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Abstract

This paper investigates the use of multi-distribution deep neural networks (MD-DNNs) for automatic lexical stress
detection and pitch accent detection, which are useful for suprasegmental mispronunciation detection and diagnosis in
second-language (L2) English speech. The features used in this paper cover syllable-based prosodic features (including
maximum syllable loudness, syllable nucleus duration and a pair of dynamic pitch values) as well as lexical and syntactic
features (encoded as binary variables). As stressed/accented syllables are more prominent than their neighbors, the two
preceding and two following syllables are also taken into consideration. Experimental results show that the MD-DNN for
lexical stress detection achieves an accuracy of 87.9% in syllable classification (primary/secondary/no stress) for words
with three or more syllables. This performance is much better than those of our previous work using Gaussian mixture
models (GMMs) and the prominence model (PM), whose accuracies are 72.1% and 76.3% respectively. Approached
similarly as the lexical stress detector, the pitch accent detector obtains an accuracy of 90.2%, which is better than the
results of using the GMMs and PM by about 9.6% and 6.9% respectively.

Keywords: lexical stress, pitch accent, non-native English, language learning, deep neural networks

1. Introduction

To meet the demands of self-directed language learn-
ing, computer-aided pronunciation training (CAPT) has
drawn considerable attention. Research in CAPT systems
focuses on leveraging speech and language technologies
for mispronunciation detection and diagnosis (MDD),
which can be implemented at segmental and supra-
segmental levels (Meng et al., 2009). The segmental level
involves phones (Li and Meng, 2014; Li et al., 2015) and
words; while the suprasegmental level includes lexical
stress (Li et al., 2011a; Li and Meng, 2012, 2013), pitch
accent (Li et al., 2011a; Zhao et al., 2013b), intonation (Li
et al., 2010; Arias et al., 2010), rhythm, etc. In this work,
we focus on lexical stress and pitch accent.

Lexical stress is associated with the prominent sylla-
ble of a word. Faithful production of lexical stress is
important for perceived proficiency of L2 English. In
some cases, it also serves to disambiguate lexical terms
by proper placement of primary stress, e.g., “"subject”
vs. “sub"ject”, “"permit” vs. “per"mit”, etc. Pitch
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accent is associated with the prominent syllable within an
intonational phrase (IP), which usually carries important
information and needs attention from the listeners.

Lexical stress detection is the key module for the MDD
of lexical stress. With the canonical lexical stress patterns
(extracted from dictionaries) and the results of lexical
stress detection, we can determine whether a lexical stress
pattern is correctly pronounced (Li and Meng, 2012). A
mispronunciation is detected if a lexical stress pattern is
deemed incorrect, and appropriate diagnostic feedback
can be generated by comparing the detected lexical stress
pattern with the canonical one. Similarly, the MDD of
pitch accent can also be achieved by leveraging a pitch
accent detector, if the canonical pitch accent placement is
available.

As the input features of lexical stress and pitch accent
detection involve syllable-based prosodic features (mod-
eled by linear units with Gaussian noise) as well as lex-
ical and syntactic features (set as binary vectors), multi-
distribution deep neural networks (MD-DNN) (Kang
et al., 2013; Li and Meng, 2013, 2014; Li et al., 2015)
are used in this work. Similar to traditional DNNs,
MD-DNNs are also constructed by stacking up multiple
Restricted Boltzmann Machines (RBMs) on top of one
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(a)   P     E     R      m     i     t (b)   p     e     r      M   I   T

/ p     er1       m   ih0   t / / p    er0     m  ih1   t /

Figure 1: Pitch realization for words permit (noun) and permit
(verb) in citation form (Ladd, 2008).

(a)   P     E     R      m     i     t (b)   p     e     r      M   I   T

Figure 2: Pitch realization for words permit (noun) and permit
(verb) in question form (Ladd, 2008).

another. Excluding the bottom RBM, all the other ones
are traditional Bernoulli RBM (B-RBM), whose hidden
and visible units are all binary. The bottom RBM is
a type of mixed Gaussian-Bernoulli RBM (GB-RBM),
whose hidden units are binary while some visible units are
Gaussian distributed and the other visible units are binary.

The rest of this paper is organized as follows: Section 2
introduces previous work related to lexical stress and pitch
accent detection. Section 3 discusses the features for lex-
ical stress and pitch accent detection. Section 4 develops
a lexical stress detector and a pitch accent detector, both
of which use MD-DNNs. Section 5 and 6 present the
experimental results and analysis respectively. Section 7
summarizes this paper.

2. Related work

2.1. Phonetic nature of stress — a linguistic view

Ladd (2008) gave simple examples to demonstrate the
phonetic nature of stress, as shown in Figure 1 to Figure 3.
For the words in citation form, as illustrated in Figure 1,
the pitch contours rise to a peak within the stressed
syllables and then drop quickly. In addition, there may
also be some changes in syllable duration, intensity and
vowel quality. Figure 2 shows a possible realization of
pitch contours over the words permit (noun) and permit
(verb) in question form; while Figure 3 demonstrates the
pitch contours in a context where the words are in the
position after the focus of an utterance. In the cases shown
in Figure 2 and Figure 3, pitch movement is no longer a
cue to stress (Sluijter and van Heuven, 1996). However,
these stressed syllables can still be perceived by other cues
such as duration, intensity, etc.

