
 An Analysis Framework based on Random Subspace Sampling  
for Speaker Verification  

Weiwu Jiang1, Zhifeng Li2 and Helen Meng1   

1 Department of Systems Engineering & Engineering Management, The Chinese University of Hong Kong, China 
{wwjiang, hmmeng}@se.cuhk.edu.hk 

2 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China  
zhifeng.li@siat.ac.cn 

 

Abstract 
Using Joint Factor Analysis (JFA) supervector for subspace 
analysis has many problems, such as high processing 
complexity and over-fitting. We propose an analysis 
framework based on random subspace sampling to address 
these problems. In this framework, JFA supervectors are first 
partitioned equally and each partitioned subvector is projected 
on to a subspace by PCA. All projected subvectors are then 
concatenated and PCA is applied again to reduce the 
dimension by projection onto a low-dimensional feature space. 
Finally, we randomly sample this feature space and build 
classifiers for the sampled features. The classifiers are fused to 
produce the final classification output. Experiments on NIST 
SRE08 prove the effectiveness of the proposed framework. 

Index Terms: random sampling, supervector, subspace 
framework, joint factor analysis, discriminative 

1. Introduction 

Joint Factor Analysis (JFA) [1] has been applied to the 
generative Gaussian Mixture Model (GMM) [2] for speaker 
verification. It addresses problems of speaker characteristics 
and channel variability, thus performance improvement has 
been achieved. Specifically, the approach assumes that the 
noise variability is located in a low-dimensional subspace and 
the effects of speaker and channel are additive in the feature 
space. 
     Although success has been achieved by JFA, recent works 
show that neither JFA supervector-based subspace analysis [3] 
nor the combination of JFA supervector and SVM [4] achieve 
the significant improvements for speaker verification system. 
It is believed that this is due to numeric instability and sparsity 
of the supervectors in the high-dimensional space. These facts 
may adversely affect the model training process due to 
overfitting. 
     Based on JFA, Dehak [5] proposed an i-vector feature-
based speaker verification system and achieved great success 
on the NIST evaluation. The i-vectors are extracted from low-
dimensional subspace of the supervectors. Therefore, the i-
vector-based system substantially reduces the execution time 
of the speaker recognition task. 
      Our previous work [6][7] proposed an enhancement by 
applying the Fishervoice framework to the JFA supervector 
space to make use of both the high-dimensional JFA 
supervector and discriminative information for training. 
Unlike traditional subspace analysis that is based on the whole 
supervector space, multiple discriminant projections are 
derived equally for the partitioned subspaces of the 
supervector to achieve fast and effective matching. There are 
two major problems encountered in this approach: 1) the 
dimensionality of the final projected subspace is much higher 
than the i-vector approach; 2) the performance of a single 
classifier with limited training samples is unstable. 
      In this work, we propose to investigate the combination of 
the JFA supervector [1] and random subspace sampling [11] to 

address two problems mentioned above. We randomly sample 
the feature space into several subspaces. Classifiers are built 
for each subspace and their results are integrated to obtain the 
final decision. The proposed approach is inspired by the 
success in subspace modeling for face recognition 
[10][13][14][15]. 
       The rest of the paper is organized as follows: Section 2 
presents the background of previous work. Section 3 presents 
details of the random subspace sampling approach for speaker 
verification. Implementation and experimental results on the 
NIST SRE08 are presented in sections 4 and 5 respectively. 
The final section gives the conclusion of our study.      

2. Background 

2.1. Joint Factor Analysis 

The JFA theory [1] assumes that the speaker and channel noise 
components, which reside in the speaker-and-channel-
dependent supervectors respectively, have Gaussian 
distributions. Let Mih denote the speaker and session-
dependent supervector of mean for the h-th utterance from 
speaker i. Mih is further assumed to be made up of four 
supervectors as shown below: 

          iih ih ihM m Vy Dz Ux     (1) 

where m is the mean supervector of the background model, U 
is the eigenchannel matrix, V is the Eigenvoice matrix, D is the 
diagonal residual scaling matrix, xi is speaker-dependent 
eigenchannel factor, yih is the speaker-and-session-dependent 
eigenvoice factor and zih is the speaker residuals. We also 
define sih as speaker vector by the first three terms in Eq. (1):  

      ih ih ihs m Vy Dz    (2) 

