
RECURRENT NEURAL NETWORK LANGUAGE MODEL TRAINING USING NATURAL
GRADIENT

Jianwei Yu?, Max. W. Y. Lam?, Xie Chen†, Shoukang Hu?, Songxiang Liu?, Xixin Wu?,
Xunying Liu?, Helen Meng?

?The Chinese University of Hong Kong, Hong Kong SAR, China
†Microsoft AI and Research, One Microsoft Way, Redmond, WA, USA

{jwyu, wylam, skhu, sxliu, wuxx, xyliu, hmmeng}@se.cuhk.edu.hk, xieche@microsoft.com

ABSTRACT

Recurrent neural network language models (RNNLMs) have become
an increasing popular choice for state-of-the-art speech recognition
systems. RNNLMs are normally trained by minimizing the cross
entropy (CE) using the stochastic gradient descent (SGD) algorithm.
However, the SGD method doesn’t consider the correlation between
parameters and therefore can lead to unstable and slow convergence
in training. Second-order optimization methods provide a possible
solution to this issue. However these methods are either computa-
tionally heavy or do not have competitive performance. In this pa-
per, a novel optimization method – stochastic natural gradient based
on minimum variance assumption (SNGM) is proposed for training
RNNLMs. It allows the natural gradient method to operate at a com-
parable training efficiency to the SGD method. By modifying the
gradient according to the local curvature of the KL-divergence be-
tween current and updated probabilistic distributions, the proposed
SNGM approach is shown to outperform both the SGD and lim-
ited memory BFGS methods across three tasks: Penn Treebank,
Switchboard conversational speech recognition and AMI meeting
room transcription in terms of both perplexity and word error rate.

Index Terms— RNNLMs, Natural Gradient

1. INTRODUCTION

Language models (LMs) which estimate the probability of any given
word sequence in a language are essential to many applications such
as speech recognition. A variety of statistical language models have
been proposed, such as n-gram [1] LMs and neural network LMs [2,
3, 4, 5]. In recent years, RNNLMs and long-short term of memory
(LSTM) variants [6, 7, 8] have been shown to yeild state-of-the-art
language modeling performance on a wide range of tasks and give
significant improvements over n-gram LMs.

For the training of RNNLMs, cross entropy is normally used as
the objective function and stochastic gradient descent (SGD) algo-
rithm [9] used for optimization. In common with other gradient de-
scent based techniques, the SGD method only considers about the
first-order derivatives. No higher order gradient information [10,
11, 12, 13, 14] is used to consider the correlation between param-
eters and therefore can not fully capture the curvature of the objec-
tive function. This can lead to unstable and slow convergence in the
training. Newton’s method is one of the most renowned approaches

0 This research was partially funded by Research Grants Council of Hong
Kong General Research grant Fund No.14200218, and the Chinese Univer-
sity of Hong Kong (CUHK) grant No. 4055065

to address this issue by using quadratic approximation of the objec-
tive function. However, for tasks with a large number of parameters
such as language modeling, computing the Hessian matrix and its
inverse required by Newton’s method is problematic.

To address this issue, truncated Newton’s methods based on
Hessian-free [13] (HF) optimization have been proposed and suc-
cessfully applied to speech recognition tasks [14]. Instead of di-
rectly computing the Hessian matrix and its inverse, the product
between the inverse Hessian and the gradient is approximated using
an iterative Conjugate Gradient (CG) algorithm. However, due to
additional modified forwarded passes performed during CG search,
the HF method is highly expensive [13, 15, 16] and can converge
to a sub-optimal solution. Alternatively, the 2nd order update di-
rection can also be approximated via a recursion over a limited
number of past gradients based on the limited-memory Broyden
Fletcher Goldfarb Shannon (L-BFGS) [11, 12, 17] algorithm. Using
the KL-divergence between the current and updated probabilistic
distributions over state-level sequence from an information theory
perspective, a natural gradient [18] based DNN acoustic model
training method was proposed in [16]. In the NG method, gradient
descent is done on the space of densities pθ(w). The update direc-
tion is obtained using the product of inverse of the empirical Fisher
Information (FI) matrix where the gradient estimates are derived by
CG.

