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Abstract—This paper investigates the use of multidistribution
deep neural networks (DNNs) for mispronunciation detection
and diagnosis (MDD), to circumvent the difficulties encountered
in an existing approach based on extended recognition networks
(ERNs). The ERNs leverage existing automatic speech recognition
technology by constraining the search space via including the
likely phonetic error patterns of the target words in addition to the
canonical transcriptions. MDDs are achieved by comparing the
recognized transcriptions with the canonical ones. Although this
approach performs reasonably well, it has the following issues: 1)
Learning the error patterns of the target words to generate the
ERNs remains a challenging task. Phones or phone errors missing
from the ERNs cannot be recognized even if we have well-trained
acoustic models; and 2) acoustic models and phonological rules
are trained independently, and hence, contextual information is
lost. To address these issues, we propose an acoustic-graphemic-
phonemic model (AGPM) using a multidistribution DNN, whose
input features include acoustic features, as well as correspond-
ing graphemes and canonical transcriptions (encoded as binary
vectors). The AGPM can implicitly model both grapheme-to-likely-
pronunciation and phoneme-to-likely-pronunciation conversions,
which are integrated into acoustic modeling. With the AGPM, we
develop a unified MDD framework, which works much like free-
phone recognition. Experiments show that our method achieves a
phone error rate (PER) of 11.1%. The false rejection rate (FRR),
false acceptance rate (FAR), and diagnostic error rate (DER) for
MDD are 4.6%, 30.5%, and 13.5%, respectively. It outperforms the
ERN approach using DNNs as acoustic models, whose PER, FRR,
FAR, and DER are 16.8%, 11.0%, 43.6%, and 32.3%, respectively.

Index Terms—Deep neural networks, L2 English speech,
mispronunciation detection, mispronunciation diagnosis, speech
recognition.

I. INTRODUCTION

COMPUTER-AIDED pronunciation training (CAPT)
technologies enable self-directed language learning with

round-the-clock accessibility and individualized feedback.
They can supplement the teachers’ instructions and help meet
the demand of a growing population of learners in face of a
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shortage of qualified teachers. CAPT technologies focus on
mispronunciation detection and diagnosis (MDD)—the former
decides whether the learner’s articulation is correct or incorrect,
while the latter identifies the specific error(s) to generate cor-
rective feedback and facilitate learning. In some sense, MDD
are more challenging than direct automatic speech recognition
(ASR), which aims to transcribe speech input regardless of the
pronunciation accuracy. The performance of ASR also needs
marked improvements in order to adequately support MDD in
CAPT. This is because the acoustic models need to discriminate
the canonical phonetic pronunciations from the non-native
deviants, some of which may be subtle differences.

MDD can be implemented at segmental and supra-segmental
levels [1]. The segmental level involves phones and words; while
the suprasegmental level includes lexical stress [2]–[8], pitch
accent [3], [5], [8]–[11] intonation [12], [13], rhythm, etc. In
this work, we only consider the segmental level (phone).

Previous studies that examine the speech uttered by second-
language (L2) learners stated three kinds of causes produc-
ing phone-level mispronunciations [14], [15]: (1) Language
transfer—learners tend to replace a phone in the target lan-
guage that is absent from their mother tongue with another
phone that is present. For example, “north” /n ao r th/ is usu-
ally realized as /n ao f/ by native Cantonese speakers learning
English. (2) Incorrect letter-to-sound conversion—for unfamil-
iar words, L2 learners may pronounce these by guessing. For
example, “hypnotic” /hh ih p n ao t ih k/ mispronounced as
/hh ay p n ao t ih k/. (3) Misreading the text prompts, e.g.,
“when” misread as “then”.

Language transfer effects contribute to mispronunciations in
non-native productions [16], and many studies (e.g., [17]–[21])
focus on this type of phonetic error. In this work, we will try to
handle all the three kinds of errors above in a unified approach.

II. PREVIOUS WORK TO ACHIEVE PHONE-LEVEL MDD

CAPT systems leverage the advancements in speech and
language technologies to achieve automatic mispronunciation
detection and diagnoses—the two processes that are most
conducive to learning. Previous work have predominantly fo-
cused on mispronunciation detection, which is the task that pre-
cedes diagnoses. Related studies covers a diversity of primary
(L1) and secondary (L2) languages. Specific efforts that support
Chinese learners of English include [22]–[29]. Previous work
to achieve MDD can be grouped into several categories:
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Fig. 1. Illustration of the ERN for the word “north” [20]. The canonical path
(the topmost one) is highlighted in bold blue.

A. Approaches Based on Pronunciation Scoring

Different types of confidence measures have been used as
pronunciation scores, e.g., phone durations [30]–[32], loudness
[25], likelihoods [30], [31], [33], [34], likelihood ratios [35]–
[37], phone posterior probabilities [31], [32], [34] and their
combinations [31], [32]. Based on the likelihoods, Witt and
Young [18] proposed the well-known Goodness of Pronuncia-
tion (GOP). The scores can be obtained from the acoustic models
trained on native-like productions or an additional set of acous-
tic models trained on incorrect non-native productions [32].
Mispronunciation detection is achieved by thresholding pronun-
ciation scores, often with phone-dependent thresholds. Recent
efforts use multiple log-likelihood ratios (LLRs) for each tar-
get phone, where the ratios correspond to multiple acoustically
similar phones (i.e., variants) found in mispronunciations. For
example, van Doremalen et al. [38] extended GOP to weighted
GOP that combines multiple LLRs by logistic regression.

Lee and Glass [27] developed a comparison-based frame-
work to detect the word-level mispronunciations. Dynamic
time warping is run between the student’s utterance and the
teacher’s utterance and the alignment is based on the similar-
ity of Mel-frequency cepstral coefficients (MFCCs), Gaussian
posteriorgrams or DNN posteriorgrams [28]. A pronunciation
scoring method [39] is also proposed using this approach. This
method works well on detecting mispronunciations when refer-
ence speech is given. However, it does not diagnose the detected
mispronunciations.

The challenge is that the discriminating correct, native-like
productions from incorrect, non-native ones based on solely
phone-level scoring algorithms can be difficult. Longer seg-
ments of speech serves better for human judgment and can
offer a good indication to overall proficiency, while with shorter
phone segments even human judgment can be less consistent
[40], let along automatic scoring.

B. Approaches Based on Forced Alignment Using Extended
Recognition Networks (ERNs)

Ronen et al. [41] first built the mispronunciation networks
that include two sets of phone-based acoustic models and allow
transitions between them. One set is trained on native speech
and the other on non-native. After forced alignment, the path
with the highest probability can be identified. If this path in-
cludes non-native models, then the corresponding segments are
regarded as mispronunciations. Subsequent to this work, ERNs
were proposed to cover not only the canonical transcriptions
but some likely error patterns as well [17]–[21], [42], [43]. An
example from Harrison et al. [20] is shown in Fig. 1.