2.2. Intersession Compensation in Subspace Analysis 

The traditional Linear Discriminant Analysis (LDA) seeks to 
determine an optimal projection W, which maximizes the ratio 
of the determinant of the between-class scatter matrix Sb to that 
of the within-class scatter matrix Sw. Given the supervectors 
from all training speakers, let C denote the total number of 
speakers, xi,h be h-th supervector from speaker i, Hi be the 
number of samples (or sessions) in the speaker i, ξi be the 
sample mean of the class i and ξ be the sample mean of all 
development data.  The optimal projection Wlda for LDA is 
calculated as follows:  
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    Within-Class Covariance Normalization (WCCN) [8] aims 
to minimize the expectation of speaker verification errors in 
both false acceptance and false rejection. This approach has 
been successfully applied to the i-vector-based speaker 



verification system for channel noise compensation in [5]. To 
perform WCCN, we first apply LDA to derive the optimal 
projection. The within-class covariance projection matrix B is 
then estimated by using development data through 
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where Wlda is the LDA projection matrix and i is the LDA 

projected sample mean of the class i. When LDA and WCCN 
are both applied, the final projection matrix WP is given by: 

   P ldaW W B  (5) 

2.3. Fishervoice Discriminant Analysis 

Fishervoice [9] aims to enhance performance by extracting 
discriminant information from the scatter matrices Sw and Sb 
effectively. The overall projection matrix of Fishervoice can 
be considered as three components: 
 
1) Subspace projection matrix W1 for dimension reduction 
using PCA — the subspace projection f1 result is obtained by:  

 
1 1 1,  where arg maxT T

W
f W x W W W    (6) 

where x is an any supervectors and Ψ is the covariance matrix 
of all supervectors in the development set. 
 
2) Whitening matrix W2 for reducing intra-speaker variations 
— from the above projected subspace, f1 is whitened as f2 
according to the equation: 

 1/ 2
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wf W f W S W I W      (7) 

where Sw is the standard within-class scatter matrix, Φ is the 
normalized eigenvector matrix of Sw, and Λ is the eigenvalue 
matrix of Sw. 
 
3) Subspace projection matrix W3 for discriminative speaker 
class boundaries — this is obtained by using the 
nonparametric between-class scatter matrix S′b according to 
Eq. (8-9)  [9] from the whitened subspace above as:  
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Finally, the overall transformation matrix WNF for 
nonparametric Fisher discriminant analysis is given by: 

 1 2 3NFW W W W  (9) 

      In the WCCN method, the optimal projection matrix B is 
obtained by decomposing the expected with-class covariance 
matrix WWCCN via Cholesky decomposition algorithm. This 
implies that the covariance matrix WWCCN can be normalized to 
the identity matrix by BTWWCCNB = I. In the second step of 
Fishervoice, the whitening projection matrix W2 also tries to 
normalize the within-class covariance scatter matrix Sw by 
W2

TSwW2 = I. Comparing the equations for these two 
projection matrices, we can see that projection matrices B and 
W2 produce the same function (the latent factor for 
compensation) but with different solutions. Theoretically, the 
whole Fishervoice framework can improve the classification 
accuracy more than the LDA+WCCN method, since the 
projection matrix W3 emphasizes structural information of 
speaker boundaries through the nonparametric between-class 
scatter matrix S′b. This is verified in the experiments section.  

3. Proposed Framework 

In this work, we propose a random subspace sampling 
approach in a multi-subsystems fusion framework for the 
speaker verification task as an extension to [6][9]. We employ 
various classifiers in the randomly sampled subspace of the 
high-dimensional JFA mean vector and perform classifier 
fusion in the projected low-dimensional discriminant space 
(see Figure 1). 
 

 

Figure 1: Overall organization of the proposed multi-
classifier framework based on random sampling 

3.1. Supervector Extraction 

We believe that the structure of JFA speaker supervectors can 
capture the probabilistic distribution of acoustic feature classes 
in the whole acoustic space. We also assume that the whole 
acoustic space can be characterized by a set of acoustic classes 
with Gaussian models that correspond to some broad phonetic 
events. Based on the result of [6], we represent the utterance h 
from the speaker i by a GF dimensional speaker supervector 
si,h in Eq. (2).  

3.2. Training Stage 

Figure 1 illustrates the overall organization of the proposed 
framework.  It is a multi-classifier fusion framework based on 
random subspace sampling. The details of this framework are 
presented as follows: 
1) For each utterance from the development set, obtain the 

corresponding input feature vector according to the 
supervector extraction process.  

2) Divide the whole supervector into K slices (subvectors) 
equally and sequentially, and then perform PCA on each 
subvectors subspace to reduce the dimensionality to L for 
each of the K subspaces, WPk (k=1, 2, ... , K). 

3) In order to further reduce the number of vector dimensions, 
all projected subvectors are first concatenated sequentially 
to a K×L dimension vector. Then a second level PCA 
projection (WPP) is performed onto a J-dimensional 
subspace. Oi,h=[ o1, o2, … , oJ] denotes the projected 
supervector (candidate vectors) from the h-th utterance of 
speaker i for constructing the random subspaces. 