In this paper, we propose a novel optimization algorithm,
namely stochastic natural gradient based on minimum variance
assumption (SNGM) for training RNNLMs. Using this method, the
product of the inverse FI matrix and the gradient can be approxi-
mated as the gradient multiplied with a dynamically adjusted scaling
factor. Compared with the NG based method in [16], our method
does not require expensive CG search and is as efficient as standard
SGD training scheme. The proposed approach is shown to outper-
form both the SGD and L-BFGS based second-order optimization
methods across three data sets: Penn Treebank, Switchboard con-
versational speech recognition and AMI meeting room transcription
in terms of both perplexity and word error rate.

The rest of the paper is organized as follows. Section 2 and
Section 3 briefly review the RNNLMs architecture and SGD based
training algorithm. Section 4 presents the L-BFGS based second
order optimization scheme for the RNNLMs. Section 5 introduces
the SNGM method. Experimental results are presented in seciton 6.
Section 7 is the conclusion and future work.

7260978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

2. RECURRENT NEURAL NETWORK LANGUAGE
MODELS

Language models (LMs) assign a probability to any given sentence
of n wordsW = (w1,w2, ...,wn). According to Bayesian rule, it
can be decomposed as the product of the individual word probabili-
ties given its word history:

P (W) = P (w1, ...,wn) =

n∏
t=1

P (wt|wt−1, ...,w1). (1)

In recurrent neural network language models (RNNLMs), the word
probability can be written as:

P (wt|wt−1, ...,w1) ≈ P (wt|wt−1,ht−2) = P (wt|ht−1),
(2)

where ht−1 ∈ RM is the hidden vector that represents the previ-
ous history (wt−1, ...,w1). The RNNLM can be generally divided
into three parts: the projection layer, the recurrent layer and the
output layer. The projection layer projects the one-hot word vec-
tor wt ∈ RN into a continuous space χ ⊆ RM as xt, where N
is vocabulary size and usually M � N . Followed by the projec-
tion layer, recurrent layer computes the hidden vector by recursively
applying a gating function:

ht−1 = g(xt−1, ht−2), (3)

which is normally based on sigmoid activations in standard RNNLMs.
In order to address vanishing gradient issue associated with conven-
tional RNNLM training, long short-term memory (LSTM) [19]
RNNLMs can be used. For both conventional RNNLMs and LSTM-
RNNLMs, the output layer uses the hidden vector ht−1 to compute
the word probabilities via a softmax activation:

P (wt|ht−1) =
exp((Vht−1)indx(wt))∑N

n=1 exp((Vht−1)n)
, (4)

where V is the the projection matrix of the output layer that project
the hidden vector back to vocabulary space, (Vht−1)n denotes the
n-th elements of (Vht−1) and indx(wt) is the index of wordwt.

3. RNNLM TRAINING USING SGD

Conventional RNNLM training minimizes the cross entropy (CE) of
the training data. For a given sequence containing a total of Nw

words, the CE objective function is given by

L(θ) = − 1

Nw

Nw∑
t=1

logP (wt|ht−1). (5)

The stochastic gradient descent (SGD) algorithm is normally used in
CE training. For the (k + 1)-th randomly selected minibatch of Nw

words within each training epoch, the gradient statistics accumulated
over the minibatch are scaled by a tunable learning rate α before
being used to update the model parameters

θk+1 = θk − α∇L(θ). (6)

The gradient of RNNLMs can be acquired using an extended form of
the standard back-propagation algorithm, back-propagation through
time (BPTT) [20]. The SGD method only considers the first-order
derivatives. No higher order gradient information is used to consider
the correlation between parameters. Therefore this method can not
fully capture the curvature of the objective function. This can lead
to unstable and slow convergence in the training.

