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TaggedPAbstract

This paper investigates the use of multi-distribution deep neural networks (MD-DNNs) for automatic intonation classification

in second-language (L2) English speech. If a classified intonation is different from the target one, we consider that mispronuncia-

tion is detected and appropriate diagnostic feedback can be provided thereafter. To transcribe speech data for intonation classifica-

tion, we propose the RULF labels which are used to transcribe an intonation as rising, upper, lower or falling. These four types of

labels can be further merged into two groups � rising and falling. Based on the annotated data from 100 Mandarin and 100 Can-

tonese learners, we develop an intonation classifier, which considers only 8 frames (i.e., 80 ms) of pitch value prior to the end of

the pitch contour over an intonational phrase (IP). This classifier determines the intonation of L2 English speech as either rising

or falling with an accuracy of 93.0%.

� 2016 Published by Elsevier Ltd..
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1. Introduction

TaggedPThis work aims to develop speech technologies that assist second language acquisition of English by adult Chi-

nese learners, focusing specifically on suprasegmental phonology (i.e., prosody). English is the lingua franca of our

world. It is of prime importance for non-native speakers to acquire communicative competence in English. However,

the process of second language acquisition (L2) is interfered by well-established perceptions of sounds and articula-

tions in the primary language (L1). Chinese and English have stark contrasts linguistically. We often observe notable

L1 (i.e., Chinese) interferences with L2 (i.e., English) speech in phonetics (i.e., segmental phonology) as well as pro-

sodics (i.e., suprasegmental phonology). While both impede the intelligibility of L2 speech, perceptual studies sug-

gest that suprasegmentals may have a stronger effect (Anderson-Hsieh et al., 1992). The interferences are ingrained

with age and hamper acquisition of proficiency, especially for adult L2 learners. Improvements require persistent

and individualized perceptual and productive training.

TaggedPRecent advancements in speech technologies have opened up new possibilities in computer-aided language learn-

ing (Eskenazi, 2009). Major thrusts lie in applying automatic speech recognition to the learner’s non-native speech
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TaggedPand devising algorithms for automatic pronunciation scoring. Existing works predominantly address phonetic devi-

ances in L2 speech (cf. native speech). For example, Witt and Young (2000) proposed the Goodness of Pronuncia-

tion (GOP) based on the likelihood. To achieve phonetic mispronunciation detection and diagnosis (MDD),

extended recognition networks (ERNs) based on forced alignment are built to cover the canonical transcriptions as

well as some likely error patterns (Ronen et al., 1997; Kawai and Hirose, 1998; Harrison et al., 2009; Wang and Lee,

2012; 2015). Due to the high effectiveness offered by deep learning techniques (Hinton et al., 2006), deep neural net-

works (DNNs) are also applied to phonetic MDD (Qian et al., 2012; Hu et al., 2013; Lee et al., 2013; Li and Meng,

2014; Li et al., 2016).

TaggedPWith the growing appreciation of suprasegmental training for language learners, more and more efforts are

devoted to the research of L2 prosodics, which involves lexical stress (Li et al., 2011a; Li and Meng, 2012; 2013; Li,

Meng, 2016), pitch accent (Li et al., 2011a; Zhao et al., 2013b; Li, Meng, 2016), phrasing, rhythm, intonation (Li

et al., 2010; Arias et al., 2010a), etc. Lexical stress can be used to disambiguate lexical terms, e.g., “permit” versus

“permit”. Pitch accent, which is associated with the prominent syllable within an intonational phrase (IP), usually

carries important information (e.g., new, contrastive, uncertain, etc.) and needs attention from the listeners (Wenner-

strom, 2001). Phrasing can convey the syntactic structure of an utterance, e.g., disambiguation between continuation

versus termination (Meng et al., 2009). Intonation may imply speech acts (e.g., making a statement, asking a ques-

tion, etc.), or convey the speaker’s mood or attitude (Meng et al., 2009).

TaggedPPrevious work (see Section 2) predominantly focused on prosodic evaluation, automatic pitch accent prediction

and detection, as well as intonational boundary detection. However, only a few efforts investigated the classification

of intonations or edge tones. As far as we know, this work is among the first attempts to develop an automatic intona-

tion classifier for L2 English speech (Li et al., 2010).

TaggedPThere are several challenges impeding the development of L2 intonation classification. First, it is difficult and

costly to design, collect and transcribe a suprasegmental corpus for L2 intonation classification. Second, there is no

standard annotation convention for intonational pattern transcription. Although the ToBI convention (Beckman and

Elam, 1997; Brugos et al., 2006) is widely used in transcribing the intonation and prosodic structure of English

speech, it is very detailed and may be very complex for L2 intonation classification. Third, although we know pitch

is the feature most related to intonation, how to make use of pitch as the input features for intonation classification is

still a problem.

TaggedPThe rest of this paper is organized as follows. Section 2 introduces previous work related to prosodic evaluation,

pitch accent prediction and detection, intonation modeling and classification, etc. Section 3 describes the corpus

used in this paper. Section 4 develops an automatic intonation classifier using an MD-DNN. Section 5 presents the

experimental results of intonation classification. Section 6 summarizes this paper.

2. Related work

TaggedPIn this section, we will introduce the work related to prosodic evaluation, pitch accent prediction and detection, as

well as intonation modeling and classification. As we assume that the intonational boundary is already known, we

will not cover the topic of intonational boundary detection (Chen et al., 2004; Sridhar et al., 2008; Jeon and Liu,

2009; Ni et al., 2011; Zhao et al., 2013b), which determines whether a specific location (e.g., the end of a syllable or

a word) has an intonational boundary or not. In addition, we will introduce the combination of the final pitch accent

and following edge tone (FAET), which corresponds closely to a ‘nuclear tone’ (Pierrehumbert, 1980; Ladd, 2008),

2.1. Automatic prosodic evaluation

TaggedPBefore performing automatic prosodic evaluation, it is important to investigate prosodic features, which usually

relate to duration, energy and fundamental frequency (F0). To improve automatic assessment of nativeness of L2

English speech, Teixeira et al. (2000) examined a large set of prosodic features relating to pitch, lexical stress, dura-

tion of two longest pauses/words/vowels within the utterance, etc. However, experiments showed that incorporating

these prosodic features with segmental features did not improve the performance of nativeness assessment, i.e., the

segmental features obtained the best results. To evaluate the naturalness of prosody, Maier et al. (2009) investigated

the prosodic features including energy, F0, voiced and unvoiced segments, etc. To evaluate the rhythm and intona-

tion, Suzuki et al. (2008) introduced word importance factors, which is optimized by using a decision tree for word
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TaggedPclustering. Jang (2009) and Lai et al. (2013) also exploited many rhythm-related features, e.g., proportion of vowel

intervals, proportion of function words, etc. Cucchiarini et al. (2000) and Zechner et al. (2009) investigated various

fluency-related features, e.g., speech rate, articulation rate, number and length of pauses, etc.

TaggedPYamashita and Nozawa (2005) develop a comparison-based method to evaluate prosodic proficiency of L2

English speech. A native and eight Japanese speakers were asked to utter 60 sentences with various intonation pat-

terns. Other comparison-based approaches for automatic prosodic evaluation include Ito et al. (2006), Ito et al.