To build ERNs, one efficient way is to make use of context-
dependent phonological rules, which can be hand-crafted [14],
[19], [20] or derived with data-driven approaches [16]. The
phonological rules perform context-dependent transductions
from canonical phonetic transcriptions. In addition, Qian et al.
[15], [44] proposed to use a joint-sequence multi-gram model
(JSM) [45] to generate the possible error patterns caused by in-
correct letter-to-sound conversion. The JSM is trained on pairs
of grapheme of target words and the corresponding annotated
phone sequences of learners’ speech. The former way is a kind
of phoneme-to-likely-pronunciation (P2LP) conversion; while
the latter is grapheme-to-likely-pronunciation (G2LP) conver-
sion. Experiments in [44] shows that the G2LP JSM may cover
more mispronunciation variants and achieve better recognition
performance than the data-driven P2LP phonological rules. The
diagram of the approach using ERNs generated by P2LP phono-
logical models is shown in Fig. 2(a).

This ERN approach enables mispronunciation diagnosis in
addition to mispronunciation detection during recognition (see
Fig. 3). However, they have the following shortcomings: (a) It is
difficult to guarantee a high coverage of possible mispronuncia-
tion, due to unanticipated candidates in manual rule authoring or
unseen observations in data-driven approaches. Phones missing
from ERNs cannot be recognized even if we have well-trained
acoustic models. (b) There is a trade-off between coverage and
precision. Performance would decrease greatly if too many pos-
sible mispronunciations are included. Free-phone recognition
is the extreme condition where all possible alternative phones
are considered (and hence all possible mispronunciations are
covered). (c) ERNs are usually generated by the P2LP phono-
logical rules or the G2LP JSM, whereas acoustic models are
trained independently of the phonological context. Hence, valu-
able information may be lost.

C. Approaches Based on Acoustic Representations and
Models

There has also been work that explores alternatives to stan-
dard acoustic representations (e.g., MFCCs) or acoustic models
(e.g., hidden Markov models). Truong et al. [46] selected a
small set of discriminative features and developed a specific
linear discriminant analysis (LDA) classifier for detecting each
pronunciation error of several Dutch phones. Tepperman and
Narayanan [47] investigated articulatory features with reference
to a phone-to-articulator mapping [48]. Richardson et al. [49]
adopted hidden-articulator Markov models to generate scores
and feature vectors. Recent work use posteriorgrams to repre-
sent the L2 English acoustic-phonetic space. Posteriorgrams are
vectors of class-based posterior probabilities previously used
in unsupervised keyword detection [50], [51] and can cap-
ture acoustic-phonetic characteristics in a discriminative and
robust manner [52]. Posteriorgrams used for mispronunciation
detection include those generated by Gaussian mixture mod-
els (GMMs) [27], deep neural networks (DNNs) [28] and also
multi-layer perceptrons [42].

In addition, deep learning techniques [53], [54] have recently
been shown to be highly effective in many pattern recognition
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Fig. 2. Diagrams of the ERN and APM/AGM/AGPM approaches. Canonical transcriptions are extracted from dictionaries according to the words prompted to L2
learners. Annotated phone sequences are only used in the training stage. The ERNs in (a) are generated by phoneme-to-likely-pronunciation (P2LP) phonological
models. Besides acoustic features, the APM in (b) makes use of canonical transcriptions, whereas the AGM leverage graphemes. The input features of the AGPM
include acoustic, graphemic and phonemic features.

Fig. 3. A segment of L2 English speech with aligned canonical phonemic
sequence and recognized phone sequence. By further aligning the two se-
quences, the mispronunciations produced by the L2 speaker can be detected and
diagnosed, i.e., /l/ and /ow/ are mispronounced as /r/ and /ao/ respectively. These
mispronunciations are marked in bold red.

tasks. In the field of ASR, DNNs are used to replace GMMs as
part of acoustic models and achieved significant performance
improvements [55]–[57]. Many derivatives of DNNs, such as
deep convolutional neural networks [58], [59] and deep re-
current neural networks [60], also achieved impressive perfor-
mance improvements. Their phone recognition error rates over
the TIMIT corpus are below 20% [55], [59]–[61]. Qian et al.
[62] first applied deep learning techniques to mispronunciation
detection and diagnosis. DNNs are used to replace GMMs to
model the phone-state posteriors in Hidden Markov Models.
Hu et al. [63] refined acoustic models by DNN training with
native American English speech for pronunciation assessment
based on GOP scores. This is followed by the use of a neural
network-based logistic regression classifier to achieve improved
mispronunciation detection [64], [65]. As mentioned above, Lee
et al. [28] also used a DNN to improve posteriorgrams in mispro-
nunciation detection. Most existing approaches simply adopted
DNNs to replace GMMs as part of acoustic models. However,
there is a need for significant performance improvement for
mispronunciation detection and diagnosis.

III. INTRODUCTION TO MULTI-DISTRIBUTION DNNS

(MD-DNNS)

In real applications, input features may have different kinds
of distributions, e.g., some features maybe binary and the others

maybe Gaussian. To incorporate these features, Kang et al. [66],
[67] proposed an MD-DNN for speech synthesis, which was
also applied to lexical stress detection [7]. Similar to traditional
DNNs, they are also constructed by stacking up multiple
Restricted Boltzmann Machines (RBMs) from bottom up. This
involves running a layer-by-layer unsupervised pre-training
algorithm [53], [54], followed by fine-tuning the pre-trained net-
work using the back-propagation algorithm [68]. Excluding the
bottom RBM, all the other ones are traditional Bernoulli RBM,
whose hidden and visible units are all binary. The bottom RBM
is a type of mixed Gaussian-Bernoulli RBM, whose hidden
units are binary while visible units maybe Gaussian or binary.

A. Bernoulli RBM (B-RBM)

The energy of the joint configuration of visible and hidden
vectors (v, h) is given as:

E(v,h;Θ) = −hTWv − aTh − bTv (1)

where Θ = (W, a, b) is the set of parameters of an RBM and
Θ will be omitted for clarity hereafter. W is the matrix of
visible/hidden connection weights, a is the hidden unit bias and
b is the visible unit bias.

The probability is given in terms of the energy:

p(v,h) =
e−E (v , h)

∑
ṽ

∑
h̃ e−E (ṽ , h̃)

(2)

Since there is no connection within a layer and the units are
all binary, we obtain [57]:

p(hj =1 |v) = σ

(∑

i

wij vi + aj

)

(3a)

p(vi =1 |h) = σ

(∑

j

wijhj + bi

)

(3b)

where σ(x) = (1 + e−x)−1 .
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B. Mixed Gaussian-Bernoulli RBM (GB-RBM)

The energy of the joint configuration of the visible and hidden
vectors is given as [66]:

E(vg ,vb ,h) = −hTWgvg +
1
2
(vg − μ)T(vg − μ)

− hTWbvb − bTvb − aTh (4)

where vb , vg are the Bernoulli units and linear units with Gaus-
sian noise in the visible layer, Wb and Wg are the respective
weight matrices, μ is the mean of vg , a and b are the bias terms
of h and vb .

