lives. Text-to-speech (TTS) synthesis is 

widely used to output response and feedback in voice user 

interfaces. However, a cross-lingual TTS where a well-trained TTS 

in one language is converted to a new monolingual speaker’s voice 

in another language remains a challenge. Such technology would 

be of great use in many cross-lingual applications such as 

computer-assisted language learning (CALL), where a user can 

listen to the synthesized utterances in the foreign language of 

his/her own voice. 

This paper deals with the following problem: we have a 

monolingual speaker (i.e. target speaker) of one language (e.g. 

English) and we want to build a personalized synthesizer that 

enables this target speaker to speak in another language (e.g. 

Mandarin Chinese). The resources we have are English recordings 

from this target speaker and Mandarin recordings from a reference 

speaker. Our approach to cross-lingual voice transformation is 

applicable to different language pairs. But hereafter in this paper, 

we will simply refer to the English and Mandarin language pair (in 

the context of enabling a monolingual English speaker to speak 

Mandarin) for the sake of clarity.  

Previous approaches to cross-lingual voice transformation 

include the state mapping approach proposed by Qian et al. [1]. 

They used recordings from a bilingual (English and Mandarin) 

speaker to build two language-specific decision trees separately. 

Every leaf node (tied-state) in one tree (in Mandarin) can be 

mapped to its nearest neighbor leaf node in the other tree (in 

English). This state mapping process bridges across languages. 

This mapping information was applied to a monolingual English 

speaker to synthesize her Mandarin speech. Wu et al. [2] proposed 

a similar approach. The difference is that they established a state 

mapping between two Average Voice models in different 

languages instead of language-specific models trained with 

recordings from a bilingual speaker. Then they used the state 

mapping information to either map the data or to map the 

transform in speaker adaptation. A frame mapping based approach 

was proposed by Qian et al. [3] and He et al. [4]. In both efforts, 

only recordings in different languages from two speakers were 

needed. Spectral frequency warping techniques (piecewise-linear 

warping based upon formant frequency mapping in [3] and bilinear 

warping in [4]) were used for speaker equalization. Then the 

warped reference speaker’s speech parameter trajectory was used 

as a guide to select the most appropriate frame from the target 

speaker’s speech and then concatenate the selected frames together 

to generate the target speaker’s speech in a new language. 

Our proposed approach is enlightened by all the cited work 

above which show that there exists universal elementary unit of a 

speaker’s speech in different languages, if the speech segments 

considered are small enough. Hence, we regard that the spectral 

space of any speaker is composed of a set of the universal 

elementary units in different languages. If the spectral spaces of 

two speakers have the same number of the universal elementary 

units, then every elementary unit in one spectral space has a unique 

counterpart in the other spectral space. Thus we should be able to 

find a one-to-one elementary unit mapping between the spectral 

spaces of the two speakers. With the mapping information, the 

spectral space of one speaker can be warped towards the spectral 

space of the other speaker, which we call “spectral space warping”. 

This idea leads to our approach. In this paper, we treat tied-states 

as the universal elementary units. Unlike the tied-state mapping in 

[1] where each independent tied-state in one language is mapped to 

its nearest tied-state in the other language for the same speaker or 

tied-state mapping between two Average Voices in [2], our 

approach aims to find an optimal one-to-one tied-state mapping 

between the spectral spaces of the two speakers directly. The 

advantage is that it does not need an intermediate speaker 

adaptation process, which was used in [3] and [4]. The details of 

our approach are given in Section 2. A baseline approach for 

comparison will be presented in Section 3. Experiments and 

evaluations are presented in Section 4. Conclusions are drawn in 

Section 5. 

 



2. CROSS-LINGUAL VOICE TRANSFORMATION IN 

HMM-BASED TTS 

 

We have a reference speaker’s Mandarin corpus and a target 

speaker’s English corpus. We want to use these two corpora to 

build a TTS which enables the target speaker to speak Mandarin.  
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Fig. 1: Schematic diagram of our spectral space warping approach 

to cross-lingual voice transformation in HMM TTS. 

Fig. 1 is an overview of our approach. For both corpora, we 

perform decision tree-based clustering through the standard HMM-

based TTS training procedure, to obtain single Gaussian context-

dependent tied models. During model training, the spectral, F0 and 

durational features are separated into different streams. We only 

focus on decision trees of the spectrum (DTSpectrum) for spectral 

space warping. Then, warped models of the spectrum in Mandarin 

are obtained. Along with the original models of the F0 and 

duration in Mandarin, the warped models of the spectrum are used 

to generate speech parameters. The generated F0 needs to be 

adjusted, and then the target speaker’s speech in Mandarin is 

synthesized and further used to build an HMM-based TTS system. 