(2009), Duong et al. (2011), Arias et al. (2010b), etc.

TaggedPTo evaluate the non-native intonation, Tepperman and Narayanan (2008) use Hidden Markov Models (HMMs) to rep-

resent intonation units; Ito et al. (2009) combined multiple evaluation scores from multiple decision trees (Suzuki et al.,

2008). Other work focus on intonation assessment include Zhao et al. (2010), Duong et al. (2011), and Cheng (2011).

TaggedPH€onig et al. (2010) applied multiple linear regression on a large prosodic feature vector to assess the quality of L2

learners’ utterances with respect to intelligibility, rhythm, melody, etc. The results were further improved by com-

bining these features with those derived from a Gaussian mixture model (GMM), which was used as an universal

background model (H€onig et al., 2011). van Santen et al. (2009) proposed approaches for automatic assessment of

prosody production, including lexical stress, focus, phrasing, etc. The experimental features were based on spectral,

F0 and temporal information.

2.2. Pitch accent prediction and detection

TaggedPStressed or accented syllables usually exhibit longer duration, greater loudness and higher pitch than their neigh-

bors (Fry, 1958; Morton and Jassem, 1965; Tamburini, 2003; Li et al., 2011a). Based on these prosodic features,

pitch accent can be automatically detected by using HMMs (Imoto et al., 2002; Li et al., 2007), Bayesian classifier

assuming multivariate Gaussian distributions (Tamburini, 2003), time-delay recursive neural networks (Ren et al.,

2004), support vector machines (SVMs) (Zhao et al., 2013b), multi-layer perceptrons (Zhao et al., 2013a), latent-

dynamic conditional neural fields (a kind of probabilistic graphical models) (Tamburini et al., 2014), etc.

TaggedPBesides prosodic features, lexical and syntactic features also highly correlate with pitch accents. Ross et al. (1992)

investigated several factors influencing pitch accent placement based on a subset of the Boston University Radio

News Corpus (BURNC) (Ostendorf et al., 1995). They found that 39% of the words were function words and only

about 11% of these function words had pitch accents. For the pitch accents on function words, 42% of them were on

negatives or quantifiers. Similarly, Rosenberg (2009) showed that about 76% of the content words in the BURNC

were accented, whereas only 14% of the function words were accented.

TaggedPDue to the correspondence with pitch accents, lexical and syntactic features are widely used in automatic pitch accent

prediction � a task that assigns pitch accents from given text and is motivated by synthesizing more natural sounding

speech. With a set of lexical and syntactic features from unrestricted text, Hirschberg (1993) proposed a method using

classification and regression tree (CART) (Breiman et al., 1984; Lewis, 2000) to predict pitch accent location. Experi-

ments showed that part-of-speech (POS) played an important role in the prediction. Ross and Ostendorf (1996) also

investigated many kinds of features for pitch accent prediction, including lexical stress, POS, prosodic phrase structure

(e.g., phrase break size, number of syllables/words, etc.), new/given status, paragraph structure (e.g., the position of

phrase within the sentence, etc.), and labels of other units (e.g., types of pitch accent, boundary tone, etc.).

TaggedPFurthermore, lexical and syntactic information are also used to complement acoustic features in pitch accent

detection (Wightman and Ostendorf, 1994; Conkie et al., 1999; Sun, 2002; Chen et al., 2004; Gregory and Altun,

2004; Levow, 2008; Ananthakrishnan and Narayanan, 2008b; Sridhar et al., 2008; Jeon and Liu, 2009; Qian et al.,

2010; Ni et al., 2011).

2.3. Intonation modeling

TaggedPFujisaki and Hirose (1982) proposed a model using two critically damped filters to generate the fundamental fre-

quency (F0) contours. The phrase component uses impulses as input and the accent component uses a step function.

By specifying the different amplitudes and durations, the model works well for the declarative intonation, yet not so

well for gradually rising intonation.

TaggedPHirst (1992) developed a model in which the F0 contour is first encoded by a number of target points using a fit-

ting algorithm. It is then classified into different phonological descriptions. Similar to Hirst’s model, Taylor (1995)
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TaggedPput forward a rise-fall-connection (RFC) model which tries to encode the F0 contour as R(rise), F(fall) and C(con-

nection). After pitch interpolation, smoothing for unvoiced phonemes and perturbations, the F0 contour can be

described by rising/falling amplitudes and rising/falling durations, with the assumption that pitch accents and bound-

aries are explicitly marked.

TaggedPTaylor (1998); 2006) further proposed a Tilt model, which uses three parameters (i.e., amplitude, duration and

tilt) to describe the intonational shapes of a rise, a fall and a rise followed by a fall. Amplitude is defined as the sum

of the rise (Arise) and fall (Afall) amplitudes. Duration is the sum of the rise (Drise) and fall (Dfall) durations. The tilt

parameter describes the overall intonational shape and is calculated by Eq. (1). In this model, basic events are often

associated with vowels.

tiltD Arise¡Afall

2ðArise CAfallÞ C
Drise¡Dfall

2ðDrise CDfallÞ ð1Þ

TaggedPWright and Taylor (1997) tried to use hidden Markov models (HMMs) to model intonational tunes and automati-

cally identify the tune types of an utterance. Experiments were performed on a subset of the DCIEM Maptask corpus

(Bard et al., 1996), which is a goal-directed dialog corpus uttered by Canadian speakers.
2.4. Edge tone prediction and classification

TaggedPRoss and Ostendorf (1996) used a decision tree to predict the edge tones (L-L%, L-H% or H-L%, see

Section 3.2) at the end of each IP. The lexical and syntactic features included punctuation, phrase position, phrase

length, etc. Experiments were based on the data of a single speaker in the Boston University Radio News Corpus

(BURNC) (Ostendorf et al., 1995), achieving an accuracy of 66.2%. This result was just slightly better than the

chance level of 61.1% (setting all edge tones to the majority one, L-L%).

TaggedPAnanthakrishnan and Narayanan (2008a) proposed a fine-grained boundary tone labeling system. Features were

derived from RFC and Tilt models. Experiments were performed on the BURNC, which consists of about three

hours of speech from six speakers. The system obtained an accuracy of 67.7%, which was also slightly better than

the chance rate of 60.2%.