(a)   I   TOLD   you the permit had expired!

(b)   I   TOLD   you they’d permit him to retire!

Figure 3: Pitch realization for words permit (noun) and permit
(verb) in a context where the words are in the position after the
focus of an utterance (Ladd, 2008).

2.2. Acoustic correlates of stress

Prior to automatic stress detection, early research fo-
cused in exploring acoustic correlates with stress. In
psychology, stress correlates with length, loudness, pitch
and quality (Fry, 1958). These psychological factors
correspond to duration, intensity, fundamental frequency
and formant structure of speech in physical dimensions.

Fry (1958) investigated the influence of changes in
duration, intensity and fundamental frequency (F0) to
human perception of stress in English. Experiments were
conducted by presenting synthesized speech stimuli to a
large number of subjects. Experimental results showed
that duration, intensity and F0 played important roles in
stress judgments. In other words, syllables with longer
duration, greater intensity or/and higher F0 were likely
to be marked as stressed. In addition, the results also
revealed that the direction of a step change of F0 had
a strong effect on stress perception, i.e., a syllable with
higher F0 was generally heard as stressed; while the
magnitude of a step change made little contribution, e.g.,
the step changes of 5 Hz and 90 Hz might produce similar
results if they were in the same direction.

Lieberman (1960) further examined the relevance of
fundamental frequency, syllabic duration, relative ampli-
tude and integral of the amplitude over a syllable by
devising a binary automatic lexical stress recognition
program. Experiments showed that higher fundamental
frequency and envelope amplitude were the most relevant
features.

Morton and Jassem (1965) investigated acoustic corre-
lates of stress by performing a experiment in which syn-
thetic nonsense syllables (e.g., “sisi”, “sasa”, etc.) were
presented to subjects. The results showed that variations
in fundamental frequency were the overriding factors
comparing with those in either intensity or duration. A
raised fundamental frequency was more efficient to be
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perceived as stressed. The syllables with more intensity
and longer duration tended to be judged as stressed.

Sluijter and van Heuven (1996) investigated the acous-
tic correlates of stress by conducting experiments with
Dutch bisyllabic minimal pairs spoken by ten speakers.
It showed that duration was the most reliable correlate
of stress; while overall intensity and vowel quality had
the poorest performance. Spectral balance which was
designed to measure the intensity distribution in different
frequency bands was also a reliable cue to stress. The
intensity in the high filter bands above 500 Hz had
better discriminating ability than the low part intensity.
However, Campbell and Beckman (1997) reported that
there was no significant difference in spectral balance
between vowels in stressed versus unstressed syllables in
the unaccented condition.

2.3. Automatic lexical stress detection

As far as we know, Lieberman’s work (Lieberman,
1960) is the first to develop a system of automatic lexical
stress detection for bisyllabic words using a decision tree
method, whose features are described in last subsection.
The data for the experiments contained 25 noun-verb pairs
of bisyllabic words (e.g., “"rebel” vs. “re"bel”) embedded
in sentences uttered by 6 female and 10 male native Amer-
ican speakers. Training and testing were performed over
the same dataset. The lexical stress detection accuracy
was about 99%.

Aull and Zue (1985) used syllable duration, syllable av-
erage energy, syllable maximum pitch value and spectral
change to identify lexical stress for 1,600 isolated words
extracted from continuous speech uttered by 11 speakers.
The determination was based on the Euclidean distance
from each syllable-based feature vector to the reference
vector. Its syllable-based and word-based accuracies were
98% and 87% respectively. Note that 80% of the words
had two or three syllables, and the others had four or five
syllables.

Waibel (1986) proposed to use a Bayesian classifier
assuming multivariate Gaussian distributions for lexical
stress detection. Its features included the peak-to-peak
amplitude integral over sonorant segments, syllable du-
ration, maximum pitch value and spectral change. Its
error rate was about 12%, which was evaluated on a
dataset consisting of 50 sentences uttered by 10 speakers.
Other similar studies used Bayesian classifiers assuming
multivariate Gaussian include Ying et al. (1996), van
Kuijk and Boves (1999), Tamburini (2003), etc.

Freij et al. (1990) used two continuous hidden Markov
models (HMMs) to construct an automatic lexical stress

detector, whose features were based on fundamental
frequency, syllabic energy and coarse linear prediction
spectra. Experiments were evaluated on a set of bisyllabic
words (15 noun-verb pairs of words and 12 tokens for
each word) embedded in continuously spoken phrases.
The recognition rates for stressed and unstressed syllables
were 95% and 93% respectively.

Jenkin and Scordilis (1996) developed three classi-
fiers (neural networks, Markov chains and a rule-based
approach) for lexical stress detection. Their features
involved mean energy over syllable nucleus, syllable
duration, syllable nucleus duration, maximum and mean
pitch over syllable nucleus. The neural networks achieved
the best performance ranging from 81% to 84%.

