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ABSTRACT

Bidirectional long short-term memory (BLSTM) recurrent
neural network (RNN) has achieved state-of-the-art per-
formance in many sequence processing problems given its
capability in capturing contextual information. However,
for languages with limited amount of training data, it is
still difficult to obtain a high quality BLSTM model for
emphasis detection, the aim of which is to recognize the
emphasized speech segments from natural speech. To ad-
dress this problem, in this paper, we propose a multilingual
BLSTM (MTL-BLSTM) model where the hidden layers are
shared across different languages while the softmax output
layer is language-dependent. The MTL-BLSTM can learn
cross-lingual knowledge and transfer this knowledge to both
languages to improve the emphasis detection performance.
Experimental results demonstrate our method can outperfor-
m the comparison methods over 2-15.6% and 2.9-15.4% on
the English corpus and Mandarin corpus in terms of relative
F1-measure, respectively.

Index Terms— emphasis detection, cross-lingual, multi-
lingual, bidirectional long short-term memory (BLSTM)

1. INTRODUCTION

Emphasis detection aims to perceive or recognize the empha-
sized speech segments that may correspond to a word or part
of a word from natural speech. As an important prosodic fea-
ture, emphasis of speech is not only useful for expressing s-
peakers’ emotions and attitudes, but also meaningful for un-
derstanding their intentions. Recently, the study of automatic
emphasis detection has become an emerging topic that attracts
increasing research interests from researchers in speech sig-
nal processing. Automatic emphasis detection plays an im-
portant role in human-computer interaction scenarios, such as
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emphatic speech synthesis, content spotting and user inten-
tion understanding.

Previous attempts on emphasis detection propose the re-
search problems from two perspectives including features and
models. The former mainly focuses on utilizing emphasis
related acoustic features for automatic pitch accents recog-
nition and prosodic event detection. For example, [1] used
filtered energy features to detect pitch accents. [2] calculat-
ed the FO difference between original speech and synthetic
speech, and then used a pre-defined threshold to label em-
phasis. [3] used spectral emphasis or RASTA-PLP to predict
word prominence in spontaneous speech. The latter dedicates
to fulfilling the emphasis detection task from the model per-
spectives. For instance, [4] devised a sound pattern matching
(SPM) method for automatic prosodic event detection. [5]
considered this task as a classification problem. Motivated
by this, [6] proposed to use Bayesian network (BN) with the
combination of global acoustic features (FO, duration and en-
ergy, semitone) and local acoustic features (tilt parameters).
Although the last method can achieve the best performance,
the use of tilt parameters involves manual annotation of in-
notational events; furthermore, just like other classifiers, BN
cannot incorporate the contextual information that emphasis
detection mainly relies on.

Recently, bidirectional long short-term memory (BLST-
M) recurrent neural network (RNN) has shown great poten-
tial for leveraging contextual information from both forward
and backward directions, and achieved state-of-the-art per-
formance in many sequence processing problems, including
voice conversion [7] and speech synthesis [8]. Therefore, it is
very suitable for dealing with time sequences like speech for
emphasis detection. But the biggest problem is that it need-
s moderate or large corpus to train a good model [9]. Giv-
en that annotating training data is often at great expense, the
available training data is always very limited, especially for
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low-resource language of a specific speaker.

To handle the lacking training data problem, in this paper,
we propose a multilingual BLSTM (MTL-BLSTM) model, in
which the hidden layers are shared across different languages
while the softmax output layers are language-dependent and
the input feature vectors of different languages are combined
together to form a uniform representation. The shared hidden
layers are considered as a universal feature transformation
that works well for many languages. The separate softmax
layers are used to output the posterior probability of empha-
sis for each language. Experimental results indicate MTL-
BLSTM can learn cross-lingual knowledge and transfer the
knowledge between languages to improve the performance of
both languages.