TaggedPRosenberg (2009) investigated the classification of edge tones. The used prosodic features included slope aggre-

gations of pitch (e.g., minimum, maximum, mean, etc.), tilt parameters, extrema locations of pitch values. They also

used syntactic features including parse tree features (Charniak, 2000) and part-of-speech tags. By examining the

parameters over the 200-ms region prior to the intonational phrase boundary, the edge tone classification achieved

an accuracy of about 78% based on the BURNC. Experiments also found that the syntactic features were less dis-

criminative than the prosodic features.
2.5. Multi-distribution DNNs (MD-DNNs)

TaggedPIn real applications, input features may have different kinds of distributions, e.g., lexical and syntactic features

maybe binary, whereas prosodic features maybe Gaussian. To incorporate these features, Kang et al. (2013) pro-

posed an MD-DNN for speech synthesis, which was also applied to lexical stress detection (Li and Meng, 2013) and

phonetic MDD (Li and Meng, 2014). Similar to traditional DNNs, MD-DNNs are also constructed by stacking up

multiple Restricted Boltzmann Machines (RBMs) from bottom up. This involves running a layer-by-layer unsuper-

vised pre-training algorithm (Hinton and Salakhutdinov, 2006; Hinton et al., 2006), followed by fine-tuning the pre-

trained network using the back-propagation algorithm (Rumelhart et al., 1986). Excluding the bottom RBM, all the

other ones are traditional Bernoulli RBM, whose hidden and visible units are all binary. The bottom RBM is a type

of mixed Gaussian-Bernoulli RBM, whose hidden units are binary while visible units maybe Gaussian or binary.
2.6. Combination of final pitch accent and following edge tone (FAET)

TaggedPThe basic unit of intonation is called the intonational phrase (IP). An IP covers the part of an utterance over which

a particular intonation pattern extends, which usually ends at a comma, period, question mark, etc. Basic components

of an intonational event include pitch accents and edge tones (Ladd, 2008). Pitch accents associate with syllables to



FAET

Final Pitch Accent

Edge Tone
Boundary Tone

Phrase Accent
Nuclear Tone ~

Fig. 1. A nuclear tone corresponds closely to the combination of the final pitch accent and following edge tone (FAET). An edge tone is consti-

tuted of a phrase accent and a boundary tone.
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TaggedPsignify emphasis; while edge tones occur at the edges of IPs to give cues such as continuation, question or statement.

In addition, an edge tone can be further divided into a phrase accent and a boundary tone (Pierrehumbert, 1980;

Ladd, 2008), as illustrated in Fig. 1. The combination of the final pitch accent and following edge tone (FAET) corre-

sponds closely to a ‘nuclear tone’ (Pierrehumbert, 1980; Ladd, 2008), which is important for expressing intonational

meaning (Cruttenden, 1997). Hence, we may classify intonation patterns by focusing on the FAET of an IP, i.e.,

from the final pitch accent to the end of the IP.
3. Experimental corpus

3.1. Supra-CHLOE corpus

TaggedPWe have designed and collected the Supra-CHLOE (Suprasegmental Chinese Learners Of English) corpus (Li

et al., 2011b). It contains speech recordings from 100 Mandarin speakers and 100 Cantonese speakers (both groups

are gender-balanced). There are five parts in this corpus: lexical stress,utterance-level stress, intonation, reduced/

unreduced function words and prosodic disambiguation. The materials used in this corpus are designed by the

AESOP (Asian English Speech cOrpus Project) (Visceglia et al., 2009), which is a multinational collaboration aim-

ing to develop a speech corpus that can represent the varieties of English spoken in Asia.

TaggedPExcluding the lexical stress part, all the other parts’ syllables are labeled with different types of pitch accents (see

Section 3.2). For the intonation part, there are 29 sentences covering rising intonation, falling intonation and continu-

ation rises. The speakers were instructed to read in rising tone when “%” is shown. Similarly, “&” indicates falling

tone. The 29 sentences include four types, as shown in Table 1. Altogether, the 200 speakers recorded 5800 utteran-

ces, with 8400 IPs (2200 targeted for rise, 2600 for continuation rise, and 3600 for fall).
3.2. Annotation convention and procedure

TaggedPA linguistically trained annotator transcribed each IP in two ways: the ToBI convention (Beckman and Elam,

1997; Brugos et al., 2006) for a descriptive labeling of pitch accents and edge tones, and a perceptual judgment for

intonation patterns in terms of RULF (Rising/Upper/Lower/Falling). To increase the labeling quality, all the tran-

scriptions were examined by the annotator after about three months. The examination results show that the main var-

iations lied in the labeling of pitch accent.
Table 1

Types of sentences in our corpus and their targeted patterns of the intonational phrase (IP).

Types of sentences # Sent. # IPs

Yes�no questions, e.g., 11 Rise: 11

Do you need any money%?

Wh-questions, e.g., 8 Fall: 8

When will John be available&?

Declarative statements, e.g., 8 Cont. Rise: 8

In December and January%, the sun rises at seven in the morning&. Fall: 8

List-item statements, e.g., 2 Cont. Rise: 5

He bought strawberries%, pineapples%, bananas%, and apples&. Fall: 2



K. Li et al. / Computer Speech & Language 43 (2017) 18�33 23
TaggedP3.2.1. ToBI convention

TaggedPWe follow the ToBI convention to label pitch accents and edge tones. The major types of pitch accents include H*

(peak), L* (low), LCH* (rising peak), L*CH (scoop), HC!H* (falling). In addition, !H*, LC!H*, L*C!H are used

where the peak is lower than a preceding high pitch accent; *? is used for uncertainty about whether a pitch accent

exists.

TaggedPFor edge tones, there are four types: H-H% (typical yes�no question, rising pitch up to high range), L-H% (list-

item intonation, rising pitch, yet not up to high range), L-L% (typical declarative sentence, low edge tone), H-L%

(plateau, pitch remain high).

TaggedP3.2.2. The RULF labels

TaggedPWe also annotate the same set of data using the RULF system with reference to (Selting, 1995). It resembles the

British convention (Ladd, 2008) in using Rising and Falling, and differs by introducing Upper and Lower. The latter

two types are proposed to capture the unclear instances in the L2 English speech uttered by Chinese speakers. This

work was previously presented in Li et al. (2010). Examining the pitch contour over the FAET, an IP is first judged

whether it is R or F:

TaggedP� Rising: a rising intonation is perceived;

TaggedP� F
alling: a falling intonation is perceived.

TaggedPIf no obvious rise or fall can be identified, we will try to determine the pattern as one of the following two types:

TaggedP� Upper: the intonation is perceived as high;
TaggedP� L
ower: the intonation is perceived as low.

TaggedPFinally, if it is still hard to identify an IP as any of the above types, a question mark will be given to indicate

uncertainty.

TaggedP� ? (Question): difficult to classify as R/U/L/F.
TaggedP3.2.3. Relationship between RULF labels and FAETs

TaggedPWe refer to the final pitch accents and their following edge tones as FAETs. Since the RULF labels describe the

same part of pitch contour, they correlate closely with FAETs.

TaggedP� (L*/H*) L-H% and (L*/H*) H-H% may correlate with ‘R’, as all indicate a rising pitch contour (see Fig. 2).
TaggedP� H
* L-L% may correlate with ‘F’; L* L-L% may correlate with ‘F’ or ‘L’ (see Fig. 3).
TaggedP� L
* H-L% may correlate with ‘R’; H* H-L% may correlate with multiple types, namely ‘R’, ‘U’ or ‘F’, depending

on the relation between H* and H-, and that between H- and L% (see Fig. 4).

TaggedPNote that the relationships above are assumed for general patterns and it is possible to observe irregular relation-

ships in real data. In addition, pitch accents like !H*, LCH*, LC!H*, LCH*, L*C!H, and HC!H* are omitted here,

as their combination with edge tones may all resemble H* in corresponding to Rising/Upper/Lower/Falling.
Fig. 2. Relationship between (L*/H*) L-H%, (L*/H*) H-H% and RULF labels.



Fig. 3. Relationship between (L*/H*) L-L% and RULF labels.