 

2.1. Spectral space warping 

 

The core of our approach is to bridge across speakers and across 

languages by spectral space warping. Regarding the tied-states 

(leaf nodes of decision trees) as the universal elementary units of 

speech in different languages, the spectral space of a speaker is 

represented by a DTSpectrum. Two language-specific DTSpectrum are 

created separately for the two speakers. If the two DTSpectrum have 

the same number of leaf nodes, we may warp one spectral space 

towards the other one by finding the optimal one-to-one leaf node 

mapping between the two DTSpectrum. Fig. 2 zooms in on the area of 

the shaded box in Fig. 1 to illustrate how spectral space warping 

works. Two steps are involved in spectral space warping:  

Step 1: Equalizing the number of leaf nodes between the two 

language-specific DTSpectrum. 

Step 2: Finding the optimal one-to-one leaf node mapping between 

the two DTSpectrum. 

DTSpectrum derived from 

Mandarin speech of the 

Reference Speaker

DTSpectrum derived from 

English speech of the 

Target Speaker

 

Fig. 2: Illustration of spectral space warping ― one-to-one leaf 

node mapping between two language-specific DTSpectrum. 

 

2.1.1. Equalizing the numbers of unvoiced and voiced leaf nodes 

All the leaf nodes (tied-states) of DTSpectrum are categorized into 

three types ― unvoiced, voiced and silence. In this paper, we are 

not interested in the silence leaf nodes. We use the trained 

language-specific models to obtain the state-level alignment for the 

recordings of each corpus. We first disregard the silence leaf nodes. 

For the remaining leaf nodes, we can label them as unvoiced or 

voiced by examining the speech frames in that node and taking the 

majority. 

We would like to find mappings between the same type of 

leaf nodes, i.e. an unvoiced leaf node in one tree is mapped to an 

unvoiced leaf node in the other tree, while a voiced leaf node in 

one tree is mapped to a voiced leaf node in the other tree. The two 

language-specific DTSpectrum probably have different numbers of 

unvoiced and voiced leaf nodes. To equalize the respective 

numbers of unvoiced and voiced leaf nodes between the two trees, 

we merge the same type of (unvoiced/voiced) leaf nodes pairwise, 

for the tree that has more (unvoiced/voiced) leaf nodes, until 

equality is attained. We perform merging according to the 

following two principles: (i) the merged pair of nodes must belong 

to the same state in the (5-state) topology of the phone HMM 

models; (ii) the merged pair must have the least decrease in log 

likelihood (which can be calculated with the tied-state means, 

variances and occupation count [5]). 

 

2.1.2. Finding the optimal one-to-one leaf node mapping 

The Kullback-Leibler divergence (KLD) is used to measure the 

distance between a pair of leaf nodes, each of which comes from 

one of the two language-specific DTSpectrum. This is similar to that 

in [1] and [2]. Then, we apply the Hungarian algorithm to find the 

optimal mapping for unvoiced and voiced leaf nodes, respectively. 

The Hungarian algorithm solves “the assignment problem”, that is, 

given n individuals, n jobs and an n × n matrix containing the cost 

of assigning each individual to a job, it finds a way of assigning 

exactly one job to one individual, such that  the overall total cost is 

minimized [6,7]. Our problem can be seen as an assignment 

problem, where the KLD distance is regarded as the cost of 

assignment. The optimal assignment achieves the minimum total 

sum of distances (measured as KLD). Under this condition, we 

expect the neighborhood of tied-states (leaf nodes of DTSpectrum) in 



a spectral space to be preserved after mapping, i.e. neighbors for 

the tied-states in a spectral space are still neighbors for the 

corresponding mapped tied-states in the warped spectral space. 

This guarantees the continuity of the tied-state trajectory in the 

warped spectral space during the generation of speech parameters. 

 

2.2. Parameter generation for warped Mandarin speech 

 

Leaf nodes of decision trees give rise to tied-states. To synthesize 

the target speaker’s voice speaking the same Mandarin sentences 

of the reference speaker’s corpus, we first use the trained reference 

speaker’s Mandarin model to align the tied-state sequences of all 

the Mandarin recordings. Then, according to the spectral mapping 

information obtained in the previous subsection, we replace the 

spectral tied-states of the Mandarin model by their mapped spectral 

tied-states of the English model (we do not touch the silence tied-

states). Using these mapped spectral tied-states and the aligned 

state-level durations, we can generate spectrum parameters of the 

warped Mandarin speech. The F0 parameters are generated using 

the original Mandarin models of the F0 and adjusted according to 

the following linear transformation equation:  

𝐹0̂ =
(𝐹0𝑟 − 𝜇𝑟)

𝜎𝑟
∙ 𝜎𝑡 + 𝜇𝑡                           (1) 

where 𝜇𝑟 , 𝜇𝑡 , 𝜎𝑟 and 𝜎𝑡 are means and standard deviations of the 

F0 for the corpora of the reference and target speakers, respectively. 