The following conditional probabilities can be derived for
pre-training and fine-tuning a GB-RBM [66]:

p(hj |vg ,vb) = σ

(∑

i

wg
ij v

g
i +

∑

i

wb
ij v

b
i + aj

)

(5a)

p(vb
i =1 |h) = σ

( ∑

j

wb
ij hj + bi

)

(5b)

p(vg
i |h) = N

(

μi +
∑

j

wijhj , 1
)

(5c)

where N (μi +
∑

j wijhj , 1) denotes a Gaussian with mean
(μi +

∑
j wijhj ) and variance 1.

Comparing the conditional probabilities of GB-RBM given in
(5a)–(5c) with those of B-RBM given in (3a) & (3b), we observe
that the main difference lies in (5c). If there are only binary units
in the visible layer of GB-RBM, (5a) & (5b) are equivalent to
(3a) & (3b), i.e., B-RBM is a special type of GB-RBM. Another
type of RBM, whose hidden units are binary while visible units
are all linear units with Gaussian noise, is also a special type of
GB-RBM and widely used in ASR [55]–[57].

IV. MOTIVATION AND OVERALL APPROACH

As introduced in Section II-B, previous work [17]–[20]
trained acoustic models independently of P2LP phonological
models (see Fig. 2(a)), and hence contextual information is lost.
In order to integrate these two types of models, we first propose
the Acoustic-Phonemic Model (APM)1, as shown in Fig. 2(b). In
CAPT systems, the prompts for L2 learners to utter are usually
carefully designed and thus the canonical transcriptions can be
known in advance. To incorporate acoustic features (assumed to
have Gaussian distribution) and corresponding canonical tran-
scriptions (encoded as binary vectors), an MD-DNN is adopted
to infer the pronunciations of L2 learners as accurately as pos-
sible. We believe that this MD-DNN can implicitly learn the
phonological transductions from the canonical and annotated
phone sequences, and the transductions can augment the acous-
tic features.

Similar to the APM which assumes that mispronunciations
are realized as phonetic transductions, we propose an Acoustic-
Graphemic Model (AGM) which implicitly models the

1The APM was published in our conference paper [69] and will be reintro-
duced here with slight modification, as well as with more detailed and updated
analysis.

pronunciations from the surface forms of the target words—
called graphemes. The AGM is also an MD-DNN that makes use
of acoustic and graphemic features. The APM and AGM can be
further combined into an Acoustic-Graphemic-Phonemic Model
(AGPM) whose input features include acoustic, graphemic
and phonemic features. We conjecture that graphemes and
phonemes may complement each other, so that performance
maybe improved further.

In this paper, we develop a unified mispronunciation detection
and diagnosis framework which works much like free-phone
recognition. The only difference between them is that the our
approach makes use of prompted texts while the traditional free-
phone recognition does not. Using the prompts, we propose the
APM/AGM/AGPM to take the place of conventional acoustic
models. When the recognized phones differ from the canonical
transcriptions (obtained from the text prompts presented to the
speaker), mispronunciation detection and diagnosis are achieved
by aligning the two, as illustrated in Fig. 3.

For the sake of clarity and comparison, we first realize tra-
ditional free-phone recognition. A monophone acoustic model
and a phone-state transition model are built, both of which are
DNNs. Then the APM incorporating acoustic and phonemic
features is built. The APM is further extended to the AGPM
which integrates graphemic features in addition to acoustic and
phonemic features. The structure of our paper is designed as
follows: Section V describes the free-phone recognition for L2
English speech; Section VI introduces our approach using the
APM; Section VII describes the AGPM; Sections VIII and IX
presents the experimental setups and results respectively. Fi-
nally, conclusions are given in Section XI.

V. FREE-PHONE RECOGNITION FOR L2 ENGLISH

SPEECH (BASELINE)

To realize free-phone recognition for L2 English, a State-level
Acoustic Model (S-AM) and a State Transition Model (STM)
are built [70], both of which use DNNs.

A. State-level Acoustic Model (S-AM)

The speech is sampled at 16 kHz. To compensate for the high-
frequency part of speech signal, a pre-emphasis filter is applied
to the speech, whose transfer function is 1 − 0.97z−1 . Then Fast
Fourier Transform is performed in a 25-ms Hamming window
with a 10-ms frame shift. Finally, a set of 13 MFCC features
are computed per 25-ms frame. Cepstral mean normalization is
done for each utterance and the features are further scaled to
have zero mean and unit variance over the whole corpus.

The diagram of our acoustic model is shown in Fig. 4(a). In
our experiments, we use 21 frames (1 current, 10 before and 10
after) of MFCCs as the input features xt , thus there are 273 linear
units with Gaussian noise in the bottom of the DNN. For the top
layer, there are 90 units generating the posterior probabilities
p(st |xt), where st denotes the 90-phone-state vector of the
tth frame. Between the bottom and top layers, there are four
hidden layers and each has 512 units. Note that the number
of hidden layers and the size of each layer are determined by
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Fig. 4. Diagrams illustrating the proposed State-level Acoustic Model (S-AM)
and State Transition Model (STM).

experiments with different configurations, which are similar to
those described in Section IX-C.

To obtain the 90 phone states, we first divide each annotated
phone equally into three parts to train the S-AM. Based on the
48-phone set following [71] and 3 states per phone, there are a
total of 144 phone states in the output layer of the DNN. With
this trained S-AM, we perform forced alignment over the entire
corpus based on the annotated phone sequences and merge the
state with the lowest occurrence into their neighboring states of
the same phones. With the new phonetic boundaries, we re-train
the S-AM. These two steps are repeated until the occurrence
rate of each phone state is above a typical threshold of 0.5%.
Finally, we have a set of 90 phone-states in this work.

B. State Transition Model (STM)

To generate the probabilities of phone-state transition, we
build a 7-gram STM, whose diagram is shown in Fig. 4(b).
Since the elements of the 90-phone-state set can be represented
by 7 bits, we use 42 binary input units to indicate the previous 6
phone states (st−6 , · · · , st−1). Above the bottom layer, there are
four hidden layers and each has 256 units. This configuration is
also determined by experimentation. For the top softmax output
layer, there are 90 units generating the phone-state transition
probabilities p(st | st−6 , · · · , st−1).

C. Phone Recognition

We determine the phone-state sequence with the highest pos-
terior probability using Viterbi decoding and treat it as the rec-
ognized phone-state sequence, as given in (6):

ŝ = arg max
s

p(s |x) (6)

where x is the sequence of acoustic feature vectors and s denotes
a possible phone-state sequence.