Fig. 4. Relationship between (L*/H*) H-L% and RULF labels.

Fig. 5. An example of annotation. From top to bottom, panels show the speech waveform, spectrogram, pitch accents and edge tones, phonemes,

words, and RULF labels, respectively.
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3.3. Annotation results

TaggedPEach IP is annotated with pitch accents, edge tones, and RULF labels. An example is shown in Fig. 5. The words

and phonemes are indexed by automatic speech recognition.
TaggedP3.3.1. Pitch accents and edge tones

TaggedPTable 2 gives the annotation results of pitch accents in rates and counts. Since about 68% of the syllables are tran-

scribed as unaccented, all the syllables are grouped as accented and unaccented in the experiments of pitch accent

detection.

TaggedPTable 3 tabulates the annotation results of edge tones in different types of IPs. It shows that the L2 learners per-

form best on the IPs targeted for fall, of which 94.2% or (3387 out of 3595) is annotated as L-L%. For the IPs
Table 2

Annotation results of pitch accents in rates and counts. ‘Un’ means unaccented.

H* !H* LCH* LC!H* HC!H* L* L*CH L*C!H Un *?

11.48% 4.05% 9.80% 1.28% 1.88% 2.70% 0.73% 0.06% 68.01% 0.01%

(23,594) (8311) (20,143) (2627) (3868) (5555) (1489) (122) (139,747) (19)



Table 3

Distribution of edge tones in different IPs.

Indicated Annotated

L-L% H-L% L-H% H-H% Total

Fall (&) 3387 10 193 5 3595

Cont. Rise (%) 338 186 1785 288 2597

Rise (%) 93 59 1874 173 2199

Total 3818 255 3852 466 8391

Table 4

Distribution of RULF labels in different IPs.

Indicated Annotated

? F L U R Total

Fall (&) 11 3378 1 4 188 3582

Cont. Rise (%) 16 340 1 57 2183 2597

Rise (%) 4 91 0 21 2076 2192

Total 31 3809 2 82 4447 8371
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TaggedPtargeted for rise, the L2 learners tend to use L-H% instead of H-H%, whose rates are 85.2% and 7.9% respectively.

For the IPs targeted for continuation rise, only 68.7% of these IPs are transcribed as L-H%, and 13.0% as L-L%.

TaggedP3.3.2. RULF

TaggedPTable 4 shows the annotation results of RULF in different types of IPs. It shows that the L2 learners perform well

on the IPs targeted for fall or rise. About 94.3% or (3378 out of 3582) of the IPs targeted for fall is annotated as ‘F’,

and about 94.7% or (2076 out of 2192) of the IPs targeted for rise is transcribed as ‘R’. For the IPs of continuation

rise, only 84.1% or (2183 out of 2597) is produced with rising intonation, whereas 13.1% or (340 out of 2597) is pro-

duced with falling intonation.

TaggedP3.3.3. Relationship between RULF labels and FAETs

TaggedPThe overall distribution of the RULF labels in different kinds of FAETs, from the results of annotation, is given in

Table 5. Note that !H* is grouped into H*, regarding their similarity in pitch contour. Similarly, LC!H* and L*C!H

are merged into LCH* and L*CH respectively.
Table 5

Distribution of RULF labels in different kinds of FAETs.

FAET ? F L U R Total

H* L-L% 1 2353 3 2357

L* L-L% 2 30 2 3 37

LCH* L-L% 1211 6 1217

L*CH L-L% 35 1 36

HC!H* L-L% 153 153

? L-L% 2 2

H* H-L% 1 82 6 89

L* H-L% 83 83

LCH* H-L% 2 76 78

L*CH H-L% 4 4

HC!H* H-L% 1 1

H* L-H% 11 8 1008 1027

L* L-H% 1 4 2199 2204

LCH* L-H% 10 5 506 521

L*CH L-H% 36 36

HC!H* L-H% 3 2 52 57

H* H-H% 1 112 113

L* H-H% 2 286 288

LCH* H-H% 63 63

L*CH H-H% 2 2

Total 31 3807 2 82 4446 8368



Fig. 6. An example of rising intonation. The pitch accents are located by the pitch accent detector and marked as ‘*’. The pitch contour over the

FAET is highlighted.
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TaggedPTable 5 shows that when the edge tone is L-H% or H-H%, the intonation is primarily annotated as a rising tone

‘R’, regardless of the final pitch accent. Edge tone L-L% mainly correlates to ‘F’, regardless of the final pitch accent

preceding it. In the case of H-L%, the sequence L* H-L% correlates to ‘R’; while H* H-L% mainly correlates to

‘U’.

TaggedPTable 5 also shows that the amount of IPs annotated as ‘U’ and ‘L’ is small. Hence, we group ‘U’ into ‘R’, for

they generally correspond to a rising intonation. Similarly, the cases of ‘L’ are merged into ‘F’. With these processed

data, the four-category classification task is simplified to a two-category classification problem.
4. Automatic intonation classification

TaggedPThe automatic intonation classifier focuses on the pitch contour over the FAET, i.e., from the final pitch accent to

the end of the IP, which generally corresponds to the location of an orthographic comma, period, question mark, etc.

Hence, we should first develop a pitch accent detector which may be used to locate the final pitch accent.

TaggedPFig. 6 shows an example with a rising intonation. The sentence is “Do you need any money?”. The pitch accents

are located by the pitch accent detector and marked as ‘*’, and the pitch contour over the FAET is highlighted. Note

that the pitch value used in this work is converted to the semitone scale (Li et al., 2011a) and normalized with the

mean pitch value of the IP.

4.1. Pitch accent detection

TaggedPSimilar to the lexical stress detector proposed in our previous work (Li and Meng, 2013), the pitch accent detector

is an MD-DNN, whose diagram is shown in Fig. 7. The syllable-based prosodic features include syllable nucleus

duration (Vdur), maximum loudness (Vloud) and a pair of dynamic pitches (fm1 and fm2), where fm1 and fm2 are the first

and second extreme pitch values (according to time sequence) in the syllable nucleus respectively. These features

are scaled to have zero mean and unit variance over the whole corpus.

TaggedPIn addition, the lexical and syntactic features (PS, SS, NS, NULL and Finitial) are also used as part of the

input features. We use two bits to indicate a syllable carrying primary stress (PS), secondary stress (SS) or no

stress (NS) in dictionaries, and an additional bit Finitial to indicate an onset of a new word. The NULL means

there is no syllable, e.g., for the final syllable in an IP, there are no succeeding syllables. As accented sylla-

bles are more prominent than their neighbors, a contextual window of 5 syllables (2 before, 1 current and 2

after) is applied in this work. Thus, there are total 15 binary units in the bottom of the MD-DNN for the lexi-

cal and syntactic features, as well as 20 linear units with Gaussian noise for the syllable-based prosodic

features.

TaggedPAbove the bottom layer, there are three hidden layers of 128 units. For the top output layer, there are two units

generating the posterior probabilities of being accented or unaccented.



