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ABSTRACT

Techniques for accent conversion (AC) aim to convert non-native to
native accented speech. Conventional AC methods try to convert
only the speaker identity of a native speaker’s voice to that of the
non-native accented target speaker, leaving the underlying content
and pronunciations unchanged. This hinders their practical use in
real-world applications, because native-accented utterances are re-
quired at conversion stage. In this paper, we present an end-to-end
framework, which is able to conduct AC from non-native-accented
utterances without using any native-accented utterances during on-
line conversion. We achieve this by independently extracting lin-
guistic and speaker representations from non-native accented speech
and condition a speech synthesis model on these representations to
generate native-accented speech. Experiments on open-source data
corpora show that the proposed system can convert Hindi-accented
English speech into native American English speech with high natu-
ralness, which is indistinguishable from native-accented recordings
in terms of accent.

Index Terms— Accent conversion, speech synthesis, accented
speech recognition

1. INTRODUCTION

Accent conversion (AC) [1, 2] aims to transform non-native speech
to sound as if the speaker had a native accent. Learners who ac-
quire a second language (L2) usually speak with a non-native accent
because of the influence of their mother tongues. It would be ben-
eficial for L2 learners to be able to listen to native-accented speech
with their own voices [2].

Conventional AC methods try to convert only the speaker iden-
tity of a native speaker’s voice to that of the non-native accented tar-
get speaker, leaving the underlying content and pronunciations un-
changed. This hinders their practical use in real-world applications,
because native-accented utterances are required at the conversion
stage. To solve this issue, we propose an end-to-end AC approach,
which is able to conduct AC from non-native-accented utterances
without using any native-accented utterance at the conversion stage.
The proposed approach contains four parts: a speaker encoder, a
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sequence-to-sequence (seq2seq) multi-speaker text-to-speech (TTS)
synthesis model, a seq2seq accented automatic speech recognition
(ASR) model and a neural vocoder. The speaker encoder, which
is trained on a speaker verification (SV) task, generates fixed-
dimensional speaker embedding vectors from acoustic features. The
multi-speaker TTS model is based on Tacotron2 [3], which generates
mel-spectrogram features from a phoneme sequence, conditioned
on the speaker embedding. The accented ASR model predicts lin-
guistic representations from acoustic features, conditioned on accent
embedding. The TTS model is trained using only native English
speech data, while the accented ASR model is trained using both the
native and non-native English speech data. During accent conver-
sion, acoustic features from the non-native speech are fed into the
accented ASR model and the speaker encoder, generating linguistic
representations and the speaker embedding respectively. The gener-
ated linguistic representations and the speaker embedding are then
used by the TTS decoder to generate the native-accented acoustic
features. The neural vocoder finally convert the acoustic features
into time-domain waveforms.

The contributions of this paper include: (1) To the best of our
knowledge, the proposed approach is the first AC technique which
is able to convert non-native-accented into native-accented speech
directly during the conversion stage, without using any native utter-
ance. (2) The proposed approach is based on end-to-end seq2seq
networks, which has the ability to model prosodic characteristics,
e.g., speaking rate and duration, making the converted speech output
sound more native. (3) The proposed approach has no requirement
for parallel speech data between the native and non-native speakers
for training.

2. RELATED WORK

Various approaches for AC have been proposed. Early approaches
combine spectral features from native and non-native speakers to
control the degree of accent using voice morphing [4–6]. Voice con-
version (VC) techniques [7] are adapted to match native and non-
native frames based on their MFCC similarity after vocal tract length
normalization (VTLN) [1]. Phonetic posteriorgrams (PPGs), which
are successfully used for VC tasks [8–10], have also been used for
AC [11, 12]. These approaches can reduce the accent of non-native



utterances, but have various limitations. Voice morphing methods
tend to generate converted speech perceived as neither the native
speaker nor the non-native speaker in timbre. The method proposed
in [1] requires relatively large set of parallel recordings from the na-
tive and non-native speakers and VLTN only accounts for a subset of
the speaker characteristics, which leads to limited AC performance.
Since the nature of frame-wise feature mapping in the aforemen-
tioned approaches, prosodic patterns, such as duration and speaking
rate, are hard to convert. Moreover, all previous AC techniques re-
quire native reference utterances during the accent conversion phase.