4. RNNLMS TRAINING WITH SECOND ORDER
OPTIMIZATION

In this section we briefly review the Newton’s method and Quasi-
Newton methods. Considering about the drawbacks of BFGS
method, we apply the L-BFGS algorithm for RNNLM training.
4.1. Newton’s Method

In contrast to SGD, Newton’s method explicitly considers the
second-order gradient information to capture the correlations be-
tween model parameters. By taking a quadratic approximation to
the objective function, the objective function L(θ) can be locally
approximated using a second-order Taylor series expansion:

L(θk + ∆θ) ≈ L(θk) + ∆θT∇L(θk) +
1

2
∆θTH∆θ, (7)

where H is the Hessian matrix. Instead of directly minimizing
L(θ), Newton’s method aims to minimize the above quadratic ap-
proximation of equation (7). Setting its gradient with respect to ∆θ
to zero leads to the Newton update direction:

∆θ = −H−1∇L(θk). (8)

4.2. Quasi-Newton Methods
For tasks with a large number of model parameters, directly us-

ing Newton’s method is problematic. The calculation of the Hessian
matrix with O(N2) parameters and its inversion of O(N3) com-
plexity are both computationally expensive. Furthermore, the Hes-
sian matrix is not guaranteed to be positive-definite. In this case, the
resulting Newton direction may not lead to the desired minimum,
but rather towards an opposite direction or a saddle point.

To address these issues, two types of techniques that do not re-
quire an explicit direct calculation of Hessian and its inverse can be
used. The first type is based on Hessian free optimization [13, 15] .
Instead of directly computing the Hessian matrix, an iterative Con-
jugate Gradient (CG) algorithm is used to calculate the update direc-
tion. As the CG search requires additional modified forward passes
[13, 15, 21] to be performed, the Hessian Free optimization algo-
rithm is therefore expensive to use in practice [14, 16]. The second
category of techniques are based on Quasi-Newton methods. These
techniques approximate the inverse Hessian matrix by recursively
analyzing the past gradient vectors. An early form of these methods
was based on the Davidon Flecher Powell (DFP) algorithm, before
being further developed into the widely used Broyden Fletcher Gold-
farb Shannon (BFGS) algorithm.
4.3. Limited Memory BFGS Method

The standard BFGS algorithm requires a full matrix approxima-
tion to the inverse of the Hessian with O(N2) parameters. This is
computationally expensive for tasks with a large amount of model
parameters. To address this issue, a low memory extension to the
standard BFGS algorithm, limited memory BFGS (L-BFGS) method
can be used. In contrast to the standard BFGS algorithm that approx-
imates the inverse Hessian directly via a recursion over past gradi-
ents, the L-BFGS method approximates the matix-vector product be-
tween the inverse Hessian and gradient vector in equation (8). Only
a few vectors representing a history of the past m updates of such
matrix-vector product need to be stored. The gradient history size
m can be set small as m < 10. In this paper, m = 5 is set to 5
throughout the experiments.

The L-BFGS algorithm requires an initial approximation of the
Hessian before iteratively computes the product between Hessian in-
verse and the gradient vector. Following the work in [22], the initial
Hessian approximate is set to be an identity matrix. The pseudo-code
of the L-BFGS algorithm is shown in algorithm 1.

7261

Algorithm 1 L-BFGS algorithm for RNNLMs

1: gk ← ∇L(θk), q← gk
2: for i = k − 1, k − 2, ..., k −m do
3: si← θi+1 − θi, yi← gi+1 − gi
4: ρi ← 1

yT
i
si

, αi ← ρis
T
i gk

5: q← q−αiyi
6: end for
7: B0

k = I , z← B0
kq

8: for i = k −m, k −m+ 1, ..., k − 1 do
9: βi = ρiy

T
i z

10: z = z + si(αi − βi)
11: end for
12: H−1

k gk← z

5. STOCHASTIC NATURAL GRADIENT OPTIMIZATION

The natural gradient method was first proposed by Amari [18] as
an effective method for training parametric density models. This
method established a geometry on the Riemannian space of density
functions inside which steepest descent is performed. Amari showed
[23] that by inherently doing optimization on the Riemannian space
of density models, the natural gradient method can be more effective
than standard gradient descent. This method has attracted increasing
interest in recent years for training DNNs [16, 24, 25, 26]. This work
extends the application of NG method into RNNLMs.
5.1. Fisher Information Matrix for RNNLMs