The posterior probability of s given x is:

p(s |x) = p(s1 |x) p(s2 |s1 ,x) · · · p(st |s1 , · · · , st−1 ,x) · · ·
≈ p(s1 |x1)p(s2 |s1 , x2) · · · p(st |st−6 , · · · , st−1 , xt) · · ·

(7)

Fig. 5. An example of L2 English speech aligned with canonical phonemic
sequence qDict . The annotated phone sequence qAnn is also given.

where xt and st are the acoustic feature vector and phone state
at the tth frame, respectively. Note that we use a 7-gram STM
and xt has a contextual window of (10 + 1 + 10) frames.

Applying Bayes’ Theorem, we have:

p(st |st−6 , · · · , st−1 , xt)=
p(st) p(st−6 , · · · , st−1 , xt |st)

p(st−6 , · · · , st−1 , xt)

≈ p(st)p(st−6 , · · · , st−1 |st)p(xt |st)
p(st−6 , · · · , st−1)p(xt)

= p(st |st−6 , · · · , st−1)
p(st |xt)
p(st)

(8)

From (7) and (8), we have:

p(s |x) ≈ p(s1 |x1) p(s2 |s1)
p(s2 |x2)
p(s2)

· · ·

p(st |st−6 , · · · , st−1)
p(st |xt)
p(st)

· · · (9)

where p(st |xt) is the phone-state posterior probability from
the S-AM, p(st |st−6 , · · · , st−1) is the phone-state transition
probability from the STM and p(st) is the phone-state prior
probability estimated from training data.

VI. ACOUSTIC-PHONEMIC MODEL (APM)

In this section, we describe the APM which uses an MD-DNN
to incorporate acoustic and phonemic features. We first align the
learners’ speech with the canonical phone sequences, and then
use the APM to calculate the phone-state posterior probabilities.
Finally we introduce the Viterbi decoding for the APM, which
is similar to the one for free-phone recognition introduced in
Section V-C.

A. Forced Alignment of Canonical Phonemic Transcriptions

In order to get each frame’s corresponding expected phone
and the contextual phones, we use the S-AM described in last
section to align the speech with the canonical phonemic se-
quence qDict , which is derived from dictionaries according to
the words prompted to readers. Fig. 5 presents an example of
aligning qDict with L2 English speech uttered by a native Can-
tonese learner, who followed the prompt from the CAPT system
to produce the words “the north”.
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Fig. 6. Diagram illustrating the proposed Acoustic-Phonemic Model (APM).

Note that the phone-level transcriptions from the annotator
are /sil d ax l ao f sil/. That is to say, there are several
mispronunciations produced by the L2 learner, e.g., /dh/, /n/
and /th/ are mispronounced as /d/, /l/ and /f/, respectively.
In addition, the learner failed to pronounce the /r/, which is
acceptable in British English but treated as a mispronunciation
in this work.

B. Implementation of APM Using MD-DNN

Similar to the S-AM, we use 273 MFCC features. From the
forced alignment of canonical transcriptions, we obtain each
frame’s expected canonical phone. In this work, we use 7 canon-
ical phones (3 before, 1 current and 3 after) around the current
frame. For the example in Fig. 5, the 7 canonical phones (qDict

t )
of the frame t = 0.90 s are /dh ax sil n ao r th/, respectively.
Note that we adopt the 48-phone set following [71] and each
phone is encoded with 6 bits.

The diagram of our APM is shown in Fig. 6, which is an
MD-DNN [7], [66]. In the bottom of the DNN, there are 273
linear units with Gaussian noise for the acoustic features xt and
42 binary units for the canonical phone pronunciation qDict

t . The
other layers are similar to those in Fig. 4(a).

Given each frame’s canonical phone pronunciation qDict
t and

annotated phone state st , the APM can implicitly learn the
phonological transductions in the training stage. Taking Fig. 5
as an example, the APM may implicitly learn the transductions
given in (10), if there are sufficient similar samples from training
data.

/dh V/ → /d V/ (10a)

/n V/ → /l V/ (10b)

/V r/ → /V φ/ (10c)

/th/ → /f/ (10d)

where V denotes a vowel and “φ” a deletion. With these learned
phonological transductions, it will be much easier to predict the
phone state st from the acoustic features xt and the expected
canonical phone pronunciation qDict

t .

C. Phone Recognition

Using the APM, the objective function in Viterbi decoding is
changed from (6) to (11):

ŝ = arg max
s

p(s |x, qDict) (11)

where qDict is the canonical phonemic sequence.
Similar to (9), we have:

p(s |x, qDict) ≈ p(s1 |x1 , q
Dict
1 )p(s2 |s1)

p(s2 |x2 , q
Dict
2 )

p(s2)
· · ·

p(st |st−6 , · · · , st−1)
p(st |xt, q

Dict
t )

p(st)
· · · (12)

where qDict
t is the corresponding canonical transcription with a

contextual window of (3 + 1 + 3) phonemes at the tth frame,
and p(st |xt, q

Dict
t ) is the phone-state posterior probability com-

puted from the APM.

VII. ACOUSTIC-GRAPHEMIC-PHONEMIC MODEL (AGPM)

The S-AM recognizes the speech produced by L2 learners and
only relies on acoustic features. The APM implicitly models the
P2LP conversion and recognizes the speech from not only acous-
tic features but also corresponding canonical transcriptions. In
this section, we will propose an Acoustic-Graphemic-Phonemic
Model (AGPM) which aims to implicitly model both P2LP and
G2LP conversions.

We will start by discussing the relationship between
phonemes and graphemes in English words, then propose a
Grapheme-level Acoustic Model (G-AM) which is used to align
the speech with the graphemes of the prompted words. Mak-
ing use of the aligned graphemes, we develop an Acoustic-
Graphemic Model (AGM), which will be further extended to
the AGPM.

A. Correlation Between Phonemes and Graphemes

Except for some loanwords, the phonemes and graphemes in a
word have high correspondences with one another. Hence, both
grapheme-to-phoneme (G2P) and phoneme-to-grapheme (P2G)
conversions are somewhat regular. Automatic G2P (or letter-to-
sound) conversion is usually developed to generate appropriate
pronunciations of out-of-vocabulary (OOV) words for speech
synthesis and recognition. G2P conversion can be achieved by
rules [72], data-driven techniques [45], [73]–[77] or their com-
bination [78]. In particular, G2P conversion can also be achieved
by neural networks [79]–[82].

In contrast to G2P conversion which aims to generate proper
pronunciations, the grapheme-to-likely-pronunciation (G2LP)
conversion in MDD is designed to generate likely error patterns
uttered by L2 learners as well as canonical transcriptions. In
[15], [44], Qian et al. explicitly modeled the G2LP conversion
using the JSM (see Section II-B), whose results are used to build
the ERNs for MDD. In this section, we will propose the AGM
to implicitly model the G2LP conversion, which is integrated
into acoustic modeling for L2 English speech.
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Fig. 7. Diagrams illustrating the proposed Grapheme-level Acoustic Model (G-AM), Acoustic-Graphemic Model (AGM) and Acoustic-Graphemic-Phonemic
Model (AGPM).