2. BIDIRECTIONAL LONG SHORT-TERM
MEMORY (BLSTM)

BLSTM-RNN is an extended architecture of bidirectional re-
current neural network (BRNN) [10]. It replaces units in the
hidden layers of BRNN with LSTM memory blocks. With
these memory blocks, BLSTM can store information for long
and short time lags, and leverage relevant contextual depen-
dencies from both forward and backward directions for clas-
sification tasks.

BLSTM contains a forward and a backward layer, thus,
it can utilize the past and future information for modeling.
Given an input sequence X = (x1, Z2, ..., 7 ), BLSTM com-
putes the forward hidden sequence h , the backward hidden

<_
sequence h by iterating the forward layer from ¢ = 1 to 7, the
backward layer from ¢ =T to 1:

hi = W 7zt + ngﬁpl +b) )
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The output layer is connected to both forward and backward
layers, thus the output sequence can be written as:

— —
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The notations of these equations are explained in [8] and ¢(-)
is the activation function which can be implemented by LST-
M block with equations in [8].

3. APPROACHES

3.1. Motivation

For the same speech segments, when they are in different con-
texts, the probabilities of being emphasized are different. S-
tudies reveal that the acoustic features of the emphatic speech
are affected by the location of emphasis [11]. Moreover, pre-
vious work indicates that emphasis has the characteristic of
local prominence and the syllables whose acoustic features
(FO, duration, energy) are higher than their neighbors are eas-
ier to be perceived as emphasis [11]. That means emphasis

Language | Language 2
Emphasis Probability Emphasis Probability

Q0-0, ,JOO O
~ AN

Output Layer
(Softmax)

Backward |
LSTM Layer

Forward
LSTM Layer

Input Layer

‘ Input Features (Universal Representation) D

Acoustic Features ‘ L 1 ‘ + ‘ Language 2 |

Fig. 1. Architecture of multilingual BLSTM.

is not only closely related with its past acoustic contexts, but
also affected by its future ones. Considering both of the past
and future acoustic contexts is beneficial for emphasis percep-
tion. Motivated by this, we formulate the emphasis detection
problem as a sequential learning task and use BLSTM that
has tremendous success for leveraging bidirectional contex-
tual information for modeling.

Furthermore, for emphasis perception and detection, there
are indeed many intrinsic features that can be shared across d-
ifferent languages. For example, it has been stated for many
languages that FO and duration vary with vowel height, and
are constrained by the place of articulation and affected by
some contextual aspects [12]. High vowels are consistently
shorter than low ones while revealing higher FO. Whether
a pitch accent language such as English and Japanese, or a
tone language such as Mandarin have shown that the prosod-
ic focus (emphasis) can be realized by FO variations that are
independent of those due to lexical contrasts [13]. Motivated
by this, we propose an MTL-BLSTM model which uses the
acoustic features as the input. With the shared hidden lay-
ers, MTL-BLSTM can learn the cross-lingual knowledge and
transfer this knowledge to other languages to improve the per-
formance of emphasis detection.

3.2. Network architecture of MTL-BLSTM

Fig. 1 depicts the architecture of the proposed MTL-BLSTM
for emphasis detection of different languages. In this architec-
ture, the input layer and hidden layers are shared across differ-
ent languages while the output layer is language-dependent.
The shared hidden layers (both of the forward and backward
layers) can be considered as a universal feature transforma-
tion which transforms the input acoustic features of different
languages into a language-independent representation. And
such representation can be shared across different languages.
The output layer is actually a softmax layer and each language
has its own softmax layer to estimate the posterior probabili-
ties of the emphasis categories specific to that language.

The main characteristic of MTL-BLSTM is to train the
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model for both languages simultaneously. However, since the
input features are from different languages, the features cor-
responding to each language are to be used for emphasis de-
tection of its own. To address this problem, the input feature
vectors of different languages are combined together to form a
single universal feature representation. The dimension of the
universal feature representation equals to the sum of the input
feature dimensions of language 1 and language 2. For exam-
ple, when the current input features are from language 1, the
universal feature representation is constructed by appending
padding symbols (any number not equal to the feature values
is OK, i.e. 20 in this paper) behind the features of language
1; When the current input features are from language 2, the
universal feature representation is constructed by prepending
the same padding symbols before the features of language 1.
Then the feature vectors of both languages are shuffled ran-
domly. Finally, the universal feature representation is used as
the input of the MTL-BLSTM and transformed by the shared
hidden layers to provide benefits to both languages.