The work presented here is mostly inspired by the recently pro-
posed non-parallel seq2seq VC technique [13], neural voice cloning
technique [14] and accented ASR technique [15]. Zhang et al. [13]
proposed a seq2seq-based VC framework using non-parallel training
data, where a recognition encoder and a speaker encoder are jointly
trained to extracted disentangled linguistic and speaker representa-
tions from acoustic features. Different from their method, in this
paper we train a stand-alone speaker encoder using a speaker dis-
criminative loss [16] to generate speaker representations. We expect
the speaker encoder to learn a representation which captures speaker
characteristics relevant to speech synthesis. Inspired by [15] and
[17], we adopt an end-to-end accented ASR model trained using a
multi-task loss to extract accent-agnostic linguistic representations
from the non-native-accented speech. Following the setting in [14],
we extend the Tacotron2 architecture [3] to support multiple speak-
ers.

3. BASELINE APPROACH

During training, we first train a speaker-independent ASR (SI-ASR)
model using a native English multi-speaker corpus. We then use
the SI-ASR model to compute L1 PPGs from speech utterances of
native-accented speakers and L2 PPGs from speech utterances of the
non-native-accented speaker, respectively. Dynamic Time Warping
(DTW) is used to align the paralleled L2 PPGs and L1 PPGs. As
shown in Fig. 1, we then train two transform models, where trans-
form 1 maps L2 PPGs to L1 PPGs while transform 2 maps L2 PPGs
to mel spectrograms. During accent conversion, as shown in Fig. 2,
we first compute L2 PPGs from the non-native-accented utterance,
and then feed the L2 PPGs into transform 1 and transform 2 to get
the converted mel sepctrograms. A WaveRNN-based neural vocoder
[18] is used to convert the mel spectrograms into waveforms.

4. PROPOSED APPROACH

The proposed end-to-end AC approach is composed of four indepen-
dently trained neural networks: a speaker encoder, a multi-speaker
TTS model, an accented ASR model (as shown in Fig. 3) and a neu-
ral vocoder. (The neural vocoder is not shown because of space lim-
itation.)

4.1. Speaker encoder

The speaker encoder model used in this paper follows [16], which is
a scalable and accurate neural network framework for speaker veri-
fication. It generates a fixed-dimensional speaker embedding vector
from a sequence of acoustic frames computed from a speech utter-
ance of arbitrary length. The speaker embedding vector is used to
condition the TTS model on a reference speech signal from a de-
sired target speaker, so that the generated speech has speaker iden-
tity of that target speaker. The speaker encoder is trained to optimize
a generalized end-to-end (GE2E) speaker verification loss [16], so
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Fig. 1. Training stage of the baseline approach.

Transform 1 Transform 2

L2 PPGs Predicted L1 PPGs Acoustic Features

Fig. 2. Conversion stage of the baseline approach.

that embeddings of utterances from the same speaker have high co-
sine similarity, while those of utterances from different speakers are
far apart in the embedding space. We expect the speaker encoder to
learn a representation relevant to speech synthesis, which captures
speaker characteristics of a non-native-accented speaker who is un-
seen during training.

4.2. Multi-speaker TTS model

Inspired by [14], we modify the Tacotron2 model, which is an
attention-based encoder-decoder model, to support multiple speak-
ers. As shown in Fig. 3, a speaker embedding vector computed by
the speaker encoder for a desired target speaker is concatenated with
the TTS encoder output at each time step. The TTS decoder with
attention takes these as additional inputs to generate mel spectro-
grams. The TTS model is trained with the native-accented speech
and corresponding text transcripts by using the mean square error
(MSE) loss LTTS , such that it is expected to only generate native-
accented speech with the identity/timbre determined by the speaker
embedding. We map the text transcripts into phoneme sequences as
the input of the TTS model, since [14] has shown that using phoneme
sequences leads to faster convergence and improved pronunciation
of rare words and proper nouns.