B. Grapheme-Level Acoustic Model (G-AM)

The G-AM is used to align the speech uttered by L2 learners
with the graphemes of the prompted words, whose results will be
used in building the AGM and AGPM. The G-AM is illustrated
in Fig. 7(a). Similar to the S-AM (in Fig. 4(a)), there are also
four hidden layers and one bottom layer with 273 linear units
with Gaussian noise. The main difference lies in the output
layer which has 28 units generating the posterior probabilities
of the 28 graphemes, including the 26 letters in the English
alphabet and two units representing the word boundary and the
apostrophe respectively.

In order to train this G-AM, we need to know the time bound-
aries of graphemes, which is not provided for most corpora. To
obtain their boundaries, we may make use of the word bound-
aries, which are usually given, or can be derived from the phone
boundaries. We first divide the graphemes equally within their
words to train the G-AM. Then we run forced alignment and
re-train the G-AM for 3–5 iterations.

C. Acoustic-Graphemic Model (AGM)

Both APM and AGM aim to incorporate extra information
regarding the generation of likely pronunciations in acoustic
modeling. The APM implicitly models the P2LP conversion,
whereas the AGM handles the G2LP conversion. Fig. 7(b) il-
lustrates the diagram of our proposed AGM, which is similar
to that of the APM (see Fig. 6). Their main difference lies in
the fact that the AGM uses corresponding graphemes instead of
canonical phonemes as part of its input features. In this work,
we use 7 graphemes (3 before, 1 current, 3 after) around the
current frame and each grapheme is represented by 5 bits. Take
the example of the speech in Fig. 5, the 7 graphemes (gt) cor-
responding to the frame t = 0.90 s are /h e n o r t/, where
“_” stands for a word boundary. Its objective function is slightly
changed from (11) to (13):

ŝ = arg max
s

p(s |x, g) (13)

where g is the grapheme sequence extracted from the prompted
words, other symbols are the same as those in (6).

D. Implementation of AGPM Using MD-DNN

The APM and AGM only focus on modeling the P2LP and
G2LP conversions, respectively. In order to combine these two
models, we propose the AGPM whose diagram is shown in
Fig. 7(c). In the bottom layer, there are 273 linear units with
Gaussian noise for MFCC features (21 frames and each frame
is represented by 13 MFCCs) as well as 77 binary units standing
for 7 graphemes (each grapheme is described by 5 bits) and 7
canonical phonemes (each phoneme is encoded with 6 bits).
Above the bottom layer, there are four hidden layers and one
output layer, which are the same to the APM and AGM.

This AGPM makes use of acoustic features as well as corre-
sponding graphemes and canonical phonemes as its input fea-
tures. In this way, we attempt to implicitly model error patterns
due to phonological transduction or letter-to-sound conversion,
which is integrated into acoustic modeling. This approach also
works much like free-phone recognition by replacing the S-AM
with AGPM. Its objective function is further changed from (13)
to (14):

ŝ = arg max
s

p(s |x, g, qDict) (14)

Table I illustrates some examples of likely pronunciations,
some of which can be implicitly modeled by the APM and some
by the AGM. All of the pronunciations, including the correct
and incorrect ones, can be modeled by the AGPM.

For the words with regular pronunciations, their canonical
pronunciations can be easily predicted by their graphemes, e.g.,
“north” in Table I. These words’ likely pronunciations can be im-
plicitly modeled by the APM, AGM and AGPM. For the words
with irregular pronunciations (e.g., “quayside” and “thyme”),
some of their likely pronunciations are due to language transfer
and can be modeled by the APM; while some of their error
patterns are caused by letter-to-sound conversion and can be



200 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2017

TABLE I
EXAMPLES OF WORDS WITH LIKELY PRONUNCIATIONS MODELED BY APM,

AGM AND AGPM

word pronunciation APM AGM AGPM

north /n ao r th/ � � �
/n ao r f / � � �
/n ao s/ � � �
/l ao f / � � �

quayside /k iy s ay d/ � × �
/k ih s ay d/ � × �

/k w ay s ay d/ × � �
/k w oy s iy d/ × � �

thyme /t ay m/ � × �
/th ay m/ × � �
/f ay m/ × � �
/th iy m/ × � �
/f iy m/ × � �

Note: � denotes the pronunciation can be implicitly modeled by
the corresponding model, whereas × indicates it is difficult to be
modeled. The canonical pronunciations are highlighted in bold type.

TABLE II
DETAILS OF CORPORA USED IN OUR EXPERIMENTS

TIMIT CU-CHLOE

Train Train Develop Test

Speakers 630 147 21 42
Unlabeled — 67h — —
Labeled 4h 26h 4h 7.5h

modeled by the AGM. The AGPM, which incorporates the
APM and AGM, can implicitly model both P2LP and G2LP
conversions.

VIII. EXPERIMENTAL SETUPS

A. Experimental Data

Our experiments are based on the TIMIT [83]–[85] and CU-
CHLOE (Chinese University Chinese Learners of English) cor-
pora. The CU-CHLOE corpus contains 110 Mandarin speak-
ers (60 males and 50 females) and 100 Cantonese speakers
(50 males and 50 females). There are five parts in CU-CHLOE:
confusable words, minimal pairs, phonemic sentences, the Ae-
sop’s Fable “The North Wind and the Sun” and prompts from
TIMIT. Excluding the TIMIT prompts, all the other parts are
labeled by trained linguists, which account for about 30% of the
whole CHLOE data.

We randomly select data from 147 speakers as the training
set, data from another 21 speakers as the development set and
data from the remaining 42 speakers as the test set. The details
of the TIMIT and CU-CHLOE corpora are shown in Table II.
Note that the data of the TIMIT corpus are native English speech
and are also used as part of our training data.

To transcribe the L2 English speech of the CU-CHLOE cor-
pus, we first built acoustic models trained on the TIMIT corpus
to align the canonical transcriptions with the L2 English speech.
We have trained linguists who annotated the speech with ac-

TABLE III
INTER-ANNOTATOR AGREEMENT FOR PHONETIC TRANSCRIPTIONS

Ann-1 Ann-2 Ann-3

Ann-2 0.784 (0.825) – – – –
Ann-3 0.784 (0.813) 0.752 (0.785) – –
Ann-4 0.806 (0.834) 0.776 (0.794) 0.800 (0.809)

Note: the numbers in bold type and in parentheses indicate the kappa values
over the 48-phone set and 39-phone set [71], respectively.

tual pronunciations. To save labor, our linguists mainly focused
on labeling (modifying) the phone sequences. For the example
showed in Fig. 5, our linguists only revised the phone sequence
from /sil dh ax sil n ao r th sil/ to /sil d ax sil l ao f sil/.
Thus the phone boundaries are not changed. Thereafter, these
annotated phone sequences are re-aligned using the S-AM de-
scribed in Section V. We perform forced alignment and train the
S-AM iteratively until the S-AM’s performance improvements
level off, which is assessed via running phonetic recognition on
the development set of the CU-CHLOE corpus.