Using the generated warped speech parameters of spectrum and the 

adjusted F0, a set of the target speaker’s Mandarin utterances can 

be synthesized. Then we treat the synthesized speech as training 

data in developing an HMM-based TTS system. 

 

3. BASELINE APPROACH:  

THE NEAREST TIED-STATE MAPPING 

 

We build a baseline system using vocal tract length normalization 

(VTLN) and nearest tied-state mapping techniques.  

 

3.1. Frequency warping for speaker equalization 

 

A bilinear transform based VTLN is used to minimize the 

differences between speakers. The bilinear transform can be 

represented as follows [4,8]: 

𝜓𝛼(𝑧) =
𝑧−1 − 𝛼

1 − 𝛼𝑧−1 = 𝑒−𝑗𝛽𝛼(𝜔), |𝛼| < 1           (2) 

where 𝛼 is the warping factor, 𝜔 denotes the input frequency and 

the frequency transformation 𝛽𝛼(𝜔)  is obtained by making the 

substitution 𝑧 = 𝑒𝑗𝜔. We implement the frequency warping in the 

spectral features of the Mel-cepstral coefficients (MCEPs) [9]. The 

MCEP features are warped using the following matrix 

representation [8,10,11]:  

𝒄𝜶 = 𝑩𝜶𝒄                                          (3) 

where 𝒄 and 𝒄𝜶 are the MCEP feature vectors before and after the 

bilinear warping,  𝑩𝜶 is the matrix transformation with the warping 

factor 𝛼. MCEPs already have a bilinear transform with a warping 

factor 𝛼1 = 0.42 approximating the Mel-scale frequency warping. 

Thus another stage of bilinear transform is needed and can be 

cascaded with the existing one by combining the warping factors 

𝛼1 and 𝛼2 according to the following equation [8]: 

𝛼 =
𝛼1 + 𝛼2

1 + 𝛼1𝛼2
                                        (4) 

We compute the MCEP means of all voiced frames in the 

Mandarin and English recordings respectively [4]. Then, we 

estimate the warping factor 𝛼2 by a grid search to minimize the 

MCEP distortion between the MCEP mean of the English speaker 

and the warped MCEP mean of the Mandarin speaker that is 

obtained by Equation (3). 

 

3.2. Nearest tied-state mapping across languages 

 

The reference speaker’s Mandarin speech is warped as described in 

Section 3.1 with the F0 adjusted according to Equation (1). Two 

language-specific DTSpectrum are created separately for the warped 

reference speaker’s Mandarin speech and the target speaker’s 

English speech. All leaf nodes are categorized into three types, i.e. 

unvoiced, voiced and silence. For each type (unvoiced/voiced), 

every leaf node of the warped Mandarin DTSpectrum has a mapped 

(nearest) leaf node of the English DTSpectrum in the minimum KLD 

sense. We use the mapping information to generate a set of target 

speaker’s Mandarin utterances and further used to train an HMM-

based TTS. Compared with our spectral space warping approach, 

this baseline approach implements VTLN before spectral tied-state 

mapping and it does not require a one-to-one mapping between 

tied-states (leaf nodes of DTSpectrum) of two spectral spaces. 

 

4. EXPERIMENTS AND EVALUATIONS 

 

4.1. Experimental setup 

 

Our Mandarin (MAN) recordings were made by a female reference 

speaker in broadcast news reading style. To verify that our 

proposed approach is applicable to different speaker pairs in cross-

lingual voice transformation, two sets of English recordings are 

selected from the CMU_ARCTIC_BDL (BDL) and the 

CMU_ARCTIC_SLT (SLT) corpora that were recorded by a male 

target speaker and a female target speaker, respectively. Thus, we 

have two speaker pairs in our experiments ― MAN-BDL and 

MAN-SLT. Table 1 shows the numbers of utterances we used for 

training. 

Table 1. The numbers of utterances used for training. 

              Speaker 

Language 

Reference 

(Female) 

Target 

(Male) 

Target 

(Female) 

Mandarin 1000 N/A N/A 

English N/A 1000 1000 

All speech signals are sampled at 16 kHz, windowed with a 

25-ms Hamming window, shifted every 5ms. We extract the 24th-

order MCEPs plus log-energy and log-F0 together with their delta 

and delta-delta that are modeled by multi-stream HMMs. Each 

phone HMM has a five-state, left-to-right topology with single 

Gaussian, diagonal covariance distributions. 

