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Abstract 
In this paper, we propose an HMM trajectory-guided, real 
image sample concatenation approach to photo-real talking 
head synthesis. It renders a smooth and natural video of 
articulators in sync with given speech signals. An audio-visual 
database is used to train a statistical Hidden Markov Model 
(HMM) of lips movement first and the trained model is then 
used to generate a visual parameter trajectory of lips 
movement for given speech signals, all in the maximum 
likelihood sense. The HMM generated trajectory is then used 
as a guide to select, in the original training database, an 
optimal sequence of mouth images which are then stitched 
back to a background head video. The whole procedure is fully 
automatic and data driven. With an audio/video footage as 
short as 20 minutes from a speaker, the proposed system can 
synthesize a highly photo-real video in sync with the given 
speech signals. This system won the FIRST place in the 
Audio-Visual match contest in LIPS2009 Challenge, which 
was perceptually evaluated by recruited human subjects.   
Index Terms: visual speech synthesis, photo-real, talking 
head, trajectory-guided 

1. Introduction 
Talking heads are useful in applications of human-machine 
interaction, e.g. reading emails, news or eBooks, acting as an 
intelligent voice agent or a computer assisted language 
teacher, etc. A lively, lip sync talking head can attract the 
attention of a user, make the human/machine interface more 
engaging or add entertainment ingredients to an application. 
Generating animated talking heads that look like real people is 
challenging. A photo-real talking head needs to be not just 
photo-realistic in a static appearance, but exhibit convincing 
plastic deformations of the lips synchronized with the 
corresponding speech, realistic head movements and 
emotional facial expressions. In this paper, we focus on the 
articulator movements (including lips, teeth, and tongue), 
which is the most eye-catching region on a talking face. 

To synthesize articulator movements from video training 
data, various approaches have been proposed before, roughly 
in three categories: key-frame based interpolation, unit 
selection synthesis and HMM-based synthesis. 

The key-frame-based interpolation method [2] is based 
upon morphing between 2-D key-frame images. The most 
frequently used key-frame set is visemes (visual phonemes), 
which form a set of images spanning a large range of mouth 
shapes. Using morphing techniques, the transitions from one 
viseme to other viseme can be computed and interpolated 
automatically.  

The unit selection, or sample-based method starts with 
collecting representative samples. The samples are then 
parameterized by its contextual label information so that they 

can be recalled according to the target context information in 
synthesis. Typically, minimal signal processing is performed 
to avoid introducing artifacts or distortions unnecessarily. 
Video snippets of tri-phone have been used as basic 
concatenation units [3-5]. Since these video snippets are 
parameterized with phonetic contextual information, the 
resulting database can become too large. Smaller units like 
image samples have shown their effectiveness in improving 
the coverage of candidate units. In LIPS2008 Challenge, Liu 
demonstrated a photo-real talking head [6] in a sample-based 
approach, which is an improved version of the original work 
of Cosatto and Graf [1].  

The Hidden Markov Model (HMM) based speech 
synthesis has made a steady but significant progress in the last 
decade [7]. The approach was also tried for visual speech 
synthesis [8,9]. In HMM-based visual speech synthesis, audio 
and video are jointly modeled in HMMs and the visual 
parameters are generated from HMMs by using the dynamic 
(“delta”) constraints of the features [8]. Convincing mouth 
video can be rendered from the predicted visual parameter 
trajectories. One drawback of the HMM-based visual speech 
synthesis method is its blurring due to feature dimension 
reduction in PCA and the maximum likelihood-based 
statistical modeling. Therefore, further improvement is still 
needed to make a high quality, photo-real talking head. 

Inspired by the newly proposed HMM-guided unit 
selection method in speech synthesis [10,11], we propose the 
trajectory-guided real sample concatenating method for 
generating lip-synced articulator movements for a photo-real 
talking head. In particular, in training stage, an audio/visual 
database is recorded and used to train a statistical Hidden 
Markov Model (HMM). In synthesis, trained HMM is used to 
generate visual parameter trajectory in maximum likelihood 
sense first. Guided by the HMM predicted trajectory, a 
succinct and smooth lips sample sequence is searched from the 
image sample library optimally and the lips sequence is then 
stitched back to a background head video.  

This paper is organized as follows. Section 2 gives an 
overview of the synthesis framework. Section 3 introduces the 
HMM-based visual parameter trajectory generation. Section 4 
proposes the trajectory-guided sample selection method. 
Section 5 discusses the experimental results, and section 6 
draws the conclusions.  