B. Reliability of Manual Annotations

To evaluate the quality of manual annotations, a pilot data
set is developed before the CU-CHLOE corpus is collected.
This pilot set includes only 108 utterances from 18 Cantonese
speakers, none of which is present in the CU-CHLOE corpus
described in Table II. Each speaker uttered the same six prompts
from the Aesop’s Fable “The North Wind and the Sun”. Four
annotators transcribed this pilot set independently after they are
very familiar with the labeling work in CU-CHLOE corpus.

To measure the inter-annotator agreement, the Cohen’s
Kappa [86]–[89] is employed in this work, given by the fol-
lowing equation:

κ =
po − pe

1 − pe
(15)

where po is the observed value of agreement among annotators,
and pe is the expected value of agreement by chance. Table III
shows that the kappa values for the phonetic transcriptions range
from 0.75 to 0.81. A kappa value above 0.75 usually indicates
very good reliability [88], [90].

C. DNN Training

The DNN training in this work is similar to those in [7], [62],
[69]. In the pre-training stage, all the data (including labeled
and unlabeled data) are used to maximize the log-likelihood of
RBMs. The one-step Contrastive Divergence [53] is adopted to
approximate the stochastic gradient. Ten epochs are performed
with a batch size of 512 frames. In the fine-tuning stage, the
standard back-propagation algorithm [68] is performed on the
labeled data. A dropout [59], [91]–[93] rate of 10% is used in
this work. To speed up the BP training process, a technique of
asynchronous stochastic gradient descent (ASGD) [94] is used
for parallel computing.
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TABLE IV
PERFORMANCE OF PHONE RECOGNITION WITH DIFFERENT APPROACHES

Develop Test

Correct Acc. Correct Acc.

ERN (GMMs) [16] — — 79.00% —
S-AM 80.98% 74.65% 81.15% 74.37%
ERN (S-AM) 86.62% 82.74% 87.02% 83.17%
APM 90.64% 87.68% 90.86% 87.96%
AGM 91.01% 88.67% 91.14% 88.74%
AGPM 91.66% 88.70% 91.87% 88.92%
ERN (AGPM) 91.36% 88.13% 91.47% 88.23%

Note: All the above DNNs have four hidden layers of 512 units each.
The starting and ending silences are not counted in our experiments.

IX. EXPERIMENTAL RESULTS

A. Performance of Phone Recognition

The experimental results of phone recognition are shown in
Table IV. The correctness and accuracy are calculated following
[95], as shown in (16a) and (16b):

Correct. =
N − S − D

N
(16a)

Acc. =
N − S − D − I

N
(16b)

where N is the total number of labels; while S, D and I de-
note for the counts of substitution, deletion and insertion errors,
respectively.

The ERN approach in [16] achieved a correctness of about
79.0%, where GMMs were used as its acoustic models and the
phonological rules generating ERNs are data-driven. Replacing
the GMMs with S-AM, the correctness of the ERN approach is
greatly improved to 87.0%.

Our baseline system using the S-AM, which is a kind of
free-phone recognition, obtains a correctness of 81.2%. Its per-
formance is slightly better than the ERN approach using GMMs
as acoustic models, but much worse than the ERN approach
with S-AM.

Our APM approach outperforms the above three methods and
achieves significant performance improvements. Its correctness
and accuracy are 90.9% and 88.0%, respectively. The difference
between the S-AM and the APM is that the APM makes use
of canonical phone sequences. From canonical and annotated
phone sequences, the APM can implicitly learn the phonological
transductions, which complement the acoustic features. This
method also outperforms the ERN approach with DNNs (i.e., S-
AM) as acoustic models, whose P2LP phonological models are
trained explicitly and independently from the acoustic models
(see Fig. 2(a)).

The AGM implicitly models the G2LP conversion, which is
integrated into acoustic modeling. It obtains a correctness of
91.4% and an accuracy of 88.7%, which are slightly better than
those of the APM.

The AGPM integrating the APM and AGM achieves the best
performance, whose correctness and accuracy are 91.9% and

TABLE V
CONFUSION MATRIX OF MOST FREQUENTLY MISRECOGNIZED VOWELS

Annotation

aa ah ae eh ih iy

S-AM aa 4612 584 91 2 5 0
ah 299 4280 208 104 476 33
ae 68 258 1776 476 58 4
eh 10 84 288 817 84 10
ih 0 129 25 60 2637 382
iy 0 29 7 19 613 1772

AGPM aa 4929 262 64 5 1 0
ah 176 5113 73 21 194 54
ae 65 160 2304 98 3 0
eh 6 32 81 1324 31 5
ih 1 51 6 28 3870 166
iy 0 18 0 13 196 2160

TABLE VI
CONFUSION MATRIX OF MOST FREQUENTLY MISRECOGNIZED CONSONANTS

Annotation

d dh t sh s z

S-AM d 1790 308 199 0 1 14
dh 151 1142 59 1 11 68
t 317 138 7082 2 31 38

sh 0 1 12 814 89 2
s 4 75 71 84 4336 542
z 2 66 31 4 195 622

AGPM d 2332 28 86 0 2 4
dh 204 1917 4 0 2 16
t 93 9 7725 0 17 7

sh 0 0 1 850 34 0
s 0 7 35 59 4622 65
z 1 2 5 2 113 1303

88.9% respectively. It shows that phonemes and graphemes
complement each other.

Applying ERNs to the AGPM, i.e., explicitly constraining the
search space in Viterbi decoding, can not gain further improve-
ment. This is due to the disadvantages of the ERN approach, as
discussed in Section II-B.

Tables V and VI show the confusion matrices of phones most
frequently misrecognized by the S-AM and AGPM. They illus-
trate that the following confusable pairs are greatly improved
by the AGPM: (ae, eh), (ih, iy), (d, dh), (s, z).

B. Performance of MDD

As introduced in Section IV , when the recognized phones
differ from the canonical transcriptions, mispronunciation de-
tection and diagnosis are achieved respectively. Thus the phone
accuracy is one of the most important metrics to evaluate the
performance of MDD. In this subsection, we also provide more
detailed experimental results of MDD for comparison.

1) Hierarchical Evaluation Structure for MDD: In order to
evaluate the performance of MDD, we follow the hierarchical
evaluation structure developed in [15] (see Fig. 8), which has
also been adopted in [43]. For mispronunciation detection, the
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Fig. 8. Hierarchical evaluation structure for mispronunciation detection and
diagnosis.

correct outcomes are true acceptance (TA) and true rejection
(TR), whereas the incorrect outcomes are false rejection (FR)
and false acceptance (FA). For mispronunciation diagnosis, we
focus on the cases of TR and consider those with diagnostic
errors (DE). We can then have the false rejection rate (FRR),
false acceptance rate (FAR), and diagnostic error rate (DER) as
shown in the following equations:

FRR =
FR

TA + FR
(17a)

FAR =
FA

FA + TR
(17b)

DER =
DE

CD + DE
(17c)

where TA is the number of phones annotated and recognized as
correct pronunciation, TR is the number of phones annotated as
mispronunciation and identified as incorrect by CAPT systems,
FR is the number of phones recognized as mispronunciations
when the actual pronunciations are correct, FA is the number of
phones misclassified as correct but are actually mispronounced,
CD is the number of phones correctly classified as mispronun-
ciations and correctly identified as those that are the same as
the annotated phones, and DE is the number of phones cor-
rectly identified as mispronunciations but incorrectly diagnosed
as those different from the annotated phones.