Let F be the family of densities pθ(wt|ht−1) that can be cap-
tured by different setting of θ. For simplicity in the rest of the paper
we use pθ(wt) to denote the pθ(wt|ht−1). When one adds a small
quantity ∆θ, the changes of the probability distributions can be mea-
sured using the KL-divergence between the current and updated dis-
tributions. Using a Taylor expansion, within a convex neighbour-
hood of a given distribution θ(wt), the KL-divergence can be ap-
proximated as follows:

KL(pθ(wt)||pθ+∆θ(wt)) ≈ −∆θTEpθ(wt)[∇log(pθ(wt)]

−1

2
∆θTEpθ(wt)[∇

2log(pθ(wt)]∆θ,

(9)
where Epθ(wt)[∇log(pθ(wt)] in the first term of the quadratic ap-
proximation of the KL-divergence can be shown equal to zero be-
cause each candidate pθ(wt) is a valid probability distribution. Thus
the KL divergence can be locally approximated by

KL(pθ(wt)||pθ+∆θ(wt)) ≈

− 1

2
∆θTEpθ(wt)[∇

2log(pθ(wt)]∆θ.
(10)

The Fisher Information (FI) matrix is defined as the expected
outer product of the likelihood score,

F = Epθ(wt)[∇logpθ(wt)∇logpθ(wt)
T]. (11)

Under the condition where equation (10) holds, the FI matrix can be
proved to be equal to the negated Hessian matrix w.r.t the distribution
pθ(wt). Thus, we can now locally approximate the KL-divergence
by

KL(pθ(wt)||pθ+∆θ(wt)) ≈
1

2
∆θTF∆θ. (12)

For any given θ, Equation (12) allows us to define a notion of local
’distance’ measure in the Riemannian parameter space of joint dis-
tributions pθ(wt) using the FI matrix. Thus the FI matrix can be

regarded as the Riemannian metric tensor of the space of the prob-
ability density functions. Amari proved that the steepest descent di-
rection of L(θ) in Riemannian space is [18]

∆θ = −F−1∇L(θ). (13)

5.2. Stochastic NG under minimum variance assumption
In this work, we randomly divide the training data set into sev-

eral small minibatches in the same fashion as SGD. Each minibatch
can be viewed as a local representation of the whole training set. We
estimate the Fisher Information matrix by the data samples only in
current minibatch and update the model parameters using the natu-
ral gradient method (SNG). Following the greedy strategy, this ap-
proach uses natural gradient to get the ’steepest’ update direction
instead of SGD direction within each minibatch.For tasks having a
large amount of parameters, directly computing the update direction
based on natural gradient method is expensive when explicitly com-
puting and inverting the FI matrix. In [16] this issue is addressed by
using a CG search scheme to iteratively approximate the product be-
tween the FI matrix inverse and the gradient. However, in practice,
CG algorithm is time consuming and not always stable especially
when the number of iterations is limited. In order to improve effi-
ciency, a minimum variance assumption is made over the gradients
obtained within each minibatch. The resulting algorithm, stochas-
tic natural gradient under a minimum variance assumption (SNGM),
allows the FI matrix to be approximate as

F ≈ Epθ(wt)[∇log(pθ(wt)]Epθ(wt)[∇log(pθ(wt)]
T (14)

For RNNLMs with CE objective function, the expection of the gra-
dients within a minibatch is exactly the update gradient∇L(θ) pro-
vide by SGD. Therefore, the update direction can be written as

∆θ = −(ggT)−1g (15)

As ggT is semi-positive definite, it is easy to find out that the up-
date direction is ∆θ = − g

gT g
. The inner product of vector is only

O(N) complexity. Therefore, the SNGM method is as fast as SGD
method. Compared with SGD, our method provides a scaling factor
appied to the gradient w.r.t each minibatch to dynamically adjust the
step size. We should carefully state that the minimum variance as-
sumption may not always hold, but the practical experiment shows
that SNGM method is effective. Table 1 shows the validation PPL
of LSTM language models using the SNGM and SGD methods with
different minibatch sizes varying from 5 to 200 on 3M words swbd
task. The learning rate is set to be 0.5 in all these experiments. In
contrast to the large performance degradation of the SGD LSTM
LM, the performance of SGNM trained LSTM LMs were found to
be very robust when using a wide range of minibatch sizes.