Xie et al. (2004) adopted support vector machines
(SVMs) to build classifiers for lexical stress detection.
Experiments used prosodic features (relating to duration,
amplitude and pitch) and vowel quality features (extracted
from vowel acoustic features).

Tepperman and Narayanan (2005) applied GMMs in
the lexical stress detection for Japanese learners of En-
glish. A set of prosodic features were investigated, in-
cluding the mean values of F0, syllable nucleus duration,
energy and other features relating to the F0 slope and the
energy range.

Zhao et al. (2011) adopted SVMs to identify the vowels
of L2 English speech carrying primary stress or not.
The prosodic features included loudness, vowel duration,
spectral emphasis, pitch in semitone and pitch variations
based on RFC (Taylor, 1995) and Tilt parameters (Taylor,
1998, 2006). Their context-aware features, which were
extracted from the differential values from the current
vowel and its preceding/succeeding vowels, were also
considered. The experiments were conducted on a corpus
with 200 utterances spoken by 22 Taiwanese, achieving
an accuracy of 88.6%. Other similar studies using SVMs
to detect lexical stress of English speech with Taiwanese
accent were reported in Wang et al. (2009), Chen and
Wang (2010), etc.

Ferrer et al. (2015) introduced a system for lexical
stress detection using both prosodic (pitch, energy and
duration) and spectral (tilt and MFCC posteriorgrams)
features. Three level of stress (primary, secondary or
unstressed) were classified using GMMs. Experiments
were performed on a corpus containing English speech
from L1-English and L1-Japanese children. Most of the
words in this corpus had only two syllables. Results
showed that the MFCC posteriorgrams helped improve
the experimental performance. The error rates of the
system for L1-English and L1-Japanese data were 11%
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and 20% respectively.

2.4. Pitch accent prediction and detection

The approaches of pitch accent detection only using
prosodic features are similar to those of lexical stress
detection, e.g., Imoto et al. (2002), Tamburini (2003),
Ren et al. (2004), Li et al. (2007), Wang and Narayanan
(2007), Zhao et al. (2013b,a), Tamburini et al. (2014), etc.
The classifiers for the above efforts involve HMMs (Imoto
et al., 2002; Li et al., 2007), Bayesian classifier assum-
ing multivariate Gaussian distributions (Tamburini, 2003),
time-delay recursive neural networks (Ren et al., 2004),
SVMs (Zhao et al., 2013b), multi-layer perceptrons (Zhao
et al., 2013a), latent-dynamic conditional neural fields (a
kind of probabilistic graphical models) (Tamburini et al.,
2014), etc.

Besides prosodic features, lexical and syntactic features
also highly correlate with pitch accents. Ross et al. (1992)
investigated several factors influencing pitch accent place-
ment based on a subset of the Boston University Radio
News Corpus (BURNC) (Ostendorf et al., 1995). They
found that 39% of the words were function words and
only about 11% of these function words had pitch accents.
For the pitch accents on function words, 42% of them
were on negatives or quantifiers. Similarly, Rosenberg
(2009) showed that about 76% of the content words in the
BURNC were accented, whereas only 14% of the function
words were accented.

Due to the correspondence with pitch accents, lexical
and syntactic features are widely used in automatic pitch
accent prediction — a task that assigns pitch accents from
given text and is motivated by synthesizing more natural
sounding speech. With a set of lexical and syntactic fea-
tures from unrestricted text, Hirschberg (1993) proposed
a method using classification and regression tree (CART)
(Breiman et al., 1984; Lewis, 2000) to predict pitch accent
location. Experiments showed that part-of-speech (POS)
played an important role in the prediction. To improve
the prediction performance, more additional features were
adopted, including word class context, dictionary stress,
relative distance measures within an IP, etc.

Ross and Ostendorf (1996) applied computational mod-
els based on decision trees to predict pitch accent lo-
cation and relative prominence level. Many kinds of
features were investigated, including dictionary stress,
POS (e.g., nouns, adverbs, etc.), prosodic phrase structure
(e.g., phrase break size, number of syllables/words, etc.),
new/given status (e.g., whether word is new or given to the
paragraph, etc.), paragraph structure (e.g., the position of

phrase within the sentence, etc.), and labels of other units
(e.g., types of pitch accent, boundary tone, etc.).

Furthermore, lexical and syntactic information are also
used to complement acoustic features in pitch accent
detection. Wightman and Ostendorf (1994) proposed a
general algorithm based on decision trees and Markov se-
quence models to automatically label pitch accents as well
as other prosodic patterns including prosodic breaks and
boundary tones. A large set of features were investigated,
such as syllable duration, energy, pitch contour, dictionary
stress, a flag indicating whether this syllable is word-final
or not, etc.

Conkie et al. (1999) combined acoustic and syntactic
modeling to determine whether a word carries a pitch
accent or not. The acoustic and syntactic models resulted
in accuracies of 83% and 84% respectively; while comb-
ing these two models obtained an accuracy of 88%. The
experiments were conducted over only one speaker’s data
from the BURNC.