3.3. Training procedure

As we can see, MTL-BLSTM is trained with speech data from
different languages. This strategy is a variation of multi-task
learning (MTL): the tasks of both languages are trained simul-
taneously. To learn the parameters of our model, we use the
mini-batch-based adaptive gradient (Adagrad) [14] algorithm.
In each iteration, a task ¢ is selected randomly, and the model
is updated according to the task-specific objective function.
This is actually to minimize the sum of two single-task ob-
jectives. We use the softmax loss as the objective functions.
For emphasis classification of class c¢; of language 1, the loss
function is:

e*c1 - )
loss(ci,2) ==In| =7—— | =In e | — 2z, (4
( (Za:l €’ ) (; ) 1

where ¢; € {0,1} is the emphasis label, z; is the linear pre-
diction of the jth category and the loss is summed over all
the samples in the mini-batch. The loss function for emphasis
detection of language 2 is similar with the one of language 1.

Then we use the trained MTL-BLSTM to detection em-
phasis of any language used in the training process. By shar-
ing the hidden layers in the model, we can improve the detec-
tion performance of both languages.

4. EXPERIMENTS

4.1. Experimental setup

Data set. To evaluate the effectiveness of cross-lingual model
transfer, we used the Mandarin (MAN) corpus as language
1 and the English (ENG) corpus as language 2. The MAN
corpus is recorded by various speakers from Sogou Voice
Assistant. We randomly selected 2000 utterances from the
data set and labeled the emphasis for each utterance. The ut-
terances with wrong transcriptions are removed. Finally, we

got 1942 utterances, including speeches and their transcrip-
tions. We invited 3 well-trained human labelers to mark the
emphasis of each utterance at syllable level by listening to the
speech utterances. To address the inconsistency issue, if the
labelers had different opinions, they would have a discussion
about the inconsistent parts to reach an agreement. As for the
ENG corpus, 350 text prompts are carefully designed. After
forced alignment, we got 339 utterances in the end. Each
text prompt contains one or more emphatic words. For each
text prompt, its corresponding speech utterance is recorded
with expressive intonation to place proper emphasis on the
emphatic words in the sentence.

Features. Previous works indicate that emphasis usually has
higher FO, longer duration and higher energy [15]. Besides,
research shows the change of semitone is consistent with the
distance of auditory perception. This indicates emphasis may
be also closely related with semitone. Therefore, the used
acoustic features include, FO related features (mean, mini-
mum, maximum and range of log F0), energy related features
(mean, minimum, maximum and range of energy), duration
and semitone, totally 10 dimensions. It should be noted that
the acoustic features are calculated at syllable for MAN and
phoneme for ENG respectively.

Comparison methods. We compared the performance of
emphasis detection with some well-known machine learning
methods, including support vector machine (SVM), Bayesian
network (BN) and conditional random field (CRF). We also
designed three more kinds of LSTM models for compari-
son in addition to the proposed MTL-BLSTM model: 1)
monolingual LSTM (MNL-LSTM) trained with the language
dependent corresponding corpora and unidirectional LST-
M hidden layers; 2) monolingual BLSTM (MNL-BLSTM)
trained with the language dependent corresponding corpora
and BLSTM hidden layers; 3) mix-lingual BLSTM (MXL-
BLSTM) trained using the mixture of two languages without
universal feature representation and BLSTM hidden layers.
Evaluation metrics. In all the experiments, we evalu-
ate the detection performance in terms of Precision, Re-
call and Fl-measure [16]. The two corpora are split by
train:val:test=8:1:1, with 100 MAN utterances and 30 ENG
utterances used as the test set respectively.