4) Construct Q random subspaces Tq (q=1, 2, … , Q) with 
each spanned by a total (E1+E2) dimensions. The primary 
E1 dimensions are fixed so as to keep the first E1 largest 
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eigenvalues in WPP, which can preserve the main intra-
personal variations. The remaining E2 dimensions are 
randomly selected from the remaining (J-E1) dimension 
space. 

5) In each subspace Tq, perform Fishervoice or LDA+WCCN 
based discriminant subspace analysis and project all 
vectors from the training data onto the random subspace 
via the projection matrix WSq. Hence, we generate Q 
classifiers in total. 

6) During target enrollment, each projected target speaker 
supervector (in step 3) resulting from the second level 
PCA projection is fed to the Q subspace classifiers to form 
the final Q parallel feature vectors θ’

train(q) (q=1, 2, … , Q). 
We define θtrain(q) as the training reference vector 
projected by θ’

train(q) via projection matrix WSq. 

3.3. Testing Procedures 

In the testing stage, each testing supervector is projected to the 
testing vector θtest(q) via the q-th random subspace in the same 
manner as the enrollment process. Then a distance score is 
calculated between θtrain(q) and θtest(q) in terms of the 
normalized correlation (COR) as shown in Eq. (12):  
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Finally, the outputs are weighted and combined. The weights 
are obtained by grid search based on the training set, with 
values giving the lowest EER. 

4. Experimental Setup 

4.1. Testing protocol 

All experiments are performed on the NIST SRE08 male 
short2-short3 core data set (cc=6). Each training and testing 
conversation has an average duration of 5 minutes with 874 
true target trials and 11,637 imposter trials. We use the EER 
and minDCF as metrics for performance evaluation. 

4.2. Feature extraction 

First, ETSI Adaptive Multi-Rate (AMR) GSM VAD [12] is 
applied to prune out silence. Then the speech is segmented 
into frames by a 25 ms Hamming window shifting with 10 ms 
frame rate. The passing frequency band is restricted to 300-
3400 Hz. The first 16 Mel frequency cepstral coefficients 
(MFCC) with log energy are calculated with their first and 

second derivatives to form a 51-dimension feature. Finally, the 
Gaussianization process is applied to all the MFCCs.  

4.3. Baseline system 

The baseline system employs the JFA [1] with the enhanced 
Fishervoice framework [6]. During the training phase:  
2048-Gaussian gender-dependent UBMs were created from 
SRE04 1side-1side and SRE05 lcon4w-1con4w data. 
The eigenvoice matrix V is trained using LDC Switchboard II 
Phase 2, Phase 3, Switchboard Cellular Parts 2, SRE04, 
SRE05 and SRE06, including 893 male speakers with 11204 
utterances. The rank of the speaker space is set to 300.  
The eigenchannel matrix U is trained from 436 male speakers 
with 5410 utterance in the SRE04 SRE05 and SRE06. The 
rank of the channel space is set to 100. 
The diagonal residual scaling matrix D is extracted from the 
UBM covariance. 

4.4. Subspace Training 

The Fishervoice projection matrices (W1, W2 and W3) are 
trained on telephone utterances from the NIST SRE04, 
SRE05, SRE06, LDC releases of Switchboard II Phase 2, 
Phase 3 and Switchboard Cellular Parts 2. This amounts to 563 
male speakers altogether, each with 8 different utterances. The 
projection matrices, W1, W2 and W3, have dimensions (E1+E2)
× 800, 800 × 799 and 799 × 550, respectively. These 
correspond to the upper limits of their matrix ranks. The 
parameter R which controls the number of nearest neighbors 
for constructing S′b in [9] was set to 4, according to the median 
number of sessions for each speaker. For training the LDA and 
WCCN matrices, we use the same dataset as Fishervoice. For 
both the proposed framework and the enhanced Fishervoice 
framework, the number of slices K is set to 16. The parameters 
L and J for PCA dimension reduction are both set to 4000. 

4.5. Score normalization 

The scores of all evaluated speaker verification systems were 
normalized by gender-dependent TZ-norm. We adopt the 
SRE04, SRE05 and SRE06 corpora as the t-norm corpus and 
Switchboard II Phase 2 and Phase 3 corpora as the z-norm 
corpus. The number of speakers in the corpus is 400 for t-
norm and the 622 for z-norm. 

5. Results 

In this section, we present individual and combined results on 
the NIST SRE08 male core task (cc=6) from the systems 
described above.  