Sun (2002) used the techniques of bagging and boost-
ing with CART for pitch accent prediction and detection.
The accuracies of using only text information and only
acoustic features were about 80% and 85% respectively.
They were improved to about 87% by incorporating both
kinds of features. All these experiments were carried out
on one female’s data from the BURNC.

Chen et al. (2004) proposed a syntactic-prosodic model
based on neural networks for pitch accent prediction
and achieved an accuracy of 82.7%. Coupling a
GMM-based acoustic-prosodic model with the syntactic-
prosodic model obtained an accuracy of 84%. These
experiments were also conducted on the BURNC.

Gregory and Altun (2004) used conditional random
fields (CRFs) for the task of pitch accent prediction,
achieving an accuracy of 75.9% on the Switchboard
Corpus (Godfrey et al., 1992). It was slightly improved
to 76.4% by further leveraging acoustic features. Similar
studies using CRFs for pitch accent prediction and detec-
tion include Levow (2008), Qian et al. (2010), Ni et al.
(2011), etc.

Ananthakrishnan and Narayanan (2008) also developed
a pitch accent detector using acoustic, lexical and syntac-
tic features. The experiments based on neural networks
obtained an accuracy of 86.8% over the BURNC. Using
similar features and the same corpus for the same task,
Sridhar et al. (2008) obtained an accuracy of 86.0% with
a maximum entropy framework, and Jeon and Liu (2009)
achieved an accuracy of 89.8% with neural networks.
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2.5. Prominence model (PM)

Our previous work (Li and Liu, 2010a; Li et al., 2011a)
used a set of syllable-based prosodic features (see Sec-
tion 3) and proposed a prominence model (PM) for lexical
stress and pitch accent detection. The PM estimates the
prominence values from the syllable in focus as well as
the syllables in neighboring contexts. It is based on the
observations that syllables with loudness, duration and
pitch greater than their neighboring syllables are likely to
be perceived as stressed or accented, even if their values
are not large on average. Hence, the differences between
the feature values of the current syllable and the ones of
the neighboring syllables are also considered. With this
PM, the syllable-based prosodic features are converted
into a set of prominence features. Both the classifiers
for lexical stress detection and pitch accent detection are
Gaussian mixture models (GMMs). Experiments showed
that the PM improved the performance of lexical stress
detection by 4.2% (from 72.1% to 76.3%) (Li and Meng,
2013), and pitch accent detection by 2.7% (from 80.6% to
83.3%) (Li et al., 2011a).

3. Features for lexical stress and pitch accent detection

As discussed in Section 2.2, stressed syllables usually
exhibit longer duration, greater loudness and higher pitch
than their neighbors. Hence, we developed the syllable-
based prosodic features (Li et al., 2011a; Li and Meng,
2013): syllable nucleus duration, maximum loudness and
a pair of dynamic pitches. Due to the effectiveness of
lexical and syntactic features in pitch accent detection, we
also use this kind of feature for lexical stress and pitch
accent detection.

As stressed/accented syllables are more prominent than
their neighbors, the two preceding and two succeeding
syllables as well as the syllable in focus are taken into
consideration. Shorter context windows, such as the
single preceding and single succeeding syllables, may not
thoroughly exploit contextual information; while longer
context windows, such as the three preceding and three
succeeding syllables, may cause over-fitting, since each
word in our experiments only has 4.2 syllables for lexical
stress detection and 1.5 syllables for pitch accent detection
on average (see Table 1).

3.1. Syllable-based prosodic features

The syllable-based prosodic features used in this work
include syllable nucleus duration, maximum loudness and
a pair of dynamic pitches. More elaboration is provided
in the following subsections.

3.1.1. Syllable nucleus duration (Vdur)
Words can be transcribed into syllables by lexicon

lookup and by applying appropriate linguistic rules. How-
ever, it is a difficult task to automatically segment an utter-
ance into syllables accurately. Since the syllable nucleus
can be extracted more consistently, the syllable nucleus
duration is usually used to substitute for the syllable
duration (Tamburini, 2003; Tepperman and Narayanan,
2005).

We first apply the Maximal Onset Principle (Pulgram,
1970) to automatically determine the syllable boundaries
and extract the syllables from the phoneme sequence
output of the automatic speech recognizer described in Li
and Meng (2014). For example, the word “apartment”
uttered by an L2 English learner is divided into / axr /,
/ p aa t /, /m ax n / and / d ax /, as shown in Figure 4.
Within the time boundaries of every extracted syllable,
we treat the frames with loudness above Nbottom as the
syllable nuclei, where Nbottom is the value above which
50% of all loudness values in the IP lie. The normalized
syllable nucleus duration Vdur, which is taken as our
feature, is given by Equation (1).

Vdur = ln(dnucl) − ln(dIP) (1)

where dnucl is the syllable nucleus duration, dIP is the
mean duration of all syllable nuclei in the IP.

