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Abstract
The N10 system in the Voice Conversion Challenge 2018 (VCC
2018) has achieved high voice conversion (VC) performance in
terms of speech naturalness and speaker similarity. We believe
that further improvements can be gained from joint optimiza-
tion (instead of separate optimization) of the conversion model
and WaveNet vocoder, as well as leveraging information from
the acoustic representation of the speech waveform, e.g. from
Mel-spectrograms. In this paper, we propose a VC architecture
to jointly train a conversion model that maps phonetic posteri-
orgrams (PPGs) to Mel-spectrograms and a WaveNet vocoder.
The conversion model has a bottle-neck layer, whose outputs
are concatenated with PPGs before being fed into the WaveNet
vocoder as local conditioning. A weighted sum of a Mel-
spectrogram prediction loss and a WaveNet loss is used as the
objective function to jointly optimize parameters of the conver-
sion model and the WaveNet vocoder. Objective and subjective
evaluation results show that the proposed approach is capable of
achieving significantly improved quality in voice conversion in
terms of speech naturalness and speaker similarity of the con-
verted speech for both cross-gender and intra-gender conver-
sions.
Index Terms: voice conversion, WaveNet, mel-spectrograms,
non-parallel data, joint training, phonetic posteriorgrams

1. Introduction
Voice conversion (VC) aims to modify a speech utterance spo-
ken by a source speaker to another as if it were uttered by a
target speaker, while keeping the linguistic content unchanged.
Most conventional VC systems contain a conversion model and
a vocoder. The conversion model is trained to learn the mapping
function between time-aligned source and target acoustic fea-
tures, which can be Gaussian mixture models (GMMs) [1, 2],
artificial neural networks (ANNs) [3, 4, 5, 6], etc. The vocoder
can be a source-filter vocoder, e.g., STRAIGHT [7], WORLD
[8], or a WaveNet vocoder [9].

Since parallel speech data between the source and target
speakers is expensive to collect, VC techniques using non-
parallel data (i.e., non-parallel VC) have been studied. The most
successful non-parallel VC approach is the N10 system [10] in
the Voice Conversion Challenge 2018 (VCC 2018) [11], which
combines a phonetic posteriorgram (PPG)-based conversion
model [12] and a WaveNet vocoder. The PPG-based conversion
model learns the mapping function from PPGs to acoustic fea-
tures, which are Mel-cepstrums (MCEPs), F0, voiced/unvoiced
flag (VUV) and aperiodicities. The WaveNet vocoder is trained
to generate speech waveform conditioned on acoustic features.
The N10 system can achieve high conversion performance in

terms of speech naturalness and speaker similarity of the con-
verted speech according to the VCC 2018 evaluation results.

However, there are two ways to further improve the con-
version performance of the N10 system. The N10 system uses
MCEPs as spectral features, which are shown to be worse than
Mel-spectrograms for VC in terms of speech naturalness and
speaker similarity of the converted speech and F0 conversion
[13]. The Mel-spectrogram is a low-level acoustic represen-
tation of speech waveform, which is commonly used for lo-
cal conditioning of a WaveNet vocoder in current state-of-the-
art text-to-speech (TTS) architectures [14]. Therefore, we be-
lieve that one way to improve the N10 system is to use Mel-
spectrograms as acoustic features. The conversion model and
the WaveNet vocoder in the N10 system are separately trained,
which may not be globally optimal for the whole conversion
pipeline. Hence, we believe that a second way to improve the
N10 system is to jointly train the conversion model and the
WaveNet vocoder. In [15], a compact framework of a condi-
tion network and a WaveNet vocoder is proposed to solve the
problem of separate training in the N10 system. However, the
proposed model in [15] bypasses the conversion model and does
not take advantage of the acoustic features.

In this paper, we propose a VC architecture to jointly train
a conversion model that maps phonetic posteriorgrams (PPGs)
to Mel-spectrograms and a WaveNet vocoder. The conversion
model includes several multi-head self-attention [15, 16] and
bidirectional LSTM (BLSTM) [17] blocks and one bottle-neck
(BN) layer. The output of the BN layer is fed directly into
the WaveNet vocoder as local conditioning, which has a sim-
ilar structure to the text-to-wave model in [18]. Since PPGs
represent articulation of speech sounds in a speaker-normalized
space and correspond to speech content [12], PPGs are also fed
into the WaveNet vocoder through a residual-like connection
and we believe that this enables the WaveNet vocoder to reduce
pronunciation errors. A weighted sum of a Mel-spectrogram
prediction loss and a WaveNet loss is used as the objective func-
tion to jointly optimize parameters of the conversion model and
the WaveNet vocoder. Objective and subjective evaluation re-
sults show that the proposed approach is capable of achieving
improved quality in voice conversion in terms of speech natu-
ralness and speaker similarity of the converted speech for both
cross-gender and intra-gender conversions.