Fig. 7. Diagram of the MD-DNN for pitch accent detection.
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4.2. Implementation of intonation classifier using MD-DNN

TaggedPWith the pitch accent detector, we can reduce the scope of pitch contour for intonation classification from the

whole IP to the FAET. However, we cannot directly use the pitch values of the corresponding FAET, since their

length varies with the specific IP. Hence, it is necessary to investigate the distribution of FAETs with different

lengths of pitch contour, as shown in Fig. 8. It shows that only 1.7% of the FAETs have a length of pitch contour

larger than 128 frames (i.e., 1.28 s). Note that about 3.7% of the FAETs fail in detecting pitch values, which is not

shown in the figure.

TaggedPThe diagram of the MD-DNN for intonation classification is shown in Fig. 9. We use NFAET linear units with

Gaussian noise to characterize the pitch contour over the FAET. The pitch values for frames of distance greater than

NFAET frames from the end of the pitch contour will be truncated. If the pitch contour over the FAET has fewer than

NFAET frames, we will fill it with zero value before the onset of the FAET. In addition, two binary nodes are used to

indicate that the IP is targeted for fall, continuation rise or rise. Above the bottom layer, there are three hidden layers

and each has 64 units. In the top output layer, there are two units generating the posterior probabilities of being a ris-

ing or falling intonation.

TaggedPAs 98.3% of the FAETs have a pitch contour whose length is smaller than 128 frames, NFAET should be equal to

or smaller than 128. We will analyze the effect of the value of NFAET in our later experiments.
Fig. 8. Counts of FAETs as a function of the length of pitch contour. About 3.7% of the FAETs fail in detecting pitch values, which is not shown

here.



Fig. 9. Diagram of the MD-DNN for intonation classification. In the bottom of the MD-DNN, there are NFAET linear units with Gaussian noise

used to characterize the pitch contour over the FAET. The value of NFAET will be determined in later experiments. In addition, two binary units

are used to indicate that this IP is targeted for fall, continuation rise or rise.

Table 6

Results of pitch accent detection from 10-fold cross-valida-

tion. The syllables in the intonational phrases with only one

monosyllabic word are not counted in this experiment.

Detected Labeled

Unaccented Accented

Unaccented 63.42% (125,952) 5.16% (10,250)

Accented 4.69% (9307) 26.73% (53,091)
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5. Experiments

5.1. Pitch accent detection

TaggedPThe evaluation results of the pitch accent detection from 10-fold cross-validation are summarized in Table 6.

Among the total 198,600 syllables, 90.15% of them are correctly identified as either accented or unaccented. Among

the syllables that are annotated as accented, 83.82% of them are correctly detected.

TaggedPOur previous work (Li et al., 2011a) adopted Gaussian mixture models (GMMs) for pitch accent detection based

on the Supra-CHLOE corpus. Two approaches of detection were investigated: one using the syllable-based prosodic

features (see Section 4.1) and the other using the prominence features from the prominence model (PM) (Li and Liu,

2010). The PM estimates the prominence values from the syllable in focus as well as the syllables in neighboring con-

texts. It is based on the observations that syllables with loudness, duration and pitch greater than their neighboring syl-

lables are likely to be perceived as stressed or accented, even if their values are not large on average. Hence, the

differences between the feature values of the current syllable and the ones of the neighboring syllables are also con-

sidered. With this PM, the syllable-based prosodic features are converted into a set of prominence features. Note that

both approaches were based on supervised learning. For simplicity in notation, we denote the former approach with

GMMs and the latter with PM. The results of pitch accent detection using the GMMs, PM and MD-DNN are shown

in Fig. 10. We observe that the MD-DNN outperforms the GMMs and PM by about 9.6% and 6.9% respectively.
5.2. Intonation classification

TaggedPIn this section, we first configure the value of NFAET and the MD-DNN structure. Then we examine the contribu-

tion of different kinds of features, the influence of pitch accent detection and the performance of using MD-DNNs

and SVMs. Finally, we present the detailed experimental results of our intonation classifier from 10-fold

cross-validation.



Fig. 10. Performance of pitch accent detection using different classifiers. The results of GMMs and PM are from Li et al. (2011a).
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TaggedP5.2.1. Configurations of NFAET and MD-DNN structure

TaggedPTo configure the value of NFAET and the structure of MD-DNN, we perform two groups of experiments � one

only using prosodic features (i.e., pitch) and one using all kinds of features (i.e., pitch and target intonation patterns).

Fig. 11 illustrates the effect of varying the value of NFAET and the size of each hidden layer. The classifiers work

quite well when NFAET ranges from 4 to 64. However, the performance would decrease greatly if we use larger val-

ues of NFAET (e.g., 128 frames), since there are only 8340 IPs in our corpus and 73.1% of these IPs have a pitch con-

tour with 64 frames or less over the FAET.

TaggedPAll the MD-DNNs in Fig. 11 have three hidden layers. The results show that the MD-DNNs with only 16 hidden

units per layer already perform quite well, especially if NFAET is smaller than 64. The intonation classifiers achieve

the optimal performance if we use 8 frames as the value of NFAET and 64 units as the size of each hidden layer. These

configurations are applied in subsequent experiments. Further increasing the size of hidden units (e.g., 512 units)

may cause over-fitting.
TaggedP5.2.2. Contribution of different types of features

TaggedPFig. 11 shows that the intonation classification can obtain an accuracy of 77.5% if only prosodic features are lev-

eraged. When we incorporate target intonation patterns, the accuracy can be further improved to 93.0%. Similar

improvement can be observed if we use SVMs as the classifier (see Section 5.2.4). This is because 92.5% (i.e., 7716/

8340) of the IPs are pronounced following the target indicators (see Table 4).
Fig. 11. Performance of intonation classification as a function of the value of NFAET and size of each hidden layer. The MD-DNNs in (a) only use

prosodic features (i.e., pitch); whereas the MD-DNNs in (b) using all features (i.e., pitch and target intonation patterns). All the MD-DNNs have

three hidden layers. The optimal accuracies for these two figures are labeled.



Fig. 12. Performance of intonation classification using SVMs and MD-DNNs.

Table 7

Intonation classification results from 10-fold cross-

validation.

Detected Labeled

Falling Rising

Falling 42.01% (3504) 3.30% (275)

Rising 3.68% (307) 51.01% (4254)
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TaggedPIf the target intonation indicators are not presented to non-native speakers, the performance of classifier using

both prosodic features and target intonation patterns may decrease greatly, and we may have to rely on the classifier

that only uses prosodic features. To overcome this problem in the future, we have to retrain these classifiers by using

more non-native speech that the target intonation indicators are not presented.

TaggedP5.2.3. Contribution of pitch accent detection

TaggedPIf we use a large value for NFAET, it is necessary to use a pitch accent detector to reduce the scope of pitch contour

for intonation classification. Without the help of a pitch accent detector (i.e., using the entire final segment of the

pitch contour, up to 128 frames, as input features), the accuracy of the MD-DNN with 256 units per hidden layer

would be decreased from 91.4% to 83.5%. However, pitch accent detection has little effect on the performance of

intonation classification provided we use a small value (e.g., 8 frames) for NFAET.

TaggedP5.2.4. SVMs versus MD-DNNs

TaggedPFig. 12 shows the performance of intonation classification using SVMs and MD-DNNs respectively. If only pro-

sodic features are used, the MD-DNN outperforms the SVM by about 3%. Combining the prosodic features with tar-

get intonation patterns, both classifiers obtain similar performance, whose accuracies are 92.5% (SVM) and 93.0%

(MD-DNN) respectively.