2. Overview of Synthesis Flow 
Fig. 1 illustrates the synthesis framework of the proposed 
trajectory-guided sample selection approach. In training, first 
the original image samples � are encoded in low-dimensional 
visual feature vector �. Then the features � are used to train 
statistical HMM model  � . In synthesis, for any arbitrary 
natural or Text-to-Speech (TTS) synthesized speech input �, 
the trained model � generates the optimal feature trajectory �� 
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in the maximum likelihood sense. The last step is to 
reconstruct ��  back to ��  in the original high-dimensional 
sample space, so that the synthesis results can be seen/heard. 
To put it briefly, there are four main modules: � ⇒ �; 
(�, �) ⇒ �; (�, �) ⇒ ��; and  �� ⇒ ��. The main contribution of 
this paper is the last processing module, �� ⇒ ��, which is our 
proposed trajectory-guided real sample selection method for 
converting the low-dimensional visual parameter trajectory to 
samples in the original sample space. In particular, guided by 
the HMM predicted trajectory ��, a succinct and smooth image 
sample sequence ��  is searched optimally from the sample 
library and the mouth sequence is then stitched back to a 
background head video. 
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Fig. 1. Synthesis framework with trajectory-guided sample selection. 

3. HMM-based Visual Parameter 
Trajectory Synthesis 

3.1. Visual parameter extraction (� ⇒ �) 
Training the talking head requires a small, about 20-minutes of 
audio-visual data of a speaker recorded in reading prompted 
sentences. Since the speaker moves his/her head naturally 
during recording, head pose varies among the raw image 
frames. With the help of a 3D model-based head pose tracking 
algorithm, head poses of all frames are normalized and aligned 
to the full-frontal view. The lip images can then be cropped 
out with a fixed rectangle window and a library of lips sample 
is made. We obtain eigen-lips (eigenvectors of the lip images) 
by applying PCA to all the lip images. The top 20 eigen-lips 
contained about 90% of the accumulated variance. The visual 
feature of each lips image is formed by its PCA vector,  

	
 = �
�                                              (1) 
where � is the projection matrix made by the top 20 eigen-
lips. 

3.2. Audio-Visual HMM modeling (�, � ⇒ �) 

We use acoustic vectors 
� = [��
, ���
, ����
]
  and visual 
vectors 	� = [��
, ���
, ����
]
  which is formed by 
augmenting the static features and their dynamic counterparts 
to represent the audio and video data. Audio-visual HMMs, �, 
are trained by maximizing the joint probability �(
, 	|�) over 
the stereo data of MFCC(acoustic) and PCA(visual) training 
vectors. In order to capture the contextual effects, context 
dependent HMMs are trained and tree-based clustering is 
applied to acoustic and visual feature streams separately to 
improve the corresponding model robustness. For each AV 
HMM state, a single Gaussian mixture model (GMM) is used 
to characterize the state output. The state q has mean vectors 
μ�

(�) and μ�
(�). In this paper, we use the diagonal covariance 

matrices for ∑�
(��) and ∑�

(��) , null covariance matrices for 
∑�

(��)and∑�
(��), by assuming the independence between audio 

and visual streams and between different components.  

3.3. Visual trajectory generation (�, � ⇒ ��) 

Given a continuous audio-visual HMM λ, and acoustic feature 
vectors 
 = [
�
, 
�
, ⋯ , 
�
]
, we use the following algorithm 
to determine the best visual parameter vector sequence 
	 = [	�
, 	�
, ⋯ , 	�
]
 by maximizing the following likelihood 
function. 

�(	|
, �) = ∑ �(�|
, �) ∙ �(	|
, �, �)�!! "  ,            (2)                   
is maximized with respect to V, where � is the state sequence.  

At frame t, p(V#|A#, q#, λ) are given by 
     �(	�|
�, $�, �) = % &	�; '̂�+

(�); ∑��+
(��)- ,               (3) 

where 
    '̂�+

(�) = μ�+
(�) + ∑�+

(��)∑�+
(��)0� &
� − μ�+

(�)-  ,               (4) 

    ∑��+
(��) =  ∑�+

(��) − ∑�+
(��)∑�+

(��)0�∑�+
(��) .                   (5) 

We only consider the optimal state sequence �  by 
maximizing the likelihood function �(�|
, �) with respect to 
the given acoustic feature vectors A and model λ. Then, the 
logarithm of the likelihood function is written as 

678�(	|
, �, �) = 678�9	|'̂(�), :�(��)< 

= − 1
2 	
:�(��)0�	 + 	
:�(��)0�'̂(�) + >,                 (6) 

where 

'̂(�) = @'̂�B
(�), '̂�C

(�), ⋯ , '̂�D
(�)E
 ,                              (7) 

:�(��)0� = GH�8 @∑��B
(��)0�, ∑��C

(��)0�, ⋯ , ∑��D
(��)0�E



.      (8) 

The constant K  is independent of V . The relationship 
between a sequence of the static feature vectors J =
[��
, ��
, ⋯ , ��
]
  and a sequence of the static and dynamic 
feature vectors V can be represented as a linear conversion, 