The contributions of this paper are two folds:

• The proposed approach leverages low-level acoustic rep-
resentation (i.e., Mel-spectrograms) of speech waveform
for non-parallel VC.

• The proposed approach jointly trains the conversion
model and the WaveNet vocoder using a multi-task
learning mechanism.



Target speech 

Features
extraction

SI-ASR 
model

PPGs

Log F0 MFCC

Conversion
model

Target speech 

Features
extraction

WaveNet
vocoder

M
el

-s
pe

ct
ro

gr
am

s

Source speech 

PPGs

SI-ASR 
model

Features
extraction

MFCCLog F0 VUV

Linear
transform 

WaveNet
vocoder

Converted  
speech

M
el

-s
pe

ct
ro

gr
am

s

(a) Conversion model  
      training stage

(b) WaveNet vocoder  
      training stage

(c) Conversion stage

Conversion
model

VUV

Figure 1: Training and conversion stages of the Baseline 1.

The rest of the paper is organized as follows: Section 2 in-
troduces the baseline approaches. Section 3 describes the pro-
posed approach. Experimental setups and evaluation results are
presented in Section 4. Section 5 concludes this paper.

2. Baseline Approaches
The work most related to this paper is [10] and [15]. To vali-
date the advantage of jointly training the conversion model and
the WaveNet vocoder, we setup a model similar to that in [10]
as Baseline 1. To validate the advantage of the PPG-to-Mel-
spectrogram conversion model, we setup a model similar to that
in [15] as Baseline 2.

2.1. Baseline 1

The Baseline 1 model is similar to the N10 system in VCC
2018, whose training and conversion stages are shown in Fig-
ure 1. Unlike [10], we used Mel-spectrograms as spectral fea-
tures and did not use adaptation techniques for the WaveNet
vocoder training.

During the training stage, as shown in Figure 1(a) and (b),
a conversion model and a WaveNet vocoder are trained sepa-
rately. During the conversion model training stage, logarithmic
F0 (Log F0), voiced/unvoiced flag (VUV), Mel-cepstral coeffi-
cients (MFCCs) and Mel-spectrograms are extracted from the
target speech. MFCCs are then used to compute PPGs using
a speaker-independent automatic speech recognition (SI-ASR)
model. A BLSTM-based conversion model is then trained to
learn the mapping function from PPGs, Log F0 and VUV to
Mel-spectrograms. Pitch information has been shown to help
learn the mapping relationship between PPGs and spectrograms
in [19, 20]. Hence, the conversion model also takes in Log
F0 and VUV as inputs. During the WaveNet vocoder train-
ing stage, Mel-spectrograms are first extracted from the target
speech. Then the µ-law quantized target speech [9] and the Mel-
spectrograms are used to train the WaveNet vocoder.

During the conversion stage, as shown in Figure 1(c), Log
F0, VUV and MFCCs are first extracted from the source speech.
PPGs are then computed from the MFCCs by the SI-ASR
model. Log F0 is linear transformed using the pitch statistics of
the source and target speakers [21]. The conversion model takes
in PPGs, VUV and the tranformed Log F0 as inputs and outputs
predicted Mel-spectrograms, which are used by the WaveNet
vocoder to generate converted speech.
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Figure 2: Training and conversion stages of the Baseline 2.

2.2. Baseline 2

The Baseline 2 model is similar to that in [15]. The training and
conversion stages are shown in Figure 2.

During the training stage, a condition network and a
WaveNet vocoder are jointly trained. The condition network
employs multi-head self-attention and BLSTM structure to en-
code PPGs into an intermediate representation, which is used
as local conditioning by the WaveNet vocoder. Log F0, VUV
and MFCCs are first extracted from the target speech. PPGs are
then computed by the SI-ASR model from the MFCCs. Log
F0, VUV and PPGs drive the condition network to compute lo-
cal conditioning of the WaveNet vocoder. The WaveNet loss,
which is a cross-entropy loss, is adopted as the objective func-
tion to optimize the parameters of the condition network and the
WaveNet vocoder jointly.

During the conversion stage, the acoustic features from the
source speech are processed in the same way as in Section 2.1.
The PPGs, VUV and transformed Log F0 drive the condition
network and the WaveNet vocoder to generate the converted
speech.