Table 1: Validation perplexities of SGD and SNGM trained LSTM
LMs with varying minibatch sizes on 3M word Switchboard corpus

Batchsize 5 10 50 100 200
SGD 90.1 90.7 100.9 114.5 121.4

SNGM 87.7 88.9 88.1 88.2 89.0

6. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of L-BFGS and SNGM
algorithms on sigmoid RNN and LSTM LMs using the perplexity
(PPL) measure and the word error rates (WERs) obtained in au-
tomatic speech recognition (ASR) tasks. The language model was
built on the Python GPU computing library PyTorch [27], while the

7262

0 5 10 15 20 25 30
Training Epoch

150

200

250

300

350

400

450

Va
lid

at
io

n
Da

ta
 P

PL

PTB
LSTM-SNGM
LSTM-SGD
LSTM-LBFGS
RNN-SNGM
RNN-SGD
RNN-LBFGS

0 5 10 15 20 25 30
Training Epoch

90

100

110

120

130

140

Va
lid
at
io
n
Da

ta
 P
PL

SWBD
LSTM-SNGM
LSTM-SGD
LSTM-LBFGS
RNN-SNGM
RNN-SGD
RNN-LBFGS

0 5 10 15 20 25 30
Training Epoch

80

90

100

110

120

130

Va
lid

at
io
n
Da

ta
 P
PL

AMI
LSTM-SNGM
LSTM-SGD
RNN-SNGM
RNN-SGD

Fig. 1: Validation data PPL changes of the language models in the training procedure on Penn Treebank, Switchboard and AMI corpora using
SGD, L-BFGS and SNGM methods.

optimization algorithm is developed by ourselves. In all our exper-
iment, we used 200 hidden nodes in the sigmoid RNN and LSTM
language models. The batch size and the learning rate are set to be
10 and 0.5 respectively for all these experiments. And we applied the
same newbob scheduling strategy to all the optimization algorithm
during training. The ASR systems were constructed using the HTK
toolkit version 3.5 [28]. In state-of-the-art ASR systems, RNNLMs
are often linearly interpolated within n-gram LMs to obtain better
generalization ability [29, 7]:

P (wt|wt−1
1) = λPngram(wt|wt−1

1)+(1−λ)PRNN(wt|wt−1
1),

(16)
where λ is the weight assign to the back-off n-gram LM, and is kept
fixed as 0.5 in all experiments in this paper.
6.1. Experiments on Penn Treebank Corpus

We first analyze the the performances of SGD, L-BFGS and
SNGM algorithms using the Penn TreeBank (PTB) corpus [30],
which consists of 10k vocabulary, 930k words for training, 74k
words for development and 82k words for testing. The left pic-
ture in Figure 1 shows that the L-BFGS and SGD algorithm give
very similar performances, while the SNGM method outperforms
them on both sigmoid RNN and LSTM language model with lower
validation data PPL and faster convergence.
6.2. Experiments on Conversational Telephone Speech

The Switchboard English system has 300 hour of conversational
telephone speech from Switchboard I for acoustic modeling and
3.6M words of acoustic transcription with 30k words lexicon for
language modeling. The acoustic model is a minimum phone error
(MPE) trained stacked hybrid DNN-HMM acoustic model [17],
which contains 6 sigmoid activation based hidden layers of 2000
nodes, except the 2nd last bottleneck (BN) layer contains 39 nodes
used to produce BN features.The PPL on the validation data during
training is shown in the middle part of Figure 1. The PPL and the
WER results on Switchboard (swbd) and CallHome (callhm) test
data can be found in Table 2. It can been seen that the SNGM
method provides competitive performance on this task, while the
L-BFGS is worse than SGD. Compared with previous work [17] on
L-BFGS RNNLM, here we used a stronger SGD baseline.
6.3. Experiment on AMI Meeting Transcription Task

