
Multi-Parser Architecture for Query Processing

Kui Xu*, Fuliang Weng*, Helen Meng**, and Po Chui Luk**

* Intel China Research Center, Intel Corporation, Beijing, China
**Human-Computer Communications Laboratory

The Chinese University of Hong Kong, Hong Kong SAR, China.
{ kui.xu, fuliang.weng} @intel.com; { hmmeng, pcluk} @se.cuhk.edu.hk

Abstract

Natural language queries provide a natural means for common
people to interact with computers and access to on-line
information. Due to the complexity of natural language, the
traditional way of using a single grammar for a single
language parser leads to an inefficient, fragile, and often very
large language processing system. Multi-Parser Architecture
(MPA) intends to alleviate these problems, and the
modularized MPA also has the advantage of easier portability
to new domains and distributed computing. In this paper, we
investigate the effect of using different types of parsers on
different types of query data in MPA. Three data sets and two
types of sub-parsers have been examined. Results show that
partitioning grammars leads to superior speed performance for
the Earley parser1 across the three data sets. The GLR parser
is faster than the Earley parser for the partitioned grammar,
but the GLR parser may have excessive memory usage for the
un-partitioned grammars.

1. Introduction

Natural language queries, sometimes as the back-end to
speech recognizers, provide a natural means for common
people to interact with computers and access to on-line
information. Due to the complexity of natural language itself,
the grammar that describes the query language can be very
complex. The traditional way of using a single grammar leads
to an inefficient, fragile, and often very big processing system.
These problems become more apparent, with the increasing
demand for natural language applications over the Internet.

Various methods that deal with these parsing issues have
been studied, e.g., [1][2][7][12]. The proposed Multi-Parser
Architecture (MPA) by [5][12][13] intends to alleviate
aforesaid problems simultaneously by partitioning a single
grammar into multiple sub-grammars and composing sub-
parsers for the sub-grammars. Sub-parsers can be combined by
parser composition methods such as cascading and predictive
pruning [5]. The MPA is highly modularized with re-usable
sub-grammars and this is advantageous for distributed
computing and portability to new application domains. Our
current work presents several enhancements: (i) a
methodology for automatic grammar partitioning; (ii) an
improved parser composition method known as predictive
cascading; and (iii) the use of an Earley parser in addition to
the GLR parser used previously. Experiments were conducted

1 Hereafter we refer to the pre-complied Earley parser simply
as the Earley parser.

with three data sets – a keyword list, a semantic grammar and
a syntactic grammar. Results show that grammar partitioning
with composition of Earley parsers can speed up processing
substantially for both semantic and syntactic grammars when
compared to the un-partitioned grammars. Furthermore, while
the GLR parser is faster than Earley; the latter utilizes memory
more efficiently.

2. The Multi-Parser Architecture

MPA involves the two main processes of grammar
partitioning and parser composition. Grammar partitioning
divides a grammar into multiple sub-grammars. Each sub-
grammar is used by its corresponding sub-parser, and parsing
results across sub-parsers are composed to produce an overall
parse output for a natural language query. The interaction
among sub-grammars/sub-parsers is achieved by applying a
virtual terminal technique. The virtual terminal is essentially
a non-terminal, but acts as if it were a terminal. The INPUT set
to a sub-grammar is a set of virtual terminals that were
previously parsed by other sub-grammars. The OUTPUT set of
a sub-grammar is a set of non-terminals that are parsed based
on this sub-grammar; and used by other sub-grammars as their
INPUT sets. Hence a partition (subset) of production rules can
be viewed as a multi-valued function – it takes the virtual
terminals in the INPUT set as input, and returns a set of non-
terminals in the OUTPUT set as output. Results on manually
partitioned grammars were presented previously [5][13]. In
this paper, we will present a method for automatic grammar
partitioning and related experimental results.

Two methods for parser composition have been presented
in [5][13]: composition by cascading and composition by
predictive pruning. Cascading is a bottom-up parsing
procedure starting from the terminal level to and moves to the
SENTENCE level. It begins by converting the input sentence
into a lattice called LMG, and invokes parsers at each lattice
position. During parsing, newly created virtual terminals (vt)
are added dynamically to the stack and LMG. The stack stores
the terminals and virtual terminals according to the topological
order of the LMG. Cascading has the advantage of parser
robustness, but is relatively slow due to excessive parser
invocation at each lattice (LMG) position. To avoid this,
predictive composition is a top-down procedure where the
caller sub-parser invokes a callee sub-parser only if the latter
satisfies the constraint that the input node must be its left
corner. Sub-parsers that do not satisfy the constraint are
pruned. While the top-down approach has the advantage of
execution efficiency, it may at times be too constrained to be
robust. In subsection 2.2, we present an improved parser
composition method known as predictive cascading.