4.3. Multi-task accented ASR model

We use an accented ASR model to learn accent-agnostic linguistic
representations from acoustic features. The ASR model applies an
end-to-end attention-based encoder-decoder framework [19]. Given
a pair of audio and its phoneme transcriptions, we compute acous-
tic features from the audio, and linguistic representations from the
phoneme sequence by the TTS encoder. Inspired by [17], we add a
fully connected (FC) transform layer on top of the ASR encoder and
compute a connectionist temporal classification (CTC) loss LCTC

to stabilize the training process. Since the training data of the ASR
model includes accented utterances, following [15], we concatenated
an accent embedding with acoustic features at each frame as inputs
to the ASR model and add an accent classifier on top of the ASR
encoder to make it more robust for accented speech recognition. We
postulate that different accents are associated with different speaker.
In this paper, the accent embedding of a speaker is obtained by aver-
aging all his/her speaker embeddings. The output of the accent clas-
sifier is used to compute a cross-entropy loss LACC . The attention-
based ASR decoder is adopted to predict phoneme labels and lin-
guistic representations in two streams. A cross-entropy loss LCE is
used for phoneme label prediction while a MSE loss LTTSE which
measures the linguistic difference between TTS-encoder output Hl

and ASR-decoder output Ĥl is used for linguistic representation pre-
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Fig. 4. Conversion stage of the proposed approach. hs and Ĥl are
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diction. LTTSE has the following form:

LTTSE =
1

N

N∑
i=1

||Hl
i − Ĥl

i||2, (1)

where N is the number of training samples. The ASR model is
trained with a multi-task loss:

LASR = λ1LCE + λ2LTTSE + λ3LCTC + λ4LACC , (2)

where the λ’s are hyper-parameters, weighting the four losses.

4.4. Neural vocoder

In this paper, the WaveRNN network is used as the neural vocoder.
We use the open-sourced Pytorch implementation1. Since the mel
spectrogram captures all of the relevant details needed for high qual-
ity speech synthesis, we simply use ground-truth mel spectrograms
from multiple speakers to train the WaveRNN, without adding any
speaker embedding.

4.5. Training and conversion

At training stage, as shown in Fig. 3, we first train the speaker en-
coder model. We then train the multi-speaker TTS model using only
native English speech data with the loss LTTS . After that, the ac-
cented ASR model is first pre-trained using speech data from mul-
tiple native-accented speakers and one non-native-accented target
speaker. Then the ASR model is fine-tuned using speech data from
only the non-native-accented target speaker. We use the loss LASR

in Eq. 2 during these two stages. We train a WaveRNN using speech
data from only native-accented speakers.

1https://github.com/fatchord/WaveRNN

At accent conversion stage, as shown in Fig. 4, acoustic fea-
tures are first computed from the non-native accented utterances.
The speaker encoder then takes in the acoustic features and output
the speaker embedding vectors representing the identity of the non-
native-accented speaker. Accent embedding is the averaged speaker
embeddings of the non-native-accented speaker. We concatenate
the accent embedding with acoustic features at each frame and then
feed them into the ASR model to generate linguistic representations
Ĥl. The attention-based TTS decoder then takes in the linguistic
representations and speaker embedding to generate native-accented
acoustic features. Finally, we use the WaveRNN model to convert
the acoustic features into time domain waveform, which is expected
to be more native-accented.

5. EXPERIMENTS

5.1. Experimental setup

We use LibriSpeech (train-other-500) [20], VoxCeleb1 [21] and Vox-
Celeb2 [22] datasets to train the speaker encoder. In total, there are
8.4K speakers. The inputs to the speaker encoder are 40-channel log
mel spectrograms with 25ms window width and 10ms frame-shift.