3.1.2. Maximum loudness (Vloud)
Loudness is the human perception of the strength of

sound energy. There is a complex relationship between
loudness and sound energy. We follow Zwicker’s loud-
ness model (Zwicker and Fastl, 1999) for a precise estima-
tion of loudness, and a simplifying calculation was given
in our previous work (Li et al., 2011a), which improved
the lexical stress detection and pitch accent detection by
about 3%. The normalized maximum syllable loudness
Vloud, as given by Equation (2), is taken as our feature:

Vloud = Nmax − NIP (2)

where Nmax is the maximum loudness within the identified
syllable, and NIP is the mean loudness over all syllables in
the IP.

3.1.3. Pair of dynamic pitches ( fm1& fm1)
We first perform pitch extraction using a method based

on wavelet transformation (Li and Liu, 2010b) and pro-
cess pitch values that fall within the time boundaries of the
identified syllable nuclei. Then we convert the pitch value
to the semitone scale, which is a logarithm scale that better
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matches human perception of pitch. The normalized pitch
value in semitone is given by Equation (3).

f = 12 log2( f0/ fIP), where f0 > 0 (3)

where f0 is the fundamental frequency in Hz, fIP is the
mean pitch value in the IP.

A differential pitch value in a syllable was derived
in our previous work (Li et al., 2011a), as given by
Equation (4a). It was proposed based on the following ob-
servations: syllables with rising tones often give a stressed
perception; while syllables with falling tones, especially
whose preceding syllable is stressed with a rising tone,
are often perceived as unstressed. Equation (4a) was
further improved to Equation (4b), which was used in the
experiments of Li et al. (2011a). Results showed that
the differential pitch value outperformed the mean and
maximum pitch values in a syllable by about 5% and 3%
respectively.

Vpitch = fm2 + ( fm2 − fm1) = 2 fm2 − fm1 (4a)

Vpitch = 2 fm2 − 0.95 fm1 (4b)

where fm1 and fm1 are the starting and ending extreme
pitch values in the syllable nucleus respectively, as shown
in Figure 4.

In this work, we only use a pair of dynamic pitches
( fm1 and fm2) in a syllable nucleus instead of the dif-
ferential pitch value (Vpitch), as DNNs can optimize the
performance by automatically adjusting the relationship
between fm1 and fm2.

3.2. Lexical and syntactic features

Section 2.4 shows that lexical and syntactic information
can complement acoustic features in pitch accent detec-
tion. Thus, this type of feature is also used in this work to
improve the lexical stress and pitch accent detection of L2
English speech.

For lexical stress detection, we use two bits to indicate
a syllable carrying primary stress (PS), secondary stress
(SS), no stress (NS) or NULL in dictionaries. The NULL
means there is no syllable, e.g., for the first syllable in a
word, there are no preceding syllables. Since we consider
the two preceding and two succeeding syllables as well as
the current syllable, there are 10 binary values for each
syllable’s canonical lexical stress pattern (i.e., lexical and
syntactic features).

Take the syllable / p aa t / in Figure 4 for example, its
canonical lexical stress pattern is (NULL NS PS NS NS).
Thus, the 10 binary values are (11 00 01 00 00), if we use

“00”, “01”, “10” and “11” to represent NS, PS, SS and
NULL, respectively.

For pitch accent detection, an additional bit (Finitial)
is used to indicate an onset of a new word. The lexical
and syntactic features (PS, SS, NS, NULL and Finitial) are
encoded with three bits and also used as part of the input
features.•

fm2 f

l d

pitch

fm1

fm2 fm1
fm2

loud

dur
APARTMENTAPARTMENT

p axaxr aa t m nax d

Figure 4: An example of feature extraction for lexical stress
detection. The top green curve is the pitch in semitone, the
yellow curve is the loudness, and the red bars indicate the
syllable nucleus durations. fm1 and fm2 are also marked for
the syllables of / p aa t / and /m ax n /.

4. Architectures of MD-DNNs for lexical stress and
pitch accent detection

4.1. Lexical stress detection
Due to the effectiveness of deep learning techniques,

we also adopt an MD-DNN for the lexical stress detector,
which makes use of the syllable-based prosodic features
and the canonical lexical stress pattern as its input fea-
tures. As described in last section, the syllable-based
prosodic features include syllable nucleus duration (Vdur),
maximum loudness (Vloud) and dynamic pitches ( fm1 and
fm2). These features are further scaled to have zero mean
and unit variance over the whole corpus.

Since a context window of (2 + 1 + 2) syllables is ap-
plied in this work, the bottom layer of the MD-DNN has
20 linear units with Gaussian noise for the syllable-based
prosodic features and 10 binary units for the correspond-
ing canonical lexical stress pattern. The diagram of the
MD-DNN for lexical stress detector is shown in Figure 5.
Above the bottom layer, there are three hidden layers and
each has 128 units. For the top output layer, there are only
three units generating the posterior probabilities of PS, SS
and NS for each syllable.

4.2. Pitch accent detection
The pitch accent detector can be approached similarly

as the lexical stress detector. The diagram of the MD-
DNN for pitch accent detection is shown in Figure 6.
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(PS, SS, NS)

(canonical lexical stress pattern)(syllable-based prosodic features)

(Vloud, Vdur, fm1, fm2) × (2+1+2) (PS, SS, NS, NULL)2 × (2+1+2)

Figure 5: Diagram of the MD-DNN for lexical stress detection.