2.1. Automatic Grammar Partitioning

Our investigation on automatic grammar partitioning involves
a syntactic grammar derived from the Penn Treebank ATIS
subset (www.ldc.upenn.edu) and is different from the semi-
automatically derived semantic grammar used in our previous
work [5][13].
 The Penn Treebank contains a subset of the ATIS-3 corpus,
which is a set of 577 parsed queries including Class A (self-
contained) and Class D (dependent on discourse context)
queries. Parse trees of these queries are provided, with the
tree terminals being part-of-speech (POS) tags. A parse tree
example is shown in Figure 1. Our grammar rules are
extracted from the parse trees. For the sake of simplicity we
ignore the null elements XXX as well as co-indexing in the
grammar rules. Hence WHNP-1 is treated the same as
WHNP in Figure 2. As we extract the grammar rules from the
training parse trees, we also record the frequency of
interaction between rules, e.g. Rule 2 in Figure 2 (PP-
DIR→

�
IN NP) has called Rule 1 (NP→NNP) once. Here the

INPUT set of Rule 2 is the non-terminal NP and the
OUTPUT set is PP-DIR.

Our automatic grammar partitioning procedure begins
with the set of finest grammar partitions, i.e. each partition
contains exactly one grammar rule. Then we attempt to
cluster the sub-grammars to form larger ones based on the
frequencies of their interactions. In other words, we want to
cluster grammar partitions that have frequent caller/callee
interactions into a larger sub-grammar. This procedure
references a calling matrix, where the entry at row i and
column j is the frequency of sub-grammar i calling sub-
grammar j (see Figure 3).

Figure 1: An example parse tree drawn from an ATIS
sentence from the Penn Treebank.

There are three steps in the clustering procedure:
1. The initial step first checks for every sub-grammar with

an empty input set, then duplicates and merges the sub-
grammar for each of its caller sub-grammars. For
example, grammar partition 4 in Figure 2 is
(WHNP→

�
WDT). Its INPUT set is empty (since #WDT is a

POS terminal), and its OUTPUT set is { WHNP} . For
grammar partition 8, the INPUT set is { WHNP S} and the
OUTPUT set is { SBAR} . Hence partition 8 is a caller of 4,
and we merge them to form partition 11 with INPUT set
{ S} and OUTPUT set { SBAR} :

Grammar partition 11:
INPUT = { S}
OUTPUT ={ SBAR}
SBAR → WHNP S (from partition 8)
WHNP → #WDT (from partition 4)

We then update the calling matrix as shown in Figure 4.
Columns 4 and 8 are deleted and column 11 is added.
The other entries remain unchanged.

0: NP → #DT #NNS
1: NP → #NNP
2: PP-DIR → #IN NP
3: PP-DIR → #TO NP
4: WHNP → #WDT
5: PP-LOC →

�
IN NP

6: VP → �
VBP PP-LOC

7: S →VP
8: SBAR →WHNP S
9: NP →NP PP-DIR PP-DIR SBAR
10: VP →

�
VB NP

Figure 2: Grammar rules extracted from the parse tree in
Figure 1.

 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 1
8 0 0 0 0 1 0 0 1 0 0 0
9 1 0 1 1 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 1 0

Figure 3: Calling matrix of the grammar in Figure 2.

 0 1 2 3 5 6 7 9 10 11
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 1 0 0 1 0
9 1 0 1 1 0 0 0 0 0 1
10 0 0 0 0 0 0 0 1 0 0
11 0 0 0 0 0 0 1 0 0 0

Figure 4: Updated calling matrix of the grammar in
Figure 2.

2. The next step in our clustering procedure is an iterative
step. We find the maximum value in the calling matrix,
and merge the two sub-grammars into a new grammar.
Merging is conditioned upon two thresholds: (i) the

S � ASK FLIGHT_NP|...
ASK � show me | list | tell me | give me | ...
FLIGHT_NP � FLIGHT FLIGHT_PP
FLIGHT � flight | flights | flight number | ...
FLIGHT_PP � DEPARTURE | ARRIVAL | ...
DEPARTURE � leaving CITY_NAME | ...
CITY_NAME � phoenix | new york | seattle

S � VP
VP � VB NP NP
NP 	 DT NNP NNP NNP NNS
NP
 RB DT NNP NNP NNS
NP � DT NNP NNP NNS
NP � DT JJS JJ NN NNS
NP JJ NNS
NP � NNP

frequency in the matrix must be greater than the
minimum count X (set at 3) ; and (ii) the size of the
merged grammar must lie below the threshold Y (set at
100) to avoid infinite growth. Grammar size is measured
according to Equation (1). P is the set of production
rules, and length(x) is the length of string x.