	 = �LJ,                                               (9) 
where �L  is a transformation matrix described in [7]. By 
setting N

NO logp(V|A, Q, λ) = 0, we obtain V�RT#  that maximizes 
the logarithmic likelihood function, as given by 

 	UWX� = �L &�L
:�(��)0��L-0� �L
:�(��)0�'̂(�).     (10) 

4. Trajectory-Guided Sample Selection 
(�� ⇒ ��) 

The HMM predicted visual parameter trajectory is a compact 
description of articulator movements, in the lower rank eigen-
lips space. However, the lips image sequence shown at the top 
of Fig. 2 is blurred due to: (1) dimensionality reduction in 
PCA; (2) ML-based model parameter estimation and trajectory 
generation. To solve this blurring, we propose the trajectory-
guided real sample concatenation approach to constructing �� 
from ��. It searches for the closest real image sample sequence 
in the library to the predicted trajectory as the optimal 
solution. Thus, the articulator movement in the visual 
trajectory is reproduced and photo-real rendering is guaranteed 
by using real image sample.  

4.1. Cost function
Like the unit selection in concatenative speech synthesis, the 
total cost for a sequence of T selected samples is the weighted 
sum of the target and concatenation costs: 
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J9	U��, �Y��< = Z \�J�(	U^, �Y^)
�

^_�
+ Z \LJL(�Y^0�, �Y^)

�

^_�
      (11) 

 
Fig. 2. Illustration for trajectory-guided sample selection approach. 
The top-line lips images (gray) are the HMM predicted visual 
trajectory. The bottom images (colored) are real samples lips 
candidates where the best lips sequence (red arrow path) is selected by 
Viterbi decoding.   

 
The target cost of an image sample �Y` is measured by the 

Euclidean distance between their PCA vectors. 
 J�9	U^, �Y^< = a	U^ − �Y^


�a                                  (12) 
The concatenation cost is measured by the normalized 2-D 

cross correlation (NCC) between two image samples �Y` and �Yb, 
as Eq. 13 shows. Since the correlation coefficient ranges in 
value from -1.0 to 1.0, NCC is in nature a normalized 
similarity score, which is an advantage superior to other 
similarity metrics.  
         %JJ(c, d)                                                                               (13)
= arg max

(f,h)
∑ ic(j, k) − cf̅,hs[d(j − t, k − �) − J]̅v,w

y∑ ic(j, k) − cf̅,hs� ∑ [d(j − t, k − �) − J]̅�v,wv,w z{.} 

Assume that the corresponding samples of �Y` and �Yb in the 
sample library are SX and S�, i.e., �Y` = SX, and �Yb = S�, where, 
p and q are the sample indexes in video recording. And hence 
SX and SX~�, S�0�and S� are consecutive frames in the original 
recording. As defined in Eq. 14, the concatenation cost 
between �Y` and �Ybis measured by the NCC of the SX  and the 
S�0� and the NCC of the  SX~� and S�.  
          JL9�Y^, �Y�< = JL9�X, ��< 

= 1 − 1
2 i%JJ9�X, ��0�< + %JJ9�X~�, ��<s               (14) 

Since %JJ9�X, �X< = %JJ9��, ��< = 1, we can easily derive, 
JL9�X, �X~�< = JL9��0�, ��< = 0 

So that it would encourage the selection of consecutive frames 
in original recording.  

4.2. Optimal sample sequence 
The sample selection procedure is the task of determining the 
set of image sample �Y��so that the total cost defined by Eq. 11 
is minimized: 

�Y�� = ��8�H�
�YB,�YC,⋯,�YD  

J9	U��, �Y��<                           (15) 

Optimal sample selection can be performed with a Viterbi 
search. However, to obtain near real-time synthesis on large 
dataset, containing tens of thousands of samples, the search 
space must be pruned. This has been implemented by two 
pruning steps. Initially, for every target frame in the trajectory, 
K-nearest samples are identified according to the target cost. 
The beam width K is 40 in our experiments. The remaining 
samples are pruned with the concatenation cost.    

5. Experimental Results 

5.1. Experimental setup 
We employ the LIPS 2008/2009 Visual Speech Synthesis 
Challenge data [12] to evaluate the proposed trajectory-guided 
sample selection methods. This dataset has 278 video files 
with corresponding audio track, each being one English 
sentence spoken by a single native speaker with neutral 
emotion. 

The video frame rate is 50 frames/sec. For each image, 
Principle Component Analysis projection is performed on 
automatically detected and aligned mouth image, resulting in a 
60-dimensional visual parameter vector. Mel-Frequency 
Cepstral Coefficient (MFCC) vectors are extracted with a 
20ms time window shifted every 5ms. The visual parameter 
vectors are interpolated up to the same frame rate as the 
MFCCs. The A-V feature vectors are used to train the HMM 
models using HTS 2.1 [7]. 