5.3. Confusion matrix of intonation classification

TaggedPFig. 11 illustrates that the intonation classifier obtains the best accuracy if we use all the different kinds of fea-

tures, 8 frames as the value of NFAET and 64 units as the size of each hidden layer of an MD-DNN with three hidden

layers. The detailed evaluation results from 10-fold cross-validation are given in Table 7. It shows that 93.9% of the

annotated rising intonation are correctly classified as rising intonation, and 91.9% of the intonation annotated as fall-

ing are correctly identified as falling intonation.

6. Conclusions

TaggedPAn intonational phrase (IP) is a basic unit of intonation. In general, an intonation pattern can be determined by the

pitch contour from the final pitch accent to the end of the IP. To transcribe speech data for intonation classification,
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TaggedPwe propose the RULF labels which are used to transcribe an intonation as rising, upper, lower or falling. These four

types of labels can be further merged into two groups � rising and falling. Based on the annotated data from 100

Mandarin and 100 Cantonese learners, we develop a pitch accent detector and an intonation classifier, both of which

use MD-DNNs. The pitch accent detector works similarly as the lexical stress detector and identifies syllables as

accented or unaccented with an accuracy of 90.2%. The intonation classifier, which considers only 8 frames (i.e.,

80 ms) of pitch value prior to the end of the pitch contour over an IP, determines the intonation of L2 English speech

as either rising or falling with an accuracy of 77.5%. If we incorporate target intonation patterns, the accuracy is fur-

ther improved to 93.0%. If a classified intonation is different from the target one, we consider that a mispronuncia-

tion in intonation is detected and the appropriate diagnostic feedback will be provided thereafter.

Acknowledgments

TaggedPThe work is partially supported by the grant from the HKSAR Government Research Grants Council General

Research Fund (project number 14207315).

References

TaggedPAnanthakrishnan, S., Narayanan, S., 2008a. Fine-grained pitch accent and boundary tone labeling with parametric F0 features. In: Proceedings of

the 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

TaggedPAnanthakrishnan, S., Narayanan, S.S., 2008b. Automatic prosodic event detection using acoustic, lexical, and syntactic evidence. IEEE Trans.

Audio Speech Lang. Process. 16 (1), 216–228.

TaggedPAnderson-Hsieh, J., Johnson, R., Koehler, K., 1992. The relationship between native speaker judgments of nonnative pronunciation and deviance

in segmentals, prosody and syllable structure. Lang. Learn. 42, 529–555.

TaggedPArias, J.P., Yoma, N.B., Vivanco, H., 2010a. Automatic intonation assessment for computer aided language learning. Speech Commun. 52 (3),

254–267.

TaggedPArias, J.P., Yoma, N.B., Vivanco, H., 2010b. Automatic intonation assessment for computer aided language learning. Speech commun. 52 (3),

254–267.

TaggedPBard, E.G., Sotillo, C., Anderson, A.H., Taylor, M., 1996. The DCIEM map task corpus: spontaneous dialogue under sleep deprivation and drug

treatment. In: Proceedings of the International Conference on Spoken Language Processing (ICSLP).

TaggedPBeckman, M. E., Elam, G. A., 1997. Guidelines for ToBI labeling, version 3.0.

TaggedPBreiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and Regression Trees. CRC Press.

TaggedPBrugos, A., Shattuck-Hufnagel, S., Veilleux, N., 2006. Transcribing prosodic structure of spoken utterances with ToBI.

TaggedPCharniak, E., 2000. A maximum-entropy-inspired parser. In: Proceedings of the North American Chapter of the Association for Computational

Linguistics (NAACL).

TaggedPChen, K., Hasegawa-Johnson, M., Cohen, A., 2004. An automatic prosody labeling system using ANN-based syntactic-prosodic model and GMM-

based acoustic-prosodic model. In: Proceedings of the 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP).

TaggedPCheng, J., 2011. Automatic assessment of prosody in high-stakes english tests. In: Proceedings of Interspeech.

TaggedPConkie, A., Riccardi, G., Rose, R.C., 1999. Prosody recognition from speech utterances using acoustic and linguistic based models of prosodic

events. In: Proceedings of EUROSPEECH.

TaggedPCruttenden, A., 1997. Intonation. Cambridge University Press.

TaggedPCucchiarini, C., Strik, H., Boves, L., 2000. Quantitative assessment of second language learners’ fluency by means of automatic speech recogni-

tion technology. J. Acoust. Soc. Am. 107 (2), 989–999.

TaggedPDuong, M., Mostow, J., Sitaram, S., 2011. Two methods for assessing oral reading prosody. ACM Trans. Speech Lang. Process. 7 (4), 14.

TaggedPEskenazi, M., 2009. An overview of spoken language technology for education. Speech Commun. 51 (10), 832–844.

TaggedPFry, D.B., 1958. Experiments in the perception of stress. Lang. Speech 1 (2), 126–152.

TaggedPFujisaki, H., Hirose, K., 1982. Modelling the dynamic characteristics of voice fundamental frequency with application to analysis and synthesis of

intonation. In: Proceedings of International Conference on Interactive Collaborative Learning (ICL).

TaggedPGregory, M.L., Altun, Y., 2004. Using conditional random fields to predict pitch accents in conversational speech. In: Proceedings of Association

for Computational Linguistics (ACL).

TaggedPHarrison, A.M., Lo, W.-K., Qian, X.-j., Meng, H., 2009. Implementation of an extended recognition network for mispronunciation detection and

diagnosis in computer-assisted pronunciation training. In: Proceedings of Symposium on Languages, Applications and Technologies (SLaTE).

TaggedPHinton, G., Osindero, S., Teh, Y., 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554.

TaggedPHinton, G., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science 313, 504–507.

TaggedPHirschberg, J., 1993. Pitch accent in context predicting intonational prominence from text. Artif. Intell. 63 (1), 305–340.

TaggedPHirst, D., 1992. Talking machines: theories, models, and designs. Elsevier, North-Holland, Amsterdam, pp. 77–82.

TaggedPH€onig, F., Batliner, A., N€oth, E., 2011. How many labellers revisited � naives, experts, and real experts. In: Proceedings of InterspeecH.

TaggedPH€onig, F., Batliner, A., Weilhammer, K., N€oth, E., 2010. Automatic assessment of non-native prosody for English as l2. In: Proceedings of Speech

Prosody.

http://dx.doi.org/10.1109/TASLP.2016.2621675
http://dx.doi.org/10.1109/TASLP.2016.2621675
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0002
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0002
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0003
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0003
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0004
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0004
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0005
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0005
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0006
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0006
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0007
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0008
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0008
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0009
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0009
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0009
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0010
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0011
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0011
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0012
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0013
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0013
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0014
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0015
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0016
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0017
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0017
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0018
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0018
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0019
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0019
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0020
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0021
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0022
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref00023
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0024
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0025
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0025


32 K. Li et al. / Computer Speech & Language 43 (2017) 18�33
TaggedPHu, W., Qian, Y., Soong, F., 2013. A new DNN-based high quality pronunciation evaluation for computer-aided language learning (CALL). In:

Proceedings of Interspeech.