3. The final step in our clustering procedure is to merge two
sub-grammars if the OUTPUT set of one contains all the
non-terminals in the OUTPUT set of the other.

As such we obtained 46 grammar partitions based on the
syntactic rules derived from the 577 Penn Treebank ATIS
training parse trees.

2.2. Parser Composition by Predictive Cascading

Predictive cascading is a parser composition method that
combines the merits of predictive pruning and cascading. In
this process, all edges of the lattice are topologically sorted
into a stack, just as simple cascading, but in reversed
topological order. The LMG will then be parsed from the last
edge to the first one. When one sub-parser parses successfully,
an output virtual terminal (a new edge) will be placed on the
LMG and added to the stack. This edge will be tested later by
a predictive procedure that determines whether or not the
edge is a left corner of a sub-grammar (or a callee sub-parser).
The left corner of a sub-grammar is the first terminal of a
string derived from the sub-grammar, and its corresponding
sub-parser can be invoked for further parsing.

3. Experiments

Our experiments include two styles of parsers. The first one
is the Earley parser, where the prediction step is pre-
compiled. The other is the GLR parser [8][9]. These two
parsers have different characteristics. The Earley parser does
not encode all the prefix paths in a table, while the GLR
parser tries to do it as much as possible. This usually makes
GLR faster but bigger when compared with Earley parser.

Three different data sets are used for our experiments. The
first one is a Chinese keyword list grammar for key words
extraction; the second is a semi-automatically derived ATIS
semantic grammar [5]; the third is the fully annotated Penn
Treebank ATIS parse trees. All the grammars have two
versions -- one is partitioned, and the other is un-partitioned.

Two sets of experiments are conducted. The first one is to
compare the speed between the GLR parser and the Earley
parser on partitioned grammars. The other is to compare the
speeds between the partitioned approach and the un-
partitioned approach for different grammar sets. The size of
the GLR parsing table for the Penn Treebank ATIS grammar
is excessive, so we only use the Earley parser for the effect on
speed. Both experiments use Intel Pentium 933MHz

�

processor with 512 Mbytes memory and the Windows 2000
Professional operating system.

We describe the three grammars, their partitioning
methods and the experimental setups below.
(i) The Chinese keyword list is obtained from an

international news corpus which has 15,426 keywords
(rules). For partitioning, all the keywords were first sorted

in alphabetical order. Then, the list of keywords is split
into 78 sub-grammars with 200 keywords each. The non-
terminals are labeled as KEYWORDi, where i is the index
of the sub-grammar. Here are some examples of the
keyword rules. The testing corpus includes 200
handcrafted Chinese queries. The average sentence length
is 10.6 characters. The maximum sentence length is 19
characters.

(ii) The ATIS semantic grammar is a set of context-free rules
that contain both semantic and syntactic structures. The
low level grammar rules are mainly semantic concepts,
such as CITY-NAME, CLASS-TYPE, MONTH-NUMBER, etc.
They are obtained by a semi-automatic grammar induction
algorithm [5]. In this experiment, we partitioned the 1,297
semantic rules into 64 sub-grammars. Examples of the
English ATIS-3 rules are given below. For the semantic
grammar experiment, the ATIS 1993 Class A data is used.
1564 ATIS training set has been used as the test sentences.
Average sentences length is 11.2 words. Max length is 46
words.

(iii) The automatically partitioned syntactic grammar is
derived from the hand-bracketed Penn Tree bank ATIS-3
subset, with 577 sentences including class-A and class-D
semtemces. In this experiment, we partitioned the 416
rules into 46 sub-grammars. Examples of partitioned
syntactic grammar are listed below. For the Penn
Treebank ATIS case, most of the ATIS sentences, i.e. 500
out of 577 POS tags sentences, are used as the test
sentences. The average sentences length is 6.5 tags, and
the max length is 13 tags. The full parse coverage is
99.7% in both partitioned grammar and no partitioned
grammar.

KEYWORD0 � � � �
KEYWORD0 � � � � �
KEYWORD0 � � �
KEYWORD0 � � �
KEYWORD0 � !
KEYWORD0 " # $ % &
KEYWORD0 ' ()

�
∈→

=
PA

EqnAlengthG
)(

)1().....(||
α

α

Our first set of experiments compare the speed of the

Earley parser against that of the GLR parser for partitioned
grammars. Results show that the GLR parser runs faster in
most cases, especially when the grammar is more complex
(see Table 1).

 Earley

of sentences
per second

GLR
of sentences per

second
Keyword list 40.00 25.0

ATIS semantic
grammar 42.30 55.9

ATIS Penn Tree
Bank syntactic
grammar

1.99 9.8

Table 1: Comparison between the Earley parser and the
GLR parser in terms of speed.

