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Abstract 

Natural language queries provide a natural means for common 
people to interact with computers and access to on-line 
information. Due to the complexity of natural language, the 
traditional way of using a single grammar for a single 
language parser leads to an inefficient, fragile, and often very 
large language processing system. Multi-Parser Architecture 
(MPA) intends to alleviate these problems, and the 
modularized MPA also has the advantage of easier portability 
to new domains and distributed computing. In this paper, we 
investigate the effect of using different types of parsers on 
different types of query data in MPA. Three data sets and two 
types of sub-parsers have been examined. Results show that 
partitioning grammars leads to superior speed performance for 
the Earley parser1 across the three data sets. The GLR parser 
is faster than the Earley parser for the partitioned grammar, 
but the GLR parser may have excessive memory usage for the 
un-partitioned grammars. 

1. Introduction    

Natural language queries, sometimes as the back-end to 
speech recognizers, provide a natural means for common 
people to interact with computers and access to on-line 
information. Due to the complexity of natural language itself, 
the grammar that describes the query language can be very 
complex. The traditional way of using a single grammar leads 
to an inefficient, fragile, and often very big processing system. 
These problems become more apparent, with the increasing 
demand for natural language applications over the Internet. 

Various methods that deal with these parsing issues have 
been studied, e.g., [1][2][7][12]. The proposed Multi-Parser 
Architecture (MPA) by [5][12][13] intends to alleviate 
aforesaid problems simultaneously by partitioning a single 
grammar into multiple sub-grammars and composing sub-
parsers for the sub-grammars. Sub-parsers can be combined by 
parser composition methods such as cascading and predictive 
pruning [5].  The MPA is highly modularized with re-usable 
sub-grammars and this is advantageous for distributed 
computing and portability to new application domains.  Our 
current work presents several enhancements:  (i) a 
methodology for automatic grammar partitioning; (ii) an 
improved parser composition method known as predictive 
cascading; and (iii) the use of an Earley parser in addition to 
the GLR parser used previously. Experiments were conducted 

                                                           
1 Hereafter we refer to the pre-complied Earley parser simply 
as the Earley parser. 

with three data sets – a keyword list, a semantic grammar and 
a syntactic grammar.  Results show that grammar partitioning 
with composition of Earley parsers can speed up processing 
substantially for both semantic and syntactic grammars when 
compared to the un-partitioned grammars.  Furthermore, while 
the GLR parser is faster than Earley; the latter utilizes memory 
more efficiently. 

2. The Multi-Parser Architecture  

MPA involves the two main processes of grammar 
partitioning and parser composition.  Grammar partitioning 
divides a grammar into multiple sub-grammars. Each sub-
grammar is used by its corresponding sub-parser, and parsing 
results across sub-parsers are composed to produce an overall 
parse output for a natural language query.  The interaction 
among sub-grammars/sub-parsers is achieved by applying a 
virtual terminal technique.  The virtual terminal is essentially 
a non-terminal, but acts as if it were a terminal. The INPUT set 
to a sub-grammar is a set of virtual terminals that were 
previously parsed by other sub-grammars. The OUTPUT set of 
a sub-grammar is a set of non-terminals that are parsed based 
on this sub-grammar; and used by other sub-grammars as their 
INPUT sets. Hence a partition (subset) of production rules can 
be viewed as a multi-valued function – it takes the virtual 
terminals in the INPUT set as input, and returns a set of non-
terminals in the OUTPUT set as output.  Results on manually 
partitioned grammars were presented previously [5][13]. In 
this paper, we will present a method for automatic grammar 
partitioning and related experimental results. 