3. Proposed Approach
3.1. Model Architecture and Joint Training Mechanism

The architecture of jointly training the conversion model and
the WaveNet vocoder is illustrated in Figure 3(a). The combi-
nation of the multi-head self-attention and BLSTM structures
has been shown to facilitate the learning of both global and lo-
cal contextual information from PPGs [15], which inspires the
design of the conversion model architecture of the proposed
approach. The conversion model (gray-shaded box in Fig-
ure 3) contains an encoder module and a fully-connected (FC)
layer. The encoder module consists of one prenet, N blocks
of multi-head self-attention and BLSTM layers and one bottle-
neck (BN) layer, as shown in Figure 3(c). The BN features
from the conversion model are fed into the WaveNet as local
conditioning. PPGs obtained from an SI-ASR can represent ar-
ticulation of speech sounds in a speaker-normalized space and
correspond to speech content [12]. We believe that PPGs can
help the WaveNet vocoder reduce pronunciation errors. Hence,
we also feed PPGs into the WaveNet. One can think of this
as a residual-like connection, enabling the model to learn from
the BN features useful information that is lacking in PPGs for
waveform generation. Parameters of the conversion model and
the WaveNet vocoder are optimized using a multi-task learning
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Figure 3: Training stage (a), conversion stage (b) and the encoder module (c) of the proposed approach. The model in the gray-shaded
box in (a) is the conversion model. ‘BN features’ in (a) and (b) means bottle-neck features.

scheme. The overall loss function is a linear combination of a
WaveNet loss and a Mel-spectrogram L1-loss:

lossjoint = lossWaveNet + α× lossMel−spectrogram, (1)

where α is a hyper-parameter, specifying the weight of the Mel-
spectrogram L1-loss.

Since the top FC layer of the conversion model conducts
shallow linear transformation of the BN features, we can also
regard the BN features as latent acoustic features, while the
PPGs are speaker-independent linguistic features.

3.2. Training and Conversion

The training and conversion stages of the proposed approach are
shown in Figures 3(a) and (b), respectively.

During the training stage, MFCC, Log F0 and VUV fea-
tures are first extracted from the target speech signals. PPGs are
then computed by the SI-ASR model from the MFCC features.
The conversion model takes Log F0, VUV and PPG features as
inputs and outputs the predicted Mel-spectrograms and also the
BN feaures. The BN features and PPGs are then concatenated
and up-sampled by repeating to match the time resolution of the
speech waveform, before being fed into the WaveNet vocoder
as local conditioning. Parameters of the conversion model and
the WaveNet vocoder are optimized jointly using the joint loss
(i.e., lossjoint) in Equation (1).

During the conversion stage, we remove the top FC layer
from the conversion model since we only need the BN features.
PPGs, VUV features and the transformed Log F0 are obtained
in the same way as in Baseline 1 and 2, which are used to com-
pute the BN features from the conversion model. Finally, the
WaveNet vocoder takes the concatenated and up-sampled BN
features and PPGs as local conditioning to generate the con-
verted speech.

4. Experiments
4.1. Experimental Setups

The CMU ARCTIC speech dataset [22] is used to conduct VC
experiments. We use “rms” and “slt” as source speakers, and
use “bdl” and “clb” as target speakers. We randomly choose

1000, 50 and 50 utterances from the dataset for training, valida-
tion and testing, respectively. The TIMIT corpus [23] is used to
train the SI-ASR model for PPG extraction. The SI-ASR model
has the same setting as in [20]. The sampling frequency is 16
kHz. All the acoustic features are computed using a 25-ms win-
dow and 5-ms frame shift. 13-dimension MFCCs are used and
PPGs are set to having 131 senones in the SI-ASR model. We
use 80-band Mel-spectrograms.

The WaveNet architecture in this paper includes 2 causal
convolution blocks, with 10 dilated layers for each. The di-
lation rate in each block starts from 1 to 512. The filter size
of the causal dilated convolution is 3. The number of residual
channels and skip channels are 128 and 256, respectively. The
speech waveform is µ-law quantized into 256-way categorical
distribution.

The BLSTM-based conversion model in Baseline 1 con-
sists of one FC layer, two BLSTM layers with 256 hidden units
in each direction and one linear output layer. The condition net-
work in Baseline 2 has two self-attention and BLSTM blocks,
which share the same network structure. The number of hidden
units is 128 and number of self-attention heads is 8.

The encoder module of the proposed conversion model as
shown in Figure 3(c) contains one FC prenet with 128 units, 2
multi-head self-attention and BLSTM blocks and one BN layer
with 64 units. The multi-head self-attention and BLSTM blocks
have the same network structure as in Baseline 2. A dropout
rate of 0.1 is applied to all layers in the conversion model. The
weight of the Mel-spectrogram L1-loss α in Equation (1) is
tuned using the validation set and set to be 0.001 finally.