The syllable-based prosodic features are the same as those
used in lexical stress detection, i.e., Vdur, Vloud, fm1 and
fm2. The lexical and syntactic features (PS, SS, NS,
NULL and Finitial) are encoded with three bits. As ac-
cented syllables are more prominent than their neighbors,
a contextual window of (2 + 1 + 2) syllables is also applied
in this work. Thus, there are total 20 linear units with
Gaussian noise and 15 binary units in the bottom of the
MD-DNN. Above the bottom layer, there are two hidden
layers of 256 units. For the top output layer, there are
two units generating the posterior probabilities of being
accented and unaccented.

(Accented, Unaccented)

(lexical and syntactic features)(syllable-based prosodic features)

(Vloud, Vdur, fm1, fm2) × (2+1+2) (PS, SS, NS, NULL, Finitial)2 × (2+1+2)

Figure 6: Diagram of the MD-DNN for pitch accent detection.

5. Experiments

5.1. Supra-CHLOE corpus

The Supra-CHLOE (Suprasegmental Chinese
Learners Of English) corpus (Li et al., 2011b) is used
in this work. It contains speech recordings from 100
Mandarin speakers and 100 Cantonese speakers (both
groups are gender-balanced). There are five parts

in this corpus: lexical stress, utterance-level stress,
intonation, reduced/unreduced function words and
prosodic disambiguation.

Only the lexical stress part has syllables labeled with
PS/SS/NS. In this part, each speaker uttered 30 words
embedded in carrier sentences (e.g., “I said hospital five
times”). The syllables in the other parts are used as
unlabeled data for lexical stress detection, as shown in
Table 1. Note that Bisyllabic words are excluded from
this work due to their simplicity.

Excluding lexical stress, syllables from the other parts
are labeled with different types of pitch accents, as given
in Table 2. These data are further grouped as accented and
unaccented syllables, and used for pitch accent detection
(see Table 1).

Table 1: Details of data used for lexical stress and pitch accent
detection in our experiments.

Lexical stress Pitch accent
Syllable Word Syllable Word

Unlabeled 91.5 k 29 k — —
Labeled 25.4 k 6 k 205.5 k 135.8k

Note: counts of syllables and words are measured in the unit of
thousands (k).

Table 2: Annotation results of pitch accents in rates and counts.
‘Un’ means unaccented.

H* !H* L+H* L+!H* H+!H*
11.48% 4.05% 9.80% 1.28% 1.88%
(23,594) (8,311) (20,143) (2,627) (3,868)

L* L*+H L*+!H Un *?
2.70% 0.73% 0.06% 68.01% 0.01%
(5,555) (1,489) (122) (139,747) (19)

5.2. DNN training

The DNNs training for lexical stress and pitch accent
detection in this work is similar to (Qian et al., 2012; Li
and Meng, 2013, 2014). In the pre-training stage, we
try to maximize the log-likelihood of RBMs. The one-
step contrastive divergence (CD) (Hinton et al., 2006)
is used to approximate the stochastic gradient. Twenty
epochs are performed with a batch size of 128 syllables.
In the fine-tuning stage, the standard back-propagation
(BP) algorithm (Rumelhart et al., 1986) is performed. A
dropout (Hinton et al., 2012; Deng et al., 2013; Seltzer
et al., 2013; Hannun et al., 2014) rate of 10% is used in
this work.
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5.3. Experimental results

5.3.1. Lexical stress detection
Li and Meng (2012) shows that a word may have

more than one lexical stress patterns in dictionar-
ies and the variations are primarily due to the pres-
ence or placement of secondary stress. For example,
“"autograph” versus “"autograph”, “misunder"stand”
versus. “misunder"stand”, etc. The lexical stress percep-
tual test in Li and Meng (2012) also reveals that humans
may have difficulty in identifying secondary stress.

Due to the uncertainty of secondary stress, we can
merge NS and SS into one group and turn the three-
category classification into a two-category classification.
Similarly, we can also merge SS and PS into one group.
Then we have the following criteria to evaluate the perfor-
mance of lexical stress detection:

(1) P-S-N: Identify the syllables carrying primary stress,
secondary stress or no stress;

(2) S-N: Classify the syllables as either stressed or un-
stressed;

(3) P-N: Determine if the syllables carry primary stress
or not.

The experimental results are shown in Table 3, which
summarizes the total confusions from all runs in the
10-fold cross-validation. It shows that the accuracy of
the three-category classification is 87.87%. Many errors
are due to the secondary stress misclassification: 44.5%
or (667 + 711) / 3100 of the errors is the case that a
secondary-stress syllable is misclassified as a syllable
with a primary or no stress. On the other hand, 39.7% or
(527 + 703) / 3100 of the errors is the case that a primary-
stress or unstressed syllable is mistaken as a secondary-
stress syllable. The syllable-based and word-based accu-
racies under the above three criteria are shown in Table 4.