The previous experiments show that the SNGM method is more
efficient than the other two methods. Because of computation limi-
tation, we evaluate only the performance of SGD, and SNGM on the
highly challenging meeting transcription task using the 59 hour Aug-
mented Multi-party Interaction (AMI) corpus [31]. We used a mix-
ture of text corpora with 26M words (AMI, Fisher 1/2 and SWBD)

Table 2: Validation data perplexities (PPL) and word error rates
(WERs) on swbd and callhm test data

PPL WER(%)
LMs swbd callhm

- + 4g - + 4g - + 4g
4-gram 80.65 - 12.1 - 23.9 -

RNN-SGD 96.28 75.00 11.7 11.5 24.1 23.4
RNN-LBFGS 99.66 76.38 11.9 11.6 24.2 23.6
RNN-SNGM 93.96 73.93 11.6 11.3 23.8 23.3
LSTM-SGD 90.74 71.95 11.4 11.3 23.3 23.1

LSTM-LBFGS 92.41 72.98 11.4 11.2 23.9 23.3
LSTM-SNGM 88.93 70.56 11.3 11.1 23.5 23.1

Table 3: Validation data perplexities (PPL) and word error rates
(WERs) on AMI test data

PPL WER(%)
LMs dev eval

- + 4g - + 4g - + 4g
4-gram 111.30 - 30.4 - 31.0 -

RNN-SGD 95.39 84.59 29.8 29.4 30.5 30.0
RNN-SNGM 91.21 82.37 29.7 29.1 30.2 29.9
LSTM-SGD 82.55 76.61 29.4 29.0 29.6 29.5

LSTM-SNGM 81.38 75.34 29.4 29.2 29.7 29.5

and 41k words in vocabulary to train the language model. For acous-
tic modeling, we trained a Tandem system and a Hybrid system sep-
arately and then combined them for better performance using joint
decoding [32]. All systems were based on state-clustered decision-
tree triphone models with 6000 nodes. The right part of Figure 1
shows the validation data PPL changes during training. The PPL
and WER performances are shown in Table 3.The AMI experiment
result indicates that the SNGM method outperforms SGD on PPL
measure and sigmoid RNN language model based WERs.

7. CONCLUSION

In this paper, an effective stochastic natural gradient method un-
der minimum variant assumption (SNGM) is proposed for training
RNNLMs. Experiment results on three datasets suggest the pro-
posed technique is useful to improve the performance for RNNLMs.
To the best of our knowledge, this is the first work using NG based
optimization for RNNLMs. Future work will focus on the compari-
son of the SNGM method with CG based NG method on RNNLMs.

7263

8. REFERENCES

[1] Ronald Rosenfeld, “Two decades of statistical language mod-
eling: Where do we go from here?,” Proceedings of the IEEE,
vol. 88, no. 8, pp. 1270–1278, 2000.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Jauvin, “A neural probabilistic language model,” Journal
of machine learning research, vol. 3, no. Feb, pp. 1137–1155,
2003.

[3] Holger Schwenk, “Continuous space language models,” Com-
puter Speech & Language, vol. 21, no. 3, pp. 492–518, 2007.

[4] Junho Park, Xunying Liu, Mark JF Gales, and Phil C Wood-
land, “Improved neural network based language modelling
and adaptation,” in Eleventh Annual Conference of the Inter-
national Speech Communication Association, 2010.

[5] Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gau-
vain, and François Yvon, “Structured output layer neural net-
work language models for speech recognition,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 21, no.
1, pp. 197–206, 2013.

[6] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney, “Lstm
neural networks for language modeling,” in Thirteenth annual
conference of the international speech communication associ-
ation, 2012.

[7] Martin Sundermeyer, Hermann Ney, and Ralf Schlüter, “From
feedforward to recurrent lstm neural networks for language
modeling,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 23, no. 3, pp. 517–529, 2015.

[8] Da Zheng, Zhehuai Chen, Yue Wu, and Kai Yu, “Directed
automatic speech transcription error correction using bidirec-
tional lstm,” in Chinese Spoken Language Processing (ISC-
SLP), 2016 10th International Symposium on. IEEE, 2016, pp.
1–5.

[9] Léon Bottou, “Stochastic gradient learning in neural net-
works,” Proceedings of Neuro-Nımes, vol. 91, no. 8, pp. 12,
1991.