The second set of experiments compare the speeds
between partitioned and unpartitioned grammars. Results
show that the Earley parser runs faster for the partitioned case
than for the un-partitioned case (Table 2).

 No partitioning

of sentences
per second

Partitioning
of sentences

per second
Keyword list 0.016 40.00

ATIS semantic
grammar 0.29 42.30

ATIS Penn Tree
Bank syntactic
grammar

0.22 1.99

Table 2: Comparison of Earley parser’s speed for
partitioned vs. un-partitioned grammars.

A third experiment was conducted to see the effect of left-
corner prediction for Earley parser. The result has shown that
using predictive cascading gives 40 times speed up when
compared to the previous cascading composition.

4. Comparison and Conclusion

This paper systematically examines the parsing speed based
on three different grammar sets (from a simple keyword list to
a complicated syntactic grammar), and two different parsers
(Earley and GLR). The experimental results show the GLR
parser is generally faster than the Earley parser. Earley parsers
run faster with partitioned grammars than unpartitioned
grammars. The results are consistent for simple grammars
and complicated grammars, and for manually partitioned
grammars as well as automatically partitioned grammar.

Abney [1] proposed two-level chunking parser, which
first converts an input sentence into chunking sequence for
lower level processing, then uses an attacher to connect these
chunks together for higher level processing. But, no
systematic speed result has been reported for the parser.
Ruland [7] developed Multi-Parser Multi-Strategy
Architecture for noisy input. It uses a full parser first, and

then a partial parser when the full parser does not return a
result. CMU’s Janus parser [14] uses a similar strategy.
However, these multiple parsers are used in an ordered
fashion, i.e. robust parsing is invoked only after regular
parsing fails. Therefore, there is no partitioning in the
architecture. Dowding [3] and Moore [6] systematically
examined the effect of different left corner constraints on
speed. Our results have shown a more significant
improvement when using grammar partitioning. We attribute
the difference to the block effect, i.e., when a sub-grammar
does not meet a left corner constraint, the whole sub-grammar
is pruned.

5. References

[1] Abney, S., "Parsing by Chunks", In Principle-Based
Parsing: Computation and Psycholinguistics, R. C.
Berwick et al.(eds), Kluwer Academic Publishers, 1991.

[2] Amtrup, J. “Parallel Parsing: Different Distribution
Schemata for Charts” , Proceesings of the 4th International
Workshorp on Parsing Technologies, Prague, pp.12-13,
Sep 1995.

[3] Dowding, J., Moore, R., Andry, F., and Moran, D.,
“ Interleaving syntax and semantics in an efficient bottom-
up parser” . In Proc. of the 32 nd Annual Meeting of the
Association for Computational Linguistics, pages 110--
116, Las Cruces, NM, June27--30 1994.

[4] Korenjak, A., "A Practical Method for Constructing
LR(k)", CACM 12, 11, 1969.

[5] Luk, P.C., Meng, H. and Weng, F., “Grammar
Partitioning and Parser Composition for Natural
Language Understanding” . Proceedings of ICSLP, 2000.

[6] Moore, R.C., “ Improved Left-corner Chart Parsing for
Large Context-free Grammars” . Proceedings of 6-th
International Workshop on Parsing Technologies, 2000.

[7] Ruland, T., et al "Making the Most of Multiplicity: A
Multi-Parser Multi-Strategy Architecture for the Robust
Processing of Spoken languages". Proceedings of ICSLP,
1998.

[8] Siu, K.C. and Meng, H. “Semi-automatic acquisition of
domain-specific semantic structures” . In proc. of
Eurospeech, 1999.

[9] Tomita, M. “Efficient Parsing for Natural Language”,
Kluwer Academic Publishers, MA, 1985.

[10] Tomita, M. “An Efficient Word Lattice Parsing
Algorithm for Continuous Speech Recognition”
Proceedings of ICASSP, 1986.

[11] Weng, F.L. “Handling Syntactic Extra-Grammaticality” .
Proceedings of 3rd International Workshop on Parsing
Technologies, 1993.

[12] Weng, F.L. and Stolcke, A. “Partitioning Grammar and
Composing Parsers” . Proceedings of 4-th International
Workshop on Parsing Technologies, 1995.

[13] Weng, F.L., Meng, H. and Luk, P.C., "Parsing a Lattice
with Multiple Grammars". Proceedings of 6-th
International Workshop on Parsing Technologies, 2000.

[14] Woszczyna, M., Aoki-Waibel, N., Buo, F., D., Coccaro,
N., Horiguchi, K., Kemp, T., Lavie, A., McNair, A.,
Polzin, T., Rogina, I., Rose, C.P., Schultz, T., Suhm, B.,
Tomita, M., and Waibel, A., “JANUS-93: Towards
Spontaneous Speech Translation” . In Proceedings of
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP'94), 1994.