For our spectral space warping approach, after equalizing the 

numbers of unvoiced and voiced leaf nodes between the two 

language-specific DTSpectrum, there are 327 unvoiced and 882 

voiced leaf nodes for MAN-BDL speaker pair, 278 unvoiced and 

900 voiced leaf nodes for MAN-SLT speaker pair. The average 

KLDs we obtain for the optimal one-to-one mapping between each 

speaker pair are 37.87 and 37.94, respectively.  



For the baseline approach, we use the estimated warping 

factors −0.31 and 0.42 to warp the reference speaker’s Mandarin 

speech for each speaker pair, respectively. Then, for MAN-BDL 

speaker pair, we have 383 unvoiced and 1129 voiced leaf nodes for 

the warped Mandarin DTSpectrum, 327 unvoiced and 882 voiced leaf 

nodes for the English DTSpectrum. For MAN-SLT speaker pair, we 

have 363 unvoiced and 1269 voiced leaf nodes for the warped 

Mandarin DTSpectrum, 278 unvoiced and 900 voiced leaf nodes for 

the English DTSpectrum. The average KLDs obtained for the nearest 

tied-state mapping between each speaker pair are 21.51 and 24.93, 

respectively. 

In the synthesis stage, speech parameters including MCEPs 

and log-F0 are obtained by the maximum likelihood parameter 

generation algorithm [12], and later used for waveform generation 

through the MLSA filter. 

 

4.2. Subjective evaluation 

 

Subjective evaluations of the synthesized Mandarin speech are 

conducted to determine mean opinion scores (MOS) for speech 

quality and speaker similarity. For each speaker pair, 15 Mandarin 

utterances are synthesized by the proposed spectral space warping 

approach and the baseline approach, respectively. Six experienced 

listeners are asked to rate speech quality of each synthesized 

utterance on a 5-point scale (1:bad, 2:poor, 3:fair, 4:good, 

5:excellent). The same five-point scale is applied to the speaker 

similarity test where each of the same six subjects is asked to 

measure how similar the voice of the synthesized speech is to the 

target speaker's voice. The results of the evaluations are shown in 

Table 2. 

Table 2. Speech Quality and Speaker Similarity scores with 

the 95% confidence interval (CI) of Mandarin utterances 

synthesized by our proposed spectral space warping approach 

and the baseline nearest tied-state mapping approach. 

Speaker Pair Approach 

Speech 

Quality 

(95% CI) 

Speaker 

Similarity 

(95% CI) 

MAN-BDL 

Spectral Space 

Warping 

3.28 

(±0.20) 

3.16  

(±0.21) 

Nearest Tied-State 

Mapping 

2.74 

(±0.19) 

2.22 

(±0.19) 

MAN-SLT 

Spectral Space 

Warping 

3.36 

(±0.13) 

2.83 

(±0.20) 

Nearest Tied-State 

Mapping 

1.97 

(±0.17) 

2.13 

(±0.15) 

The results of the subjective evaluations show that our 

proposed spectral space warping approach significantly 

outperforms the baseline approach in both speech quality and 

speaker similarity. A possible reason that our proposed approach 

achieves better speech quality is that in the baseline approach, the 

leaf nodes are assumed independent of one another during the 

mapping process, but our proposed approach uses the Hungarian 

algorithm (See Section 2.1.2) to warp all the (unvoiced/voiced) leaf 

nodes as a whole towards another set of leaf nodes, which implies 

that no independence assumption is used. Therefore, to a certain 

extent, the proposed approach can probably guarantee the 

continuity of the tied-state trajectory in the warped spectral space 

during the generation of speech parameters, which makes the 

generated speech sound smoother. However, the gap between the 

two speaker similarity scores for each speaker pair is not expected 

to be this wide since despite their different tied-states mapping 

schemes, both approaches use the spectral tied-states trained from 

the target speaker’s English recordings to generate Mandarin 

speech. Such a wide gap is possibly due to the fact that no 

monolingual English target speaker’s Mandarin recordings can be 

provided for comparison and it is difficult to compare across 

languages. Thus the subjects’ rating on speaker similarity may tend 

to be greatly affected by speech quality. 

 

5. CONCLUSIONS 

 

In this paper, we propose a spectral space warping approach to 

cross-lingual voice transformation in HMM-based TTS. This 

proposed approach only requires monolingual corpora in two 

different languages from two speakers, and can directly warp the 

spectral space of the reference speaker towards the spectral space 

of the target speaker. No intermediate speaker adaptation process is 

required. Subjective evaluations with MOS show that our proposed 

spectral space warping approach significantly outperforms the 

nearest tied-state mapping baseline approach in both speech quality 

(more than 0.5 absolute improvement on a 5-point scale) and 

speaker similarity (more than 0.7 absolute improvement on a 5-

point scale).  
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