Two methods for parser composition have been presented 
in [5][13]: composition by cascading and composition by 
predictive pruning. Cascading is a bottom-up parsing 
procedure starting from the terminal level to and moves to the 
SENTENCE level.  It begins by converting the input sentence 
into a lattice called LMG, and invokes parsers at each lattice 
position.  During parsing, newly created virtual terminals (vt) 
are added dynamically to the stack and LMG.  The stack stores 
the terminals and virtual terminals according to the topological 
order of the LMG. Cascading has the advantage of parser 
robustness, but is relatively slow due to excessive parser 
invocation at each lattice (LMG) position. To avoid this, 
predictive composition is a top-down procedure where the 
caller sub-parser invokes a callee sub-parser only if the latter 
satisfies the constraint that the input node must be its left 
corner.  Sub-parsers that do not satisfy the constraint are 
pruned.  While the top-down approach has the advantage of 
execution efficiency, it may at times be too constrained to be 
robust.  In subsection 2.2, we present an improved parser 
composition method known as predictive cascading. 



2.1. Automatic Grammar Partitioning 

Our investigation on automatic grammar partitioning involves 
a syntactic grammar derived from the Penn Treebank ATIS 
subset (www.ldc.upenn.edu) and is different from the semi-
automatically derived semantic grammar used in our previous 
work [5][13]. 
    The Penn Treebank contains a subset of the ATIS-3 corpus, 
which is a set of 577 parsed queries including Class A (self-
contained) and Class D (dependent on discourse context) 
queries.  Parse trees of these queries are provided, with the 
tree terminals being part-of-speech (POS) tags.   A parse tree 
example is shown in Figure 1.  Our grammar rules are 
extracted from the parse trees.  For the sake of simplicity we 
ignore the null elements XXX as well as co-indexing in the 
grammar rules.  Hence WHNP-1 is treated the same as 
WHNP in Figure 2.  As we extract the grammar rules from the 
training parse trees, we also record the frequency of 
interaction between rules, e.g. Rule 2 in Figure 2 (PP-
DIR→

�
IN NP) has called Rule 1 (NP→NNP) once.  Here the 

INPUT set of Rule 2 is the non-terminal NP and the 
OUTPUT set is PP-DIR.  

Our automatic grammar partitioning procedure begins 
with the set of finest grammar partitions, i.e. each partition 
contains exactly one grammar rule.  Then we attempt to 
cluster the sub-grammars to form larger ones based on the 
frequencies of their interactions.  In other words, we want to 
cluster grammar partitions that have frequent caller/callee 
interactions into a larger sub-grammar.  This procedure 
references a calling matrix, where the entry at row i and 
column j is the frequency of sub-grammar i calling sub-
grammar j (see Figure 3). 
 

 

Figure 1: An example parse tree drawn from an ATIS 
sentence from the Penn Treebank. 

There are three steps in the clustering procedure: 
1. The initial step first checks for every sub-grammar with 

an empty input set, then duplicates and merges the sub-
grammar for each of its caller sub-grammars.  For 
example, grammar partition 4 in Figure 2 is 
(WHNP→

�
WDT).  Its INPUT set is empty (since #WDT is a 

POS terminal), and its OUTPUT set is { WHNP} .  For 
grammar partition 8, the INPUT set is { WHNP S}  and the 
OUTPUT set is { SBAR} .  Hence partition 8 is a caller of 4, 
and we merge them to form partition 11 with INPUT set 
{ S}  and OUTPUT set { SBAR} : 

Grammar partition 11: 
INPUT = { S}  
OUTPUT ={ SBAR}  
SBAR → WHNP S  (from partition 8) 
WHNP → #WDT  (from partition 4) 

 

We then update the calling matrix as shown in Figure 4. 
Columns 4 and 8 are deleted and column 11 is added.  
The other entries remain unchanged. 

 

0: NP → #DT #NNS 
1: NP → #NNP 
2: PP-DIR → #IN NP 
3: PP-DIR → #TO NP 
4: WHNP → #WDT 
5: PP-LOC →

�
IN NP 

6: VP → �
VBP PP-LOC 

7: S →VP 
8: SBAR →WHNP S 
9: NP →NP PP-DIR PP-DIR SBAR 
10: VP →

�
VB NP 

Figure 2: Grammar rules extracted from the parse tree in 
Figure 1. 