4.2. Experimental results
4.2.1. Influence of bidirectional contextual dependencies

Table 1. lists the performance of emphasis detection on EN-
G test set of using different comparison methods. From the
results (in terms of Fl1-measure), we can see that the perfor-
mance of using MNL-LSTM is better than that of using other
machine learning methods such as SVM, BN and CREF, in-
dicating contextual dependencies are important. Compared
with CRF, LSTM can better leverage these contextual depen-
dencies for modeling. Besides, when both past and future
contexts are considered (for MNL-BLSTM), the performance
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can be further improved, which means bidirectional contextu-
al dependencies are useful for our task.

Table 1. Results of using different comparison methods on
ENG test set.

Models Precision Recall Fl-measure
SVM 0.656 0.810 0.725
BN 0.784 0.792 0.788
CRF 0.785 0.817 0.800
MNL-LSTM 0.823 0.798 0.810
MNL-BLSTM 0.823 0.821 0.822

Table 2. Performance comparison between different BLSTM
derived methods.
(a) Performance on ENG corpus.

Models Precision Recall Fl-measure
MNL-BLSTM 0.823 0.821 0.822
MXL-BLSTM 0.826 0.831 0.829
MTL-BLSTM 0.844 0.833 0.838

(b) Performance on MAN corpus.

Models Precision Recall Fl-measure
MNL-BLSTM 0.785 0.815 0.799
MXL-BLSTM 0.804 0.822 0.813
MTL-BLSTM 0.842 0.803 0.822

4.2.2. Influence of cross-lingual knowledge

The results on ENG test set are shown in Table 2 (a). As we
can see (in terms of Fl-measure), both MXL-BLSTM and
MTL-BLSTM outperform MNL-BLSTM, which indicates
that the model with shared hidden layers is capable of learn-
ing cross-lingual knowledge and can transfer this knowledge
to other languages. Moreover, the model with uniform fea-
ture representation is better than that of simply mixing the
samples of different languages. The results demonstrate us-
ing large amount of MAN training data is helpful to improve
the performance of limited amount of ENG training data, and
vise versa (as can be seen in Table 2 (b)).

4.2.3. Influence of the complementary data

In this work, ENG is the target language with limited amount
of training data. We would like to know to what extent the
benefits provided by the data from complementary language
(MAN) can be. Shown in Fig. 2 (a), as the scale of the MAN
training data increases, the emphasis detection performance
on ENG data achieves consistent improvement. Greater per-
formance boost for target (ENG) can be achieved with rel-
atively small scale of the complementary (MAN) data. The

Fl-measure

results validate the usefulness of the cross-lingual knowledge
for emphasis detection.

4.2.4. Influence of model architectures

We further evaluate the sensitivity of key parameters related
to model architectures, trying to derive the most optimized
ones. The number of LSTM memory blocks per hidden layer
affects the model performance. Shown in Fig. 2 (b), as the
number of blocks increases, the performance gets better at
first and then decreases gradually. It achieves the best perfor-
mance when the number is 64. Besides, we also try different
LSTM hidden layers and find that the model with two LSTM
hidden layers achieves the best performance. When the layer
number is larger than two, the performance decreases gradu-
ally, probably because of the over fitting problem caused by
limited training data. Hence we use the model with two hid-
den LSTM layers and 64 LSTM blocks to compare with the
baseline methods.
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Fig. 2. Emphasis detection performance on ENG test set. (a)
Influence of the scale of MAN training data; (b) Influence of
the number of LSTM memory blocks per hidden layer.

5. CONCLUSIONS

This paper proposes an MTL-BLSTM model for emphasis de-
tection with limited training data. In this model, the hidden
layers are shared across different languages and considered
as a universal feature transformation. With this architecture,
the cross-lingual knowledge can be learned to provide bene-
fits to both languages. Experimental results demonstrate the
effectiveness of our proposed method.
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