Table VII shows the results of MDD with different ap-
proaches. Note that the ERN approach in [16] worked with data-
driven P2LP phonological rules, while the one in [44] made use
of canonical transcriptions extracted from dictionaries as well
as possible error patterns generated by the G2LP JSM.

The FRR, FAR and DER for the ERN approach in [44] are
25.6%, 22.8% and 45.5%, respectively. The S-AM for free-
phone recognition works slightly better, and its FRR, FAR and
DER are 22.4%, 15.7% and 23.3%, respectively. Both the ERN
and S-AM approaches have large FRRs due to many insertion
and substitution errors. Combining the S-AM and the ERNs
generated by P2LP phonological models, the FRR is greatly
reduced to 11.0%, but the FAR and DER increase. These results
indicate that constraining the search space greatly reduces the
number of false rejection, and meanwhile the number of true
rejection and correct diagnosis are also greatly reduced.

The APM obtains an FRR of about 4.8%, which is much better
than the above approaches. The AGM has a similar performance,

TABLE VII
PERFORMANCE OF MISPRONUNCIATION DETECTION AND DIAGNOSIS WITH

DIFFERENT APPROACHES

FRR FAR DER

ERN (GMMs) [16] 15.03% 42.97% 62.00%
ERN (GMMs) [44] 25.63% 22.80% 45.45%
S-AM 22.44% 15.70% 23.33%

(16,651) (2,282) (2,858)
ERN (S-AM) 11.04% 43.59% 32.26%

(8,230) (5,747) (2,399)
APM 4.75% 36.61% 15.26%

(3,478) (5,592) (1,477)
AGM 5.25% 31.31% 14.65%

(3,838) (4,866) (1,564)
AGPM 4.57% 30.53% 13.49%

(3,345) (4,668) (1,433)
ERN (AGPM) 1.72% 62.81% 20.92%

(1,262) (8,484) (1,051)

Note: All the above DNNs have four hidden layers of 512 units each.

while the AGPM outperforms the APM and AGM slightly.
These are consistent with the results of phone recognition.

Note that the APM has a larger FAR than the S-AM (36.6%
vs. 15.7%). One of the reasons is that the APM makes use of
acoustic features as well as canonical transcriptions as its input
features, and about 84% of the phonemes are correctly pro-
nounced (about 73,000 correct pronunciations vs. about 15,000
mispronunciations, see Table VII). The APM is inclined to rec-
ognize a mispronunciation as the correct one (i.e., the input
canonical phoneme), provided that the acoustic features are not
clearly related to mispronunciation. Similarly, the AGM and
AGPM also have large FARs.

Both Tables IV and VII indicate that no further improvement
can be achieved by applying ERNs to the AGPM. Although it
has a very small value of FRR, its FAR and DER are large.

The metrics of FRR, FAR and DER are widely used in mis-
pronunciation detection and diagnosis, especially the FRR and
FAR in mispronunciation detection. However, they still have
some problems for evaluation due to the trade-off among them.
It is generally accepted that the FRR should be kept as low as
possible, since it is usually more unacceptable to identify the
correct pronunciations as wrong than to regard the wrong ones
as right [96], [97].

2) Other Metrics for MDD: Besides using FRR, FAR and
DER to evaluate the performance of MDD, other metrics such
as precision, recall and F-measure are also widely used as the
performance measures for mispronunciation detection. These
metrics are defined as follows:

Precision =
TR

TR + FR
(18a)

Recall =
TR

TR + FA
= 1 – FAR (18b)

F-measure = 2
Precision * Recall
Precision + Recall

(18c)

where TR, FR, and FA are the same as those in (17a–17c).
In addition, the accuracies of mispronunciation detection and
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TABLE VIII
PERFORMANCE OF MISPRONUNCIATION DETECTION AND DIAGNOSIS

Mispronunciation Detection Diagnosis

Accuracy Precision Recall F-measure Accuracy

SVM [35] — 70.0% 44.3% 54.3% —
SVM [35] — 80.0% 29.5% 43.1% —
LR [65] — 69.2% 69.2% 69.2% —
S-AM 78.66% 42.39% 84.30% 56.41% 76.67%
ERN (S-AM) 84.07% 47.47% 56.41% 51.55% 67.74%
APM 89.75% 73.57% 63.39% 68.10% 84.74%
AGM 90.18% 73.55% 68.69% 71.04% 85.35%
AGPM 90.94% 76.05% 69.47% 72.61% 86.51%

Note: All the above DNNs have four hidden layers of 512 units each. In [65], precision is
set as the same as recall. The data used in [35], [65] are different from ours.

mispronunciation diagnosis are calculated as follows:

For detection: Accuracy =
TA + TR

TA + FR + FA + TR
(19a)

For diagnosis: Accuracy =
CD

CD + DE
= 1 – DER (19b)

Table VIII shows the results of MDD measured with the
above metrics. For mispronunciation detection, the AGPM can
correctly classify the pronunciation as correct or incorrect with
an accuracy of 90.9%. Its precision, recall and F-measure are
76.1%, 69.5% and 72.6%, respectively. For mispronunciation
diagnosis, its accuracy is 86.5%.

The results of mispronunciation detection in [35], [65] are
also given in Table VIII. Although these experimental data are
different from ours, it is still meaningful to list their results
here for comparison. In [35], a Support Vector Machine (SVM)
is used as the classifier for the mispronunciation detection of
13 most frequently mispronounced Mandarin phones. In [65],
a neural network based Logistic Regression (LR) classifier is
developed to detect the mispronunciation of phones in isolated
English words uttered by Chinese learners. In contrast with these
tasks that only focus on some most frequently mispronounced
phones and phones in isolated words, our work tries to detect all
kinds of mispronounced phones in continuous speech and thus
should be more difficult.

Moreover, our methods can diagnose the detected mispro-
nunciation, whereas those in [35], [65] can only provide mis-
pronunciation detection.

C. Performance of AGPM With Different Structures

Fig. 9 shows the performance of AGPM with different number
of nodes per hidden layer. It shows that the AGPM with only
128 units per hidden layer has already outperformed the S-AM
with 512 nodes per hidden layer (see Table IV).

If we increase the units of each hidden layer in AGPM further
from 128 to 256, the accuracy is improved greatly from 76.1%
to 86.8%. Meanwhile, the real-time factor decreases from 0.52
to 0.50, as more recognition paths with too small probabilities
are trimmed in Viterbi decoding. When the number of nodes per

Fig. 9. Performance of AGPM with different number of nodes per hidden
layer. All the DNNs have four hidden layers.