TaggedPImoto, K., Tsubota, Y., Raux, A., Kawahara, T., Dantsuji, M., 2002. Modeling and automatic detection of English sentence stress for computer-

assisted English prosody learning system. In: Proceedings of the International Conference on Spoken Language Processing (ICSLP).

TaggedPIto, A., Konno, T., Ito, M., Makino, S., 2009. Evaluation of english intonation based on combination of multiple evaluation scores. In: Proceedings

of Interspeech.

TaggedPIto, A., Nagasawa, T., Ogasawara, H., Suzuki, M., Makino, S., 2006. Automatic detection of English mispronunciation using speaker adaptation

and automatic assessment of English intonation and rhythm. Educ. Technol. Res. 29 (1), 13–23.

TaggedPJang, T.-Y., 2009. Automatic assessment of non-native prosody using rhythm metrics: focusing on Korean speakers’ English pronunciation. In:

Proceedings of International Conference on Economics of Arts and Literature (ICEAL).

TaggedPJeon, J.H., Liu, Y., 2009. Automatic prosodic events detection using syllable-based acoustic and syntactic features. In: Proceedings of the 2008

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

TaggedPKang, S., Qian, X., Meng, H., 2013. Multi-distribution deep belief network for speech synthesis. In: Proceedings of the 2008 IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP).

TaggedPKawai, G., Hirose, K., 1998. A method for measuring the intelligibility and nonnativeness of phone quality in foreign language pronunciation

training. In: Proceedings of the International Conference on Spoken Language Processing (ICSLP).

TaggedPLadd, D.R., 2008. Intonational Phonology. Cambridge University Press.

TaggedPLai, C., Evanini, K., Zechner, K., 2013. Applying rhythm metrics to non-native spontaneous speech.. In: Proceedings of Symposium on Lan-

guages, Applications and Technologies (SLaTE).

TaggedPLee, A., Zhang, Y., Glass, J., 2013. Mispronunciation detection via dynamic time warping on deep belief network-based posteriorgrams. In: Pro-

ceedings of the 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

TaggedPLevow, G.-A., 2008. Automatic prosodic labeling with conditional random fields and rich acoustic features. In: Proceedings of International Joint

Conference on Natural Language Processing (IJCNLP).

TaggedPLewis, R.J., 2000. An introduction to classification and regression tree (CART) analysis. In: Proceedings of Annual Meeting of the Society for

Academic Emergency Medicine in San Francisco, California, pp. 1–14.

TaggedPLi, C., Liu, J., Xia, S., 2007. English sentence stress detection system based on HMM framework. Appl. Math. Comput. 185 (2), 759–768.

TaggedPLi, K., Liu, J., 2010. English sentence accent detection based on auditory features. J. Tsinghua Univ. Sci. Technol. 50 (4), 613–617.

TaggedPLi, K., Meng, H., 2012. Perceptually-motivated assessment of automatically detected lexical stress in L2 learners’ speech. In: Proceedings of Inter-

national Symposium on Chinese Spoken Language Processing (ISCSLP).

TaggedPLi, K., Meng, H., 2013. Lexical stress detection for L2 English speech using deep belief networks. In: Proceedings of Interspeech.

TaggedPLi, K., Meng, H., 2014. Mispronunciation detection and diagnosis in L2 English speech using multi-distribution deep neural networks. In: Pro-

ceedings of International Symposium on Chinese Spoken Language Processing (ISCSLP).

TaggedPLi, K., Meng, H., 2016. Automatic lexical stress and pitch accent detection for L2 English speech using multi-distribution deep neural networks.

Speech Commun., (forthcoming).

TaggedPLi, K., Qian, X., Meng, H., 2016. Mispronunciationdetection and diagnosis in L2 English speech using multi-distribution deep neural networks.

IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2016.2621675.

TaggedPLi, K., Zhang, S., Li, M., Lo, W.-K., Meng, H., 2010. Detection of intonation in L2 English speech of native Mandarin learners. In: Proceedings of

International Symposium on Chinese Spoken Language Processing (ISCSLP).

TaggedPLi, K., Zhang, S., Li, M., Lo, W.-K., Meng, H., 2011a. Prominence model for prosodic features in automatic lexical stress and pitch accent detec-

tion. In: Proceedings of Interspeech.

TaggedPLi, M., Zhang, S., Li, K., Harrison, A., Lo, W.-K., Meng, H., 2011b. Design and collection of an L2 English corpus with a suprasegmental focus

for Chinese learners of English. In: Proceedings of the International Congress of Phonetic Sciences (ICPhS).

TaggedPMaier, A.K., H€onig, F., Zeiler, V., Batliner, A., K€orner, E., Yamanaka, N., Ackermann, P., N€oth, E., 2009. A language-independent feature set for

the automatic evaluation of prosody.. In: Proceedings of Interspeech.

TaggedPMeng, H., Tseng, C.-Y., Kondo, M., Harrison, A., Viscelgia, T., 2009. Studying L2 suprasegmental features in asian Englishes: a position paper.

In: Proceedings of Interspeech.

TaggedPMorton, J., Jassem, W., 1965. Acoustic correlates of stress. Lang. Speech 8 (3), 159–181.

TaggedPNi, C.-J., Liu, W., Xu, B., 2011. Automatic prosodic events detection by using syllable-based acoustic, lexical and syntactic features. In: Proceed-

ings of Interspeech.

TaggedPOstendorf, M., Price, P.J., Shattuck-Hufnagel, S., 1995. The BostonUniversity radio news corpus. Linguistic Data Consortium 1–19.

TaggedPPierrehumbert, J.B., 1980. The Phonology and Phonetics of English inztonation. Massachusetts Institute of Technology Ph.D. thesis.

TaggedPQian, X.-j., Meng, H., Soong, F., 2012. The use of DBN-HMMs for mispronunciation detection and diagnosis in L2 English to support computer-

aided pronunciation training. In: Proceedings of Interspeech.

TaggedPQian, Y., Wu, Z., Ma, X., Soong, F., 2010. Automatic prosody prediction and detection with conditional random field (CRF) models. In: Proceed-

ings of International Symposium on Chinese Spoken Language Processing (ISCSLP).

TaggedPRen, Y., Kim, S.-S., Hasegawa-Johnson, M., Cole, J., 2004. Speaker-independent automatic detection of pitch accent. In: Proceedings of Speech

Prosody.

TaggedPRonen, O., Neumeyer, L., Franco, H., 1997. Automatic detection of mispronunciation for language instruction. In: Proceedings of EUROSPEECH.

TaggedPRosenberg, A., 2009. Automatic Detection and Classification of Prosodic Events. Columbia University Ph.D. thesis.

TaggedPRoss, K., Ostendorf, M., 1996. Prediction of abstract prosodic labels for speech synthesis. Comput. Speech Lang. 10 (3), 155–185.