The VCTK dataset [23] contains 44 hours of clean speech from
109 speakers. In this paper, we choose the Hindi-accented speaker
p248 as the target speaker. We regard the speakers having no Hindi
accent as native English speakers. Audios are re-sampled to 22.05
kHz. For training of the TTS model and the WaveRNN model, we
only use speech data from 105 native speakers. The mel spectro-
grams have 80 channels, computed using a 50ms window width and
12.5ms frame-shift. We randomly select 1000 samples as validation
set and the remaining samples are used for training. For training
of the accented ASR model, speech data of the native speakers and
p248 is used. 40-channel mel spectrograms computed using 25ms
window width and 10ms shift as well as their delta and delta-delta
features are used as acoustic features. The number of utterances
from p248 used for training, validation and testing are 326, 25 and
25, respectively. The SI-ASR model used to extract PPGs is trained
with the TIMIT dataset [24] as in [25].

The speaker encoder is a 3-layer LSTM with 256 hidden nodes
followed by a projection layer of 256 units. The output is the L2-
normalized hidden state of the last layer, which is a vector of 256
elements. The TTS model employs the same architecture as in [3].
The ASR encoder is a 5-layer bidirectional LSTM (BLSTM) with
320 units per direction. 300-dimensional location-aware attention
[26] is used in the attention layer. The ASR decoder is a single
layer LSTM with 320 units. The accent classifier is a 2-layer 1D
convolution network with 128 channels and 3 kernel size, followed
by an average pooling layer and a final FC output layer. In Eq. 2,
λ1 = 0.5, λ2 = 0.1, λ3 = 0.5 and λ4 = 0.1, heuristically making
the four loss terms to be at similar numerical scale. The transform 1
and 2 in the baseline approach are 2-layer and 4-layer BLSTMs with
128 units per direction, respectively.

The speaker encoder model is trained for 1000k steps with the
Adam optimizer using batch size of 640 and learning rate of 0.0001.
The TTS model is trained for 100k steps with the Adam optimizer
using batch size of 16 and learning rate of 0.001. The accented ASR
model is first pre-trained for 160k steps with the Adadelta optimizer
using batch size of 16 and learning rate 1 on speech data from the
native speakers and p248. Then it is fine-tuned on speech data from
only p248 for another 5k steps with unchanged batch size and learn-
ing rate.

In our experiments, we also conduct an ablation study, where we



0

1

2

3

4

5

L2-Ref Baseline Ablation Proposed

M
ea

n 
O

pi
ni

on
 S

co
re

 

(a)

0% 20% 40% 60% 80% 100%

P-AB

P-BL

AB-BL
(b)

Prefer A NP Prefer B

Fig. 5. (a) Mean opinion score results with 95% confidence interval.
(b) Speaker similarity preference test results, where “AB-BL”, “P-
BL” and “P-AB” represent the comparison of “Ablation vs. Base-
line”, “Proposed vs. Baseline”, “Proposed vs. Ablation”, respec-
tively.
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Fig. 6. Accentedness preference test results. “AB-BL”, “P-BL”,
“P-AB”, “P-L2” and “P-L1” represent comparison of “Ablation vs.
Baseline”, “Proposed vs. Baseline”, “Proposed vs. Ablation”, “Pro-
posed vs. non-native-accented recording” and “Proposed v.s native-
accented recording”, respectively.

drop the accent embedding and accent classifier from the proposed
approach. In total, we compare three systems in terms of their accent
conversion performance: (1) the baseline system; (2) the proposed
system and (3) the ablation system.

5.2. Experimental results

Three perceptual listening tests are conducted to evaluate the ac-
cent conversion performance of the baseline (BL), proposed (P) and
ablation (AB) systems: a mean opinion score (MOS) test of audio
naturalness, a speaker similarity XAB test and an accentedness AB
test. We randomly choose 20 utterances from the test utterances of
speaker p248 for evaluation. 10 Chinese speakers who are proficient
in English have participated in these tests2.