5.1. Random Subspace Sampling 

The first experiment investigates the sensitivity of speaker 
verification performance for the proposed method with regards 
to the different dimensions of E1 and E2. We constrain the 
dimensionality of (E1+E2) to a constant value of 2500 for the 
dimension reduction. Besides, full space analysis without 
random sampling is also considered in the experiment. As 
mentioned before, we apply Fishervoice or LDA+WCCN for 
final subspace analysis in the selected random subspace along 
with the normalized correlation for distance metric. Table 1 
summarizes the results (EER and minDCFx100) obtained with 
the best individual and fused systems on the seven 
combinations of (E1, E2) input for the proposed framework.  
For each combination of (E1, E2), we create 3 subspaces 
randomly for training and evaluation. 
       Key observations include: First, the performance of multi-
classifier fusion remains stable across different randomization 
of the dimensions (E1, E2). Second, the Fishervoice framework 
shows slightly better performance than LDA+WCCN most of 
the time. Third, as discussed above, when the data is of high 
dimensionality, a single classifier constructed on the limited 
training samples is unstable. Traditional subspace methods 
suffer from training data sparsity and fusion results clearly 
verify that the proposed random subspace sampling framework 
can further improve the whole system, as compared with the 
best individual system as well as subspace analysis system 
within the full dimensional space (4000 dimensions). 

5.2. Comparison with Other Systems 

We also compared the proposed random subspace sampling 
framework with two existing standard approaches, namely, 
JFA and the enhanced Fishervoice framework. In the random 
subspace sampling approach, we fuse all 12 Fishervoice 
subsystems from (300, 2200) to (600, 1900) – this interval has 



more stable and better performance. Figure 2 shows the results 
obtained from these systems. They suggest that random 
subspace sampling and classifier fusion lead to better 
performance compared to other systems. Compared with the 
use of a single JFA classifier, the use of random subspace 
sampling on Fishervoice improves results by decreasing the 
minDCF from 0.0284 to 0.0239, as well as a relative decrease 
in EER by 11.33%. Besides, the random subspace sampling 
framework works better than the enhanced Fishervoice since 
multiple classifiers are integrated to overcome instability due 
to the use of a single classifier.  

Table 1. Results obtained with the best individual and fused 
systems. EER (%), minDCFx100 

Types of 
(E1, E2) 

Fishervoice LDA+WCCN 
Best Fused Best fused 

(100,2400) 5.24, 2.74 4.66, 2.55 5.37, 2.76 4.79, 2.60 
(200,2300) 5.00, 2.71 4.68, 2.65 5.02, 2.71 4.83, 2.58 
(300,2200) 4.57, 2.45 4.56, 2.43 4.85, 2.47 4.67, 2.47 
(400,2100) 4.74, 2.43 4.66, 2.41 4.68, 2.48 4.56, 2.43 
(500,2000) 4.57, 2.39 4.56, 2.39 4.68, 2.40 4.56, 2.40 
(600,1900) 4.76, 2.44 4.68, 2.42  4.80, 2.44 4.77, 2.40 
(700,1800) 4.69, 2.42 4.68, 2.41 4.69, 2.44 4.57, 2.43 
Full Space 4.69, 2.42 / 5.03, 2.52 / 
 

 
Figure 2: Comparison of Fishervoice and other standard 
systems on NIST SRE 08  male core task (cc=6, 100x minDCF) 

5.3. Fusion with the Other Systems 

In the third experiment, we fuse the random subspace 
sampling based system in section 5.2 with two other standard 
systems (see Figure 3). We select JFA and the enhanced 
Fishervoice framework to represent the baseline systems. It is 
worth noting that JFA gives comparable performance with the 
two other systems. Fusion of the enhanced Fishervoice 
framework with the system in section 5.2 only achieves little 
improvement since both of the systems use classifiers based on 
Fishervoice. Third, according to the EER and minDCF metrics, 
three systems fused totally offer the best performance among 
all fused systems. It improves JFA results by a relative 
decrease of 13.72% in EER (from 5.03% to 4.34%) and 
reduced the minDCF from 0.0284 to 0.0234.  

6. Conclusions 

This paper enhances our previous work in the Fishervoice 
approach [6] for speaker verification.  In order to overcome 
the problems caused by the high dimensionality of JFA 
supervector, we developed a classification framework that 

incorporates: 1) a random sampling method in the principle 
subspace and 2) discriminant subspace analysis in the 
randomly sampled subspace. By applying the proposed 
framework, the dimensionality of the original JFA supervector 
is reduced from 104448 (51×2048) to 550 after discriminant 
subspace projection (e.g. Fishervoice), to facilitate fast and 
effective matching. Finally, parallel classification outputs are 
combined into a final classification decision output. Extensive 
experiments on the NIST08 male core test show the advantage 
of the proposed framework over the state-of-the-art algorithms.  
 

 
Figure 3: Fusion results with other systems on NIST SRE 2008  
male core task (cc=6, 100x minDCF) 
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