 0 1 2 3 4 5 6 7 8 9 10 
0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 0 0 0 
3 0 1 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 
5 0 1 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 1 0 0 0 0 0 
7 0 0 0 0 0 0 1 0 0 0 1 
8 0 0 0 0 1 0 0 1 0 0 0 
9 1 0 1 1 0 0 0 0 1 0 0 
10 0 0 0 0 0 0 0 0 0 1 0 

Figure 3: Calling matrix of the grammar in Figure 2. 

 0 1 2 3 5 6 7 9 10 11 
0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 0 0 
3 0 1 0 0 0 0 0 0 0 0 
5 0 1 0 0 0 0 0 0 0 0 
6 0 0 0 0 1 0 0 0 0 0 
7 0 0 0 0 0 1 0 0 1 0 
9 1 0 1 1 0 0 0 0 0 1 
10 0 0 0 0 0 0 0 1 0 0 
11 0 0 0 0 0 0 1 0 0 0 

Figure 4:  Updated calling matrix of the grammar in 
Figure 2. 

2. The next step in our clustering procedure is an iterative 
step.  We find the maximum value in the calling matrix, 
and merge the two sub-grammars into a new grammar.  
Merging is conditioned upon two thresholds:  (i) the 



S �  ASK FLIGHT_NP|... 
ASK �  show me | list | tell me | give me | ... 
FLIGHT_NP �  FLIGHT FLIGHT_PP 
FLIGHT �  flight | flights | flight number | ... 
FLIGHT_PP �  DEPARTURE | ARRIVAL | ... 
DEPARTURE �  leaving CITY_NAME | ... 
CITY_NAME �  phoenix | new york | seattle 

S �  VP 
VP �  VB NP NP 
NP 	  DT NNP NNP NNP NNS 
NP 
  RB DT NNP NNP NNS 
NP �  DT NNP NNP NNS 
NP �  DT JJS JJ NN NNS 
NP 
  JJ NNS 
NP �  NNP 
 

frequency in the matrix must be greater than the 
minimum count X (set at 3) ; and (ii) the size of the 
merged grammar must lie below the threshold Y (set at 
100) to avoid infinite growth.  Grammar size is measured 
according to Equation (1). P is the set of production 
rules, and length(x) is the length of string x. 

 

 

3. The final step in our clustering procedure is to merge two 
sub-grammars if the OUTPUT set of one contains all the 
non-terminals in the OUTPUT set of the other. 

As such we obtained 46 grammar partitions based on the 
syntactic rules derived from the 577 Penn Treebank ATIS 
training parse trees. 

2.2. Parser Composition by Predictive Cascading 

Predictive cascading is a parser composition method that 
combines the merits of predictive pruning and cascading. In 
this process, all edges of the lattice are topologically sorted 
into a stack, just as simple cascading, but in reversed 
topological order. The LMG will then be parsed from the last 
edge to the first one. When one sub-parser parses successfully, 
an output virtual terminal (a new edge) will be placed on the 
LMG and added to the stack. This edge will be tested later by 
a predictive procedure that determines whether or not the 
edge is a left corner of a sub-grammar (or a callee sub-parser). 
The left corner of a sub-grammar is the first terminal of a 
string derived from the sub-grammar, and its corresponding 
sub-parser can be invoked for further parsing. 

3. Experiments 

Our experiments include two styles of parsers.  The first one 
is the Earley parser, where the prediction step is pre-
compiled. The other is the GLR parser [8][9]. These two 
parsers have  different characteristics.  The Earley parser does 
not encode all the prefix paths in a table, while the GLR 
parser tries to do it as much as possible. This usually makes 
GLR faster but bigger when compared with Earley parser. 

Three different data sets are used for our experiments. The 
first one is a Chinese keyword list grammar for key words 
extraction; the second is a semi-automatically derived ATIS 
semantic grammar [5]; the third is the fully annotated Penn 
Treebank ATIS parse trees.  All the grammars have two 
versions -- one is partitioned, and the other is un-partitioned.  