Audio naturalness. The audio naturalness is rated on a five-
point scale (1-bad, 2-poor, 3-fair, 4-good, 5-excellent) in the MOS
test. Audios generated from the three systems as well as non-native-
accented reference recordings (“L2-Ref”) are randomly shuffled be-
fore presenting to the listeners. Each group of audio corresponds to
the same text content. Listeners are allowed to replay audio sam-
ples as many times as necessary. The MOS results are shown in
Fig. 5(a). The proposed approach receives a 4.0 MOS (L2-Ref re-
ceives MOS of 4.4), which is much higher in statistical significance
than that of the baseline approach. The fact that the proposed ap-
proach achieves slightly higher MOS than the ablation system il-
lustrates that adding the accent embedding and classifier is helpful
for extracting accent-agnostic linguistic content beneficial for speech
synthesis from accented speech. Since we use seq2seq-based ASR
and TTS models, the converted speech has more native-like pronun-
ciation patterns such as duration and speaking rate, which are very
different from those of the source accented utterances.

Speaker similarity. We compare all the three systems in terms
of their speaker similarity of the converted speech to the non-native-

2Audios can be found in “https://liusongxiang.github.io/end2endAC/”

accented source speech. In the XAB test, X indicates the non-native
reference sample. Paired speech samples (A and B) with the same
text content as the reference are presented and the listeners are asked
to determine which one has closer timbre to the reference. Listeners
are also allowed to replay audio samples and choose “no preference
(NP)” if they cannot distinguish the difference. Audios are played
in reverse to avoid influence from underlying contents. The similar-
ity test results are shown in Fig. 5(b). We can see that the baseline
system achieves significantly better similarity performance than the
proposed system. The results are reasonable since the speech syn-
thesis model in the proposed approach never sees speech data from
the non-native accented speaker. We expect the synthesis model to
infer the speaker timbre from the speaker embedding generated by
the speaker encoder with only one utterance (i.e., voice cloning). Ac-
cess to speech data from more speakers can be helpful for training a
more generalizable speaker encoder. [14] achieves very good voice
cloning performance by training a speaker encoder using speech data
from 18K speakers; however, we cannot access such a large data cor-
pus. We find no statistical differences between the proposed and the
ablation systems (p = 0.36).

Accentedness. In the AB test on accentedness, we first let
participants listen to native and non-native reference audios. Then
paired speech samples (A and B) with the same textual content are
presented and the listeners are asked to choose the more native-like
samples. The results are shown in Fig. 6. According to the prefer-
ence tests between “P-BL” and “P-AB”, the listeners are very confi-
dent that the proposed approach can generate more native-accented
utterances than the baseline and ablation approaches (p << 0.001).
Even the ablation approach is able to achieve significantly better
accentedness performance (p << 0.001) than the baseline ap-
proach. The DTW process in the baseline approach may introduce
alignment errors and mapping from L2 PPGs to L1 PPGs using a
neural network may not be effective. According to the results of
“P-L2” and “P-L1”, we can conclude that the proposed approach
can remove non-native accented pronunciation patterns from the L2
speech and make the converted speech indistinguishable in accent
from the native-accented speech, the p values are 2.3 × e−8 and
0.06, respectively.

6. CONCLUSION

In this paper, we have presented an end-to-end accent conversion ap-
proach, which is the first model that is able to convert non-native ac-
cented into native-accented speech without any guidance from native
reference audio during conversion phase. The system is composed
of four independently trained neural networks: a speaker encoder,
a multi-speaker TTS model, an accented ASR model and a neural
vocoder. Experimental results show that the proposed approach can
convert Hindi-accented English speech into native American English
speech with high naturalness, which is indistinguishable from natu-
ral native speech. We expect the synthesis model to generate the
desired target speaker timbre from the speaker embedding obtained
from the speaker encoder. But the voice cloning performance is con-
strained by the amount of training data. The speaker similarity of
the converted speech needs further research effort to improve, which
will be our future work.
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