Two ablation studies are setup. To validate the efficacy of
using the Mel-spectrogram prediction loss, we remove the top
FC layer of the conversion model (ablation 1). To validate the
impact of PPG residual connection, we remove the PPG resid-
ual connection and only feed the BN features to the WaveNet
vocoder (ablation 2).

4.2. Objective Evaluation

We use WORLD [8] to extract MCEPs and F0 features from the
converted utterances and target utterances in the test set. Mel-
cepstral distortion (MCD) and root mean square error of F0 (F0
RMSE) are computed, as shown in Table 1. We can see that the



Table 1: MCD and F0 RMSE results of the proposed approach
and the reference approaches.

Setting
Cross-gender Intra-gender

MCD F0 RMSE MCD F0 RMSE
(dB) (Hz) (dB) (Hz)

Baseline 1 8.166 50.003 8.134 49.778
Baseline 2 8.153 48.016 8.229 48.118
Ablation 1 8.319 52.138 8.288 49.600
Ablation 2 8.348 49.287 8.283 49.017
Proposed 7.991 44.712 7.95 47.642

Figure 4: Visualization of Global variances (GVs) of the pro-
posed approach and the reference approaches.

proposed approach achieves the lowest MCD among the com-
pared approaches in both the cross-gender and intra-gender con-
version cases. According to the F0 RMSE results in Table 1, the
proposed method achieves the best F0 conversion performance,
which has great impact on the speech naturalness and speaker
similarity of the converted speech. Note that in the proposed
method, pitch information is encoded into the BN features and
then fed into the WaveNet vocoder. MCD and F0 RMSE results
of the ablations are also shown in Table 1, which are higher than
those of the proposed approach. This validates the efficacy of
using the Mel-sepctrogram prediction loss and the advantage of
PPG residual connection.

Most conventional VC techniques suffer from the problem
of over-smoothing in the converted speech. Higher spectrum
global variance (GV) [2] indicates sharpness of the converted
speech. Figure 4 plots the average GVs of the proposed ap-
proach, the baselines and the ablation approaches. We can see
that the proposed method offers the best GV for both cross-
gender and intra-gender conversions.

4.3. Subjective Evaluation

Two subjective evaluations are conducted: speech naturalness
AB test and speaker similarity XAB test. The proposed ap-
proach is subjectively compared with Baselines 1 and 2. In the
AB test, paired speech samples (A and B) from the proposed
approach and the baseline approaches are presented to listeners,
who are asked to indicate the samples with better speech nat-
uralness or show no preference. In the XAB test, X indicates
the target reference sample. Paired speech samples (A and B)
with the same text content as the reference are presented and
the listeners are asked to determine which one has closer timbre
to the reference, or if they are equally close. Each conversion
(cross-gender and intra-gender) has 20 samples for evaluation.
10 Chinese speakers who are proficient in English have partic-
ipated in the evaluations and they are allowed to replay each

0% 20% 40% 60% 80% 100%

Intra-Gender

Cross-Gender

Intra-Gender

Cross-Gender

(a)

(b)

0% 20% 40% 60% 80% 100%

Intra-Gender

Cross-Gender

Intra-Gender

Cross-Gender

(a)

(b)

Proposed NP Compared model

Figure 5: Speech naturalness AB test (above) and speaker simi-
larity XAB test (below) results. (a) The proposed approach with
Baseline 1. (b) The proposed approach with Baseline 2. ‘NP’
means no preference. The p-values of student t-test on the eval-
uation results from top to bottom are 9.52×10−5, 7.10×10−3,
1.05 × 10−4, 1.20 × 10−5, 1.20 × 10−3, 3.91 × 10−2,
3.01× 10−3 and 5.73× 10−4, respectively.

sample pair as many times as necessary in both evaluations1.
The subjective evaluation results are illustrated in Figure 5.

We can see that the proposed approach significantly outper-
forms the baseline approaches in terms of speech naturalness
and speaker similarity of the converted speech for both cross-
gender and intra-gender conversions.

5. Conclusions
In this paper, we have investigated the joint training of a PPG-
to-Mel-spectrogram conversion model and a WaveNet vocoder
for non-parallel voice conversion. Bottle-neck features from the
conversion model and PPGs are fed into the WaveNet vocoder
as local conditioning. A weighted sum of a Mel-spectrogram
prediction loss and a WaveNet loss is used to optimize the con-
version model and the WaveNet model jointly. Objective and
subjective evaluation results show that the proposed approach is
capable of achieving better conversion performance in terms of
speech naturalness and speaker similarity than the baseline ap-
proaches. Since the WaveNet vocoder requires a large amount
of speech data for training, applying the proposed approach in
this paper to a multi-speaker corpus is our future work.
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