Table 3: Results of lexical stress detection from 10-fold cross-
validation.
XXXXXXXXXXDetected

Labeled
PS SS NS

PS 5,064 667 217
SS 527 2,751 703
NS 275 711 14,669

5.3.2. Pitch accent detection
The evaluation results of the pitch accent detection

from 10-fold cross-validation are summarized in Table 5.
Among the total 198,600 syllables, 90.15% of them
are correctly identified as either accented or unaccented.

Table 4: Performance of lexical stress detection under different
criteria.

P-S-N S-N P-N
Syllable 87.87 ± 1.09 92.54 ± 1.00 93.41 ± 0.77

Word 66.76 ± 2.51 74.61 ± 3.02 84.84 ± 1.64

Note: accuracies (%) are shown in the form of (µ ± d), where µ
is the mean value and d is the sample standard deviation.

Among the syllables that are annotated as accented,
83.82% of them are correctly detected.

Table 5: Results of pitch accent detection from 10-fold cross-
validation.
XXXXXXXXXXDetected

Labeled
Unaccented Accented

Unaccented 125,952 10,250
Accented 9,307 53,091

Note: the syllables in the intonational phrases with only one
monosyllabic word are not counted in this experiment.

6. Analysis

In this section, we examine the influence of MD-DNNs
with different structures, the contribution of different
features and the performance of different approaches for
lexical stress and pitch accent detection. Note that the
accuracies in this section are all based on syllables unless
it is explicitly stated. For lexical stress detection, the P-S-
N criterion is used for evaluation.

6.1. Performance of MD-DNNs with different structures

Figures 7 and 8 demonstrate the performance of MD-
DNNs with different structures for lexical stress and pitch
accent detection. Figure 7 shows that the MD-DNN with
three hidden layers performs quite well when the number
of hidden units per layer is 16. The performance is further
improved if we use 128 nodes per hidden layer for lexical
stress detection and 256 nodes for pitch accent detection.
These configurations are applied in subsequent experi-
ments. Note that the MD-DNNs with only 8 nodes per
hidden layer show poor performance, whose accuracies
are 60.2% for lexical stress detection and 67.8% for pitch
accent detection.

Figure 8 presents that using more hidden layers im-
proves the performance of lexical stress detection pro-
vided it is less than 4. Comparing these two figures, we
observe that the MD-DNN with 3 hidden layers of 16
units significantly outperform the one with a single hidden
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layer of 128 units, whose accuracies are 86.4% and 80.3%
respectively. This result verifies the advantage of using a
deep architecture. Note that there are only 30 input and
3 output units (see Section 4). In addition, the number of
labeled syllables is only about 25,000 (see Table 1).

However, more hidden layers provided limited perfor-
mance improvement for pitch accent detection. This may
be due to the fact that there are only 2 output units and
about 205,000 labeled syllables. Thus, training a binary
pitch accent detector is simpler than a three-category
lexical stress detector in some sense.
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Figure 7: Performance of lexical stress and pitch accent detec-
tion by MD-DNNs with different number of hidden units per
layer. All these MD-DNNs have three hidden layers.

89.9% 90.2% 90.0% 90.2% 

80.3% 
84.8% 

87.9% 
84.9% 

50%

60%

70%

80%

90%

100%

accent stress

Number of Hidden Layers 

Accuracy 

2 3 4 1 

Figure 8: Performance of lexical stress and pitch accent de-
tection by MD-DNNs with different number of hidden layers.
Each hidden layer has 128 units for lexical stress detection and
256 units for pitch accent detection.

6.2. Performance of prosodic features with different
length of context window

As described in Section 3, four syllable-based prosodic
features (Vdur, Vloud, fm1, fm2) are used in this work.
Figure 9 shows the performance of these prosodic features
with different length of context window. If we only use

the prosodic features of the current syllable, the lexical
stress detector only obtains an accuracy of about 72.6%.
If we leverage the prosodic features of one preceding
and one succeeding syllables as well as the syllable in
focus, a significant improvement is observed, achieving
an accuracy of about 80.2%. The best performance is
achieved when the size of context window is five.

Similar performance improvement is observed in pitch
accent detection if we vary the length of context window.

72.6 

79.5 80.2 
84.4 82.2 

85.7 
81.3 

85.3 

50

60

70

80

90

100

lexical stress pitch accent

 1  3  5  7Accuracy (%)

Figure 9: Performance of lexical stress and pitch accent de-
tection using prosodic features with different length of context
window.

6.3. Contribution of different prosodic features
Figure 10 shows the contribution of the three kinds

of prosodic features in lexical stress and pitch accent
detection. It shows that the loudness and pitch features
have similar performances, both of which are slightly
better than the syllable nucleus duration. Combining all
these prosodic features gains a performance improvement
of 6.5% for lexical stress detection and 7.8% for pitch
accent detection. Note that contextual information is used
here.

In addition, combining these prosodic features with the
differential pitch value (Vpitch) in Equation (4b) cannot
further improve performance, and the accuracies of lexical
stress and pitch accent detection are 80.9% and 84.1%
respectively.