TaggedPRoss, K., Ostendorf, M., Shattuck-Hufnagel, S., 1992. Factors affecting pitch accent placement. In: Proceedings of the International Conference on

Spoken Language Processing (ICSLP).

http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0026
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0026
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0027
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0027
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0028
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0028
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0029
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0029
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0030
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0030
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0031
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0031
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0032
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0032
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0033
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0033
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0034
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0035
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0035
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0036
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0036
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0037
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0037
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0038
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0038
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0039
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0040
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0041
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0041
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0042
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0043
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0043
http://dx.doi.org/10.1109/TASLP.2016.2621675
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0044
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0044
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0045
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0045
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0046
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0046
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0047
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0047
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0048
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0048
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0049
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0050
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0050
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0051
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0052
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0053
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0053
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0054
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0054
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0055
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0055
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0056
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0057
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0058
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0059
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0059


K. Li et al. / Computer Speech & Language 43 (2017) 18�33 33
TaggedPRumelhart, D.E., Hinton, G., Williams, R.J., 1986. Learning representations by back-propagating errors. Natrue 323, 533–536.

TaggedPvan Santen, J.P., Prud’hommeaux, E.T., Black, L.M., 2009. Automated assessment of prosody production. Speech Commun. 51 (11), 1082–1097.

TaggedPSelting, M., 1995. Prosodie im Gespr€ach: Aspekte einer interaktionalen Phonologie der Konversation, vol.329. Walter de Gruyter.

TaggedPSridhar, V.R., Bangalore, S., Narayanan, S.S., 2008. Exploiting acoustic and syntactic features for automatic prosody labeling in a maximum

entropy framework. IEEE Trans. Audio Speech Lang. Process. 16 (4), 797–811.

TaggedPSun, X.-J., 2002. Pitch accent prediction using ensemble machine learning. In: Proceedings of the International Conference on Spoken Language

Processing (ICSLP).

TaggedPSuzuki, M., Konno, T., Ito, A., Makino, S., 2008. Automatic evaluation system of english prosody based on word importance factor. J. Syst.

Cybern. Inform. 6 (4), 83–90.

TaggedPTamburini, F., 2003. Prosodic prominence detection in speech. In: Proceedings of Signal Processing and its Applications.

TaggedPTamburini, F., Bertini, C., Bertinetto, P.M., 2014. Prosodic prominence detection in Italian continuous speech using probabilistic graphical mod-

els. In: Proceedings of Speech Prosody.

TaggedPTaylor, P., 1995. The rise/fall/connection model of intonation. Speech Commun. 15, 169–186.

TaggedPTaylor, P., 1998. The Tilt intonation model. In: Proceedings of ISCLP.

TaggedPTaylor, P., 2006. Analysis and synthesis of intonation using the tilt model. J. Acoust. Soc. Am. 107, 1697–1714.

TaggedPTeixeira, C., Franco, H., Shriberg, E., Precoda, K., S€onmez, M.K., 2000. Prosodic features for automatic text-independent evaluation of degree of

nativeness for language learners. In: Proceedings of Interspeech.

TaggedPTepperman, J., Narayanan, S.S., 2008. Better nonnative intonation scores through prosodic theory. In: Proceedings of Interspeech.

TaggedPVisceglia, T., Tseng, C.-y., Kondo, M., Meng, H., Sagisaka, Y., 2009. Phonetic aspects of content design in aesop (asian english speech corpus

project). In: Proceedings of the 2009 Oriental COCOSDA International Conference on Speech Database and Assessments.

TaggedPWang, Y., Lee, L., 2015. Supervised detection and unsupervised discovery of pronunciation error patterns for computer-assisted language learn-

ing. IEEE Trans. Audio Speech Lang. Process. 23, 564–579.

TaggedPWang, Y.-B., Lee, L.-S., 2012. Improved approaches of modeling and detecting error patterns with empirical analysis for computer-aided pronun-

ciation training. In: Proceedings of the 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

TaggedPWennerstrom, A., 2001. The Music of Everyday Speech: Prosody and Discourse Analysis. Oxford University Press.

TaggedPWightman, C.W., Ostendorf, M., 1994. Automatic labeling of prosodic patterns. IEEE Trans. Speech Audio Process. 2 (4), 469–481.

TaggedPWitt, S.M., Young, S.J., 2000. Phone-level pronunciation scoring and assessment for interactive language learning. Speech Commun. 30 (2), 95–

108.

TaggedPWright, H., Taylor, P. A., 1997. Modelling intonational structure using hidden Markov models.

TaggedPYamashita, Y., Nozawa, K., 2005. Automatic scoring for prosodic proficiency of English sentences spoken by japanese based on utterance com-

parison. IEICE Trans. Inf. Syst. 88 (3), 496–501.

TaggedPZechner, K., Higgins, D., Xi, X., Williamson, D.M., 2009. Automatic scoring of non-native spontaneous speech in tests of spoken English. Speech

Commun. 51 (10), 883–895.

TaggedPZhao, J., Xu, J., Zhang, W.-q., Yuan, H., Liu, J., Xia, S., 2013a. Exploiting articulatory features for pitch accent detection. J. Zhejiang Univ. Sci. C

14 (11), 835–844.

TaggedPZhao, J., Zhang, W.-Q., Yuan, H., Johnson, M.T., Liu, J., Xia, S., 2013b. Exploiting contextual information for prosodic event detection using

auto-context. EURASIP J. Audio Speech Music Process. 2013 (1), 1–14.

TaggedPZhao, S., Luke, K.K., Koh, S., Zhang, Y., 2010. Computer aided evaluation of intonation for language learning based on prosodic unit segmenta-

tion. In: Proceedings of Annual Summit and Conference of Asia-Pacific Signal and Information Processing Association (APSIPA).

http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0060
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0061
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0062
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0063
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0063
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0064
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0064
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0065
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0065
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0066
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0067
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0067
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0068
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0069
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0070
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0071
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0071
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0072
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0073
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0073
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0074
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0074
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0075
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0075
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0076
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0077
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0078
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0078
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0079
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0079
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0080
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0080
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0081
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0081
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0082
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0082
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0083
http://refhub.elsevier.com/S0885-2308(15)30048-6/sbref0083

	Intonation classification for L2 English speech using multi-distribution deep neural networks
	1. Introduction
	2. Related work
	2.1. Automatic prosodic evaluation
	2.2. Pitch accent prediction and detection
	2.3. Intonation modeling
	2.4. Edge tone prediction and classification
	2.5. Multi-distribution DNNs (MD-DNNs)
	2.6. Combination of final pitch accent and following edge tone (FAET)

	3. Experimental corpus
	3.1. Supra-CHLOE corpus
	3.2. Annotation convention and procedure
	3.2.1. ToBI convention
	3.2.2. The RULF labels
	3.2.3. Relationship between RULF labels and FAETs

	3.3. Annotation results
	3.3.1. Pitch accents and edge tones
	3.3.2. RULF
	3.3.3. Relationship between RULF labels and FAETs


	4. Automatic intonation classification
	4.1. Pitch accent detection
	4.2. Implementation of intonation classifier using MD-DNN

	5. Experiments
	5.1. Pitch accent detection
	5.2. Intonation classification
	5.2.1. Configurations of NFAET and MD-DNN structure
	5.2.2. Contribution of different types of features
	5.2.3. Contribution of pitch accent detection
	5.2.4. SVMs versus MD-DNNs

	5.3. Confusion matrix of intonation classification

	6. Conclusions
	Acknowledgments
	References