In objective evaluation, we measured the performance 
quantitatively using mean square error (MSE) between �� and 
�, �� and �, as defined in Eq. 16 and 17.  In a closed test where 
all the data are used in training, the evaluation is done on all 
the training data. In open test, leave-20-out cross validation is 
adopted to avoid data insufficiency problem. In subjective 
evaluation, the performance of the proposed trajectory-guided 
approach was evaluated by 20 native language speaking 
subjects in the audio/visual consistency test in LIPS2009 
challenge.  

�� = �	U − 	� = 1
� Z a	U�


 − V�
a
�

�_�
              (16) 

�� = ��Y − �� = 1
� Z a�Y�


 − S�
a
�

�_�
               (17) 

5.2. Objective test 

Fig. 3 shows an example of the HMM predicted trajectory �� in 
both the closed and open tests. Comparing with the ground 
truth �, the predicted visual trajectory ��  closely follows the 
movement trends in �. Three mean square errors (MSE) are 
calculated for the open test. 
1. �	U − 	� : This measure shows how good the HMM 

predicted trajectory which will be used as a guide later is. 
The model parameters, like the numbers of tied states for 
the audio and visual streams, are optimized in closed test. 
The MSE distortion is 7.82x105 between the HMM-
predicted trajectory and the ground truth in open test.  

2. ��Y − �� 9	U = 	< : This measure is to evalutate the 
performance of trajectory-guided sample selection by 
ignoring the trajectory prediction error, or ideally we can 
assume the predicted trajectory is perfect, i.e.,	U = 	. In 
this oracle experiment, we take the ground truth trajectory 
as the perfect guidance in order to test the sample 
selection performance alone. For each test sentence, we 
use the image samples from other sentences to do the 
selection and concatenation. The MSE distortion of the 
sample selection is 1.77 x105. 

3. ��Y − �� : It is the total distortion in the synthesis, 
including both the trajectory prediction errors and sample 
selection errors. The total distortion 9.42x105 is slightly 
less than the summation (7.82x105+1.77x105 9.59x105) 
of the first two distortions.   
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5.3. Pruning of sample library 
Some samples in the sample library are rarely or never 
selected because they are too far away from the model 
predicted trajectory. We conducted a large scale synthesis test 
in order to estimate the frequency of selection for all the image 
samples in the library. The experiment is to synthesize 10,000 
phonetic balanced sentences and compute the frequency of 
selection of all 61,244 images. As shown in Fig. 4, all the 
61244 image samples in the library are rank ordered according 
to their occurrence count in the final best path (red curve) and 
k-nearest pre-selection (blue curve), respectively. It shows that 
there are less than 46% samples used in the pre-selection, 
while about 20% samples used in the final best path. The 
pruning is good because misaligned and outlying mouth 
images are discarded. Meanwhile, we achieve the same output 
quality but at a much faster speed (5 times) by keeping only a 
small subset (20%) of the original library. 

5.4. Subjective Test 
We participate in the LIPS2009 Challenge contest with the 
proposed photo-real talking head. The contest was conducted 
in the AVSP (Auditory-Visual Speech Processing) workshop 
and subjectively evaluated by 20 native British English 
speaking subjects with normal hearing and vision. All 
contending systems were evaluated in terms of their audio-
visual consistency. When each rendered talking head video 
sequence was played together with the original speech, the 
viewer was asked to rate the naturalness of visual speech 
gestures (articulator movements in the lower face) in a five 
point MOS score. Fig. 5 shows the subjective results. Our 
system got the highest MOS score 4.15 among all other 
participants, which is only inferior to the 4.8 MOS score of the 
original AV recording.  

6. Conclusions 
We propose a trajectory-guided, real sample concatenating 
approach for synthesizing high-quality photo-real articulator 
animation. It renders a photo-real video of articulators in sync 
with given speech signals by searching for the closest real 
image sample sequence in the library to the HMM predicted 
trajectory. Objectively, we evaluated the performance of our 
system in terms of MSE and investigate the pruning strategies 
in terms of storage and processing speed. Our talking head 
took part in the LIPS2009 Challenge contest and won the 
FIRST place with a subjective MOS score of 4.15 in the 
Audio-Visual match evaluated by 20 human subjects. 

 
Fig. 3. Closed test predicted (blue curve), open test predicted (red 
curve) vs. actual (black curve) trajectories of the 1st (up) and 2nd 
(bottom) PCA coefficients for a testing utterance. 

 
Fig. 4. Re-ranking by sample occurrence. 

 
Fig. 5. MOS (Audio-Visual Match) of all the participant systems in 

LIPS Challenge 2009. 
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