6.4. Contribution of lexical and syntactic features
Figure 11 shows the contribution of lexical and syn-

tactic features. Only using the syllable-based prosodic
features (20 linear units with Gaussian noise) achieves
an accuracy of 82.2% for lexical stress detection and
85.7% for pitch accent detection; while only leveraging
the lexical and syntactic features obtains an accuracy of
83.7% for lexical stress detection and 83.0% for pitch
accent detection. Combing these two kinds of features,
the accuracies of lexical stress and pitch accent detection
are improved to 87.9% and 90.2% respectively.

9



72.7  72.6  
75.6  76.5  75.7  77.9  

82.2  
85.7  

50

60

70

80

90

100

lexical stress pitch accent

 v_dur (5D)  v_loud (5D)

 fm1 & fm2 (10D)  all prosodic (20D)
Accuracy (%) 

Figure 10: Performance of lexical stress and pitch accent
detection using different prosodic features, including syllable
nucleus duration (Vdur), maximum loudness (Vloud) and a pair
of dynamic pitches ( fm1& fm2).
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Figure 11: Contribution of lexical and syntactic features to-
wards lexical stress and pitch accent detection.

6.5. Contribution of unlabeled data

Table 1 shows that there are only about 25,000 labeled
syllables for our experiments of lexical stress detection,
which is much smaller than those for pitch accent detec-
tion. Since collecting and transcribing L2 English speech
are very costly procedures, it is important to be able to
leverage unlabeled data, which may be achieved by deep
learning techniques. The improvement of MD-DNN using
unlabeled data in pre-training is about 1% for lexical
stress detection (see Figure 12).

6.6. Performance of different approaches

The classifiers for lexical stress and pitch accent de-
tection in Li et al. (2011a) are Gaussian mixture models
(GMMs). Two approaches of detection were investigated:
one using the syllable-based prosodic features (Vdur, Vloud,
Vpitch) and the other using the prominence features from
the prominence model (PM). As described in Section 2.5,
the PM estimates the prominence values by taking into
account the syllable in focus, as well as the syllables in

86.8  87.9  
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80

90

100

lexical stress detection

 w/o unlabeled all dataAccuracy (%) 

Figure 12: Performance of lexiccal stress detection with and
without unlabeled data.

neighboring contexts. Note that both approaches were
based on supervised learning. For simplicity in notation,
we denote the former approach with GMM and the latter
with PM. The results of lexical stress detection using the
same data as described in Section 5.1 were updated and
reported in Li and Meng (2013).

In our previous work (Li and Meng, 2013), the multi-
distribution deep belief network (MD-DBN) was pro-
posed for lexical stress detection. The structure of the
MD-DBN in Li and Meng (2013) is similar to the one
shown in Figure 5. Their main difference is that the top
two layers of the MD-DBN form an undirected associative
memory (Hinton et al., 2006), while the top two layers
of the DNN form an RBM with softmax function. MD-
DNN has been shown to have better performance than
MD-DBN.

Figure 13 summarizes the performance of using the
GMM, PM, MD-DBN and MD-DNN. We observe that
the MD-DNN outperforms the PM by 11.6% for lexical
stress detection and 6.9% for pitch accent detection,
respectively. The MD-DNN outperforms the MD-DBN
by about 2.9% for lexical stress detection and 3.1% for
pitch accent detection. These are due to that MD-DBN is
a generative model, whereas MD-DNN is a discriminative
model. MD-DBN only uses the one-step CD in the
pre-training and fine-tuning stages; while MD-DNN uses
the one-step CD in the pre-training stage and the BP
algorithm in the fine-tuning stage (see Section 5.2).

Table 6 shows the word-based accuracies of lexical
stress detection using the PM and MD-DNN. For the PM,
a syllable-based accuracy of 76.3% is only equivalent
to a word-based accuracy of 37.9%. If we evaluate the
lexical stress detection based on words, the MD-DNN
outperforms the PM significantly by about 29% under the
P-S-N criterion.
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Figure 13: Performance of lexical stress detection and pitch
accent detection using the Gaussian mixture models (GMMs),
prominence model (PM), deep belief network (DBN) and deep
neural network (DNN).

Table 6: Word-based accuracies (%) of lexical stress detection
using different approaches under different criteria.

P-S-N S-N P-N
PM 37.88 — 76.88
MD-DNN 66.76 74.61 84.84

7. Conclusions

In this work, we investigate the use of MD-DNNs
for automatic lexical stress detection and pitch accent
detection, which are useful for suprasegmental mispro-
nunciation detection and diagnosis in L2 English speech.
The features used in this work include syllable-based
prosodic features (maximum syllable loudness, syllable
nucleus duration and a pair of dynamic pitches) as well as
their lexical and syntactic features (primary/secondary/no
stress in dictionaries). As stressed/accented syllables are
more prominent than their neighbors, the two preceding
and two following syllables are also taken into consid-
eration. Experimental results show that, for words with
three or more syllables, the MD-DNN achieves a syllable-
based accuracy of 87.9% under the P-S-N criterion. It
outperforms the GMM, PM and MD-DBN by about
15.8%, 11.6% and 2.9% respectively. The pitch accent
detector classifies syllables as accented and unaccented
with an accuracy of 90.2%, which is better than the results
of using the PM and GMM by about 9.6% and 6.9%
respectively.
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