Fig. 10. Performance of AGPM with different number of hidden layers. Each
hidden layer has 512 nodes.

hidden layer is larger than 512, the accuracy tends to converge
and the AGPM requires much more computing time.

Fig. 10 demonstrates how the performance improves as more
hidden layers are added to the AGPM. The accuracy is improved
from 85.0% with a single hidden layer to 88.9% with four hidden
layers.

All the above evaluations were carried out on a Dell Precision
T7610 workstation, which has dual Intel Xeon Processor E5-
2650 v2 (eight cores of 2.60 GHz). The jblas library [98] was
used to speed up matrix operations from our Java codes.

X. ANALYSIS AND DISCUSSION

This section presents comparisons among different ap-
proaches based on free-phone recognition, ERNs, APM, AGM
and AGPM. In addition, we discuss the agreement between the
AGPM and each annotator.

To be fair, we only adopt the results of the DNNs with the
same hidden structures (i.e., four hidden layers of 512 units
each) for comparisons, as given in Tables IV and VII. We prefer
this kind of simple hidden structure to illustrate the performance
of different approaches, since Section IX-C shows that it has al-
ready attained quite good performance for AGPM. With more
complex hidden structures, the DNNs require much more train-
ing time and can only achieve limited improvements.
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A. ERN Approach vs. Free-Phone Recognition

For the approach based on forced alignment using ERNs, its
objective function can be presented as (20):

ŝ = arg max
s∈SE R N

p(s |x) (20)

where SERN denotes the possible phone-state sequences con-
strained by ERNs, which can be generated by P2LP phonologi-
cal rules [16], [20] or G2LP JSM [15].

To identify the phone-state sequence with the highest pos-
terior probability, free-phone recognition explores all possible
sequences, as given in (6); whereas the ERN approach only
searches the phone-state sequences within SERN . As the search
space is greatly reduced, this kind of approach would outper-
form free-phone recognition, provided that they use the same
acoustic models (see Section IX-A).

B. APM Approach vs. ERN Approach

As discussed in Section II-B, there are still some problems
for the ERN approach; whereas our APM method has the fol-
lowing advantages: (1) there is no need to build ERNs, thus it
is much easier to be implemented; (2) it incorporates phono-
logical transductions in acoustic modeling using an MD-DNN,
hence contextual information is exploited more effectively; (3)
it does not explicitly constrain the search space in Viterbi decod-
ing and works with the flexibility like free-phone recognition,
thereby any phones can be correctly recognized if the APM is
well trained.

C. APM Approach vs. Free-Phone Recognition

Comparing the target functions for free-phone recognition
and the APM approach, i.e., (6) vs. (11), we can find that the
major difference is whether the approach makes use of canon-
ical transcriptions (qDict). Since more relevant information is
exploited, the APM method attains much better performance.

D. AGM vs. APM

The AGM works similarly to the APM, but implicitly mod-
els the G2LP conversion. Since it is more effective to generate
likely pronunciations from canonical transcriptions than from
graphemes, the AGM works slightly worse than the APM (see
Sections IX-A and IX-B). However, the approach using the
AGM has an advantage over the one using the APM or ERNs,
since the AGM does not require any dictionaries to recognize
the phones uttered by L2 learners. It is tedious to update the
dictionaries whenever we encounter OOV words—this part is
important in practical applications if L2 learners are allowed to
design their own prompts for practice. When the canonical tran-
scriptions for OOV words are not available, the approach using
the APM or ERNs will fail to recognize the L2 English speech,
not to mention mispronunciation detection and diagnosis. On
the other hand, the AGM can still recognize the phones uttered
by L2 learners and provide feedback of MDD for the words with
canonical transcriptions.

TABLE IX
AGREEMENT BETWEEN AGPM AND EACH ANNOTATOR FOR PHONETIC

TRANSCRIPTIONS

Ann-1 Ann-2 Ann-3 Ann-4

AGPM 0.752 (0.787) 0.735 (0.746) 0.758 (0.793) 0.809 (0.827)

Note: the numbers in bold type and in parentheses indicate the kappa values
over the 48-phone set and 39-phone set, respectively.

E. Agreement Between AGPM and Each Annotator

Combining the APM and AGM, the AGPM can implicitly
model both P2LP and G2LP conversions. Experiments show
that it gains further performance improvements. To evaluate its
agreement with each annotator, we calculate the Cohen’s Kappa
in Table IX. These values are close to those of inter-annotator
agreement given in Table III. The mean values of these two
tables are 0.764 and 0.784 respectively. Note that there is no
overlap of speakers among the pilot set, the training set and the
test set (see Section VIII).

XI. CONCLUSION AND FUTURE WORK

In this paper, we investigate mispronunciation detection and
diagnosis (MDD) using multi-distribution deep neural networks
(MD-DNNs). We first build a State-level Acoustic Model (S-
AM) using a DNN to align the canonical transcriptions with
second-language (L2) English speech. Then we construct an
Acoustic-Phonemic Model (APM) using an MD-DNN to in-
corporate acoustic MFCC features (modeled by linear units
with Gaussian noise) and corresponding canonical transcrip-
tions (represented by binary variables). The AGPM can implic-
itly model both grapheme-to-likely-pronunciation (G2LP) and
phoneme-to-likely-pronunciation (P2LP) conversions, which
are integrated into acoustic modeling. A 7-gram State Tran-
sition Model (STM), which is also a DNN, is built for Viterbi
decoding. With the AGPM and STM, we develop a unified
framework for mispronunciation detection and diagnosis, which
works with the flexibility like free-phone recognition. Compar-
ing with the approach using Extended Recognition Networks
(ERNs), which constrains the recognition paths to some highly
possible pronunciations, our method is simpler and more effec-
tive. Experimental results show that the free-phone recognition
using the S-AM for L2 English speech obtains a phone error rate
(PER) of 25.6%. The ERN approach with the S-AM achieves a
PER of 16.8%. Our proposed AGPM method gains a significant
performance improvement overall, whose PER is 11.1%. For
mispronunciation detection and diagnosis, the AGPM achieves
a false rejection rate of 4.6%, a false acceptance rate of 30.5%
and a diagnostic error rate of 13.5%.

At present, we use the 48 phones as in [71] to transcribe the L2
English speech. This is based on the assumption that non-native
speech can be annotated in terms of the categorical phone units
from native inventory. However, linguists who have attempted
such annotations have clearly pointed out the difficulty in this
task because the native phonetic inventory/inventories cannot
adequately capture the acoustic characteristics of non-native
speech. This motivates us to generate an inventory of L2 phone-
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like units from observed data in future. We also need to derive
the relationships between an L2 phone-like unit and the native
phone unit(s). Therefore, when the acoustic decoder selects an
L2 phone-like unit, it will imply that a mispronunciation has oc-
curred and the error(s) may be diagnosed based on the mappings
between the L2 phone-like unit and the native phone(s).
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