[10] Roger Fletcher, Practical methods of optimization, John Wiley
& Sons, 2013.

[11] Dong C Liu and Jorge Nocedal, “On the limited memory bfgs
method for large scale optimization,” Mathematical program-
ming, vol. 45, no. 1-3, pp. 503–528, 1989.

[12] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu,
“A limited memory algorithm for bound constrained optimiza-
tion,” SIAM Journal on Scientific Computing, vol. 16, no. 5,
pp. 1190–1208, 1995.

[13] James Martens, “Deep learning via hessian-free optimiza-
tion.,” in ICML, 2010, vol. 27, pp. 735–742.

[14] Brian Kingsbury, Tara N Sainath, and Hagen Soltau, “Scalable
minimum bayes risk training of deep neural network acoustic
models using distributed hessian-free optimization,” in Thir-
teenth Annual Conference of the International Speech Com-
munication Association, 2012.

[15] James Martens and Ilya Sutskever, “Training deep and recur-
rent networks with hessian-free optimization,” in Neural net-
works: Tricks of the trade, pp. 479–535. Springer, 2012.

[16] Adnan Haider and Philip C Woodland, “Sequence training
of dnn acoustic models with natural gradient,” in Automatic
Speech Recognition and Understanding Workshop (ASRU),
2017 IEEE. IEEE, 2017, pp. 178–184.

[17] Xunying Liu, Shansong Liu, Jinze Sha, Jianwei Yu, Zhiyuan
Xu, Xie Chen, and Helen Meng, “Limited-memory bfgs op-
timization of recurrent neural network language models for
speech recognition,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 6114–6118.

[18] Shun-ichi Amari, “Neural learning in structured parameter
spaces-natural riemannian gradient,” in Advances in neural
information processing systems, 1997, pp. 127–133.

[19] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[20] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams, “Learning representations by back-propagating er-
rors,” nature, vol. 323, no. 6088, pp. 533, 1986.

[21] Barak A Pearlmutter, “Fast exact multiplication by the hes-
sian,” Neural computation, vol. 6, no. 1, pp. 147–160, 1994.

[22] Yingkai Li and Huidong Liu, “Implementation of stochas-
tic quasi-newton’s method in pytorch,” arXiv preprint
arXiv:1805.02338, 2018.

[23] Shun-Ichi Amari, “Natural gradient works efficiently in learn-
ing,” Neural computation, vol. 10, no. 2, pp. 251–276, 1998.

[24] Razvan Pascanu and Yoshua Bengio, “Revisiting natural gradi-
ent for deep networks,” arXiv preprint arXiv:1301.3584, 2013.

[25] James Martens, “New insights and perspectives on the natural
gradient method,” arXiv preprint arXiv:1412.1193, 2014.

[26] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu,
et al., “Natural neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2015, pp. 2071–2079.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmai-
son, Luca Antiga, and Adam Lerer, “Automatic differentiation
in pytorch,” 2017.

[28] Steve Young, G Evermann, M Gales, T Hain, D Kershaw,
X Liu, G Moore, J Odell, D Ollason, D Povey, et al., “The
htk book (for htk version 3.5). university of cambridge, 2015,”
.

[29] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model,” in Eleventh Annual Conference of the Interna-
tional Speech Communication Association, 2010.

[30] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, “Re-
current neural network regularization,” arXiv preprint
arXiv:1409.2329, 2014.

[31] Jean Carletta, Simone Ashby, Sebastien Bourban, Mike Flynn,
Mael Guillemot, Thomas Hain, Jaroslav Kadlec, Vasilis
Karaiskos, Wessel Kraaij, Melissa Kronenthal, et al., “The
ami meeting corpus: A pre-announcement,” in International
workshop on machine learning for multimodal interaction.
Springer, 2005, pp. 28–39.

[32] Haipeng Wang, Anton Ragni, Mark John Gales, Kather-
ine Mary Knill, Philip Charles Woodland, and Chao Zhang,
“Joint decoding of tandem and hybrid systems for improved
keyword spotting on low resource languages,” 2015.

7264