Two sets of experiments are conducted.  The first one is to 
compare the speed between the GLR parser and the Earley 
parser on partitioned grammars. The other is to compare the 
speeds between the partitioned approach and the un-
partitioned approach for different grammar sets.  The size of 
the GLR parsing table for the Penn Treebank ATIS grammar 
is excessive, so we only use the Earley parser for the effect on 
speed. Both experiments use Intel Pentium  933MHz

�
 

processor with 512 Mbytes memory and the Windows 2000 
Professional operating system. 

We describe the three grammars, their partitioning 
methods and the experimental setups below. 
(i) The Chinese keyword list is obtained from an 

international news corpus which has 15,426 keywords 
(rules). For partitioning, all the keywords were first sorted 

in alphabetical order. Then, the list of keywords is split 
into 78 sub-grammars with 200 keywords each. The non-
terminals are labeled as KEYWORDi, where i is the index 
of the sub-grammar. Here are some examples of the 
keyword rules.  The testing corpus includes 200 
handcrafted Chinese queries.  The average sentence length 
is 10.6 characters.  The maximum sentence length is 19 
characters. 
 
 
 
 
 
 
 
  
 
 

(ii) The ATIS semantic grammar is a set of context-free rules 
that contain both semantic and syntactic structures. The 
low level grammar rules are mainly semantic concepts, 
such as CITY-NAME, CLASS-TYPE, MONTH-NUMBER, etc. 
They are obtained by a semi-automatic grammar induction 
algorithm [5]. In this experiment, we partitioned the 1,297 
semantic rules into 64 sub-grammars. Examples of the 
English ATIS-3 rules are given below.  For the semantic 
grammar experiment, the ATIS 1993 Class A data is used. 
1564 ATIS training set has been used as the test sentences. 
Average sentences length is 11.2 words. Max length is 46 
words. 

  
 
 
 
 
 
 
 
 
 

(iii) The automatically partitioned syntactic grammar is 
derived from the hand-bracketed Penn Tree bank ATIS-3 
subset, with 577 sentences including class-A and class-D 
semtemces.  In this experiment, we partitioned the 416 
rules into 46 sub-grammars. Examples of partitioned 
syntactic grammar are listed below.  For the Penn 
Treebank ATIS case, most of the ATIS sentences, i.e. 500 
out of 577 POS tags sentences, are used as the test 
sentences. The average sentences length is 6.5 tags, and 
the max length is 13 tags. The full parse coverage is 
99.7% in both partitioned grammar and no partitioned 
grammar. 
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Our first set of experiments compare the speed of the 

Earley parser against that of the GLR parser for partitioned 
grammars.  Results show that the GLR parser runs faster in 
most cases, especially when the grammar is more complex 
(see Table 1).  

 
  Earley 

# of sentences 
per second  

GLR 
# of sentences per 

second  
Keyword list    40.00 25.0 

ATIS semantic 
grammar  42.30 55.9 

ATIS Penn Tree 
Bank syntactic 
grammar  

1.99 9.8 

Table 1: Comparison between the Earley parser and the 
GLR parser in terms of speed. 

The second set of experiments compare the speeds 
between partitioned and unpartitioned grammars. Results 
show that the Earley parser runs faster for the partitioned case 
than for the un-partitioned case (Table 2). 

 
  No partitioning 

# of sentences 
per second  

Partitioning 
# of sentences 

per second  
Keyword list  0.016 40.00 

ATIS semantic 
grammar  0.29 42.30 

ATIS Penn Tree 
Bank syntactic 
grammar  

0.22 1.99 

Table 2: Comparison of Earley parser’s speed for 
partitioned vs. un-partitioned grammars. 

A third experiment was conducted to see the effect of left-
corner prediction for Earley parser. The result has shown that 
using predictive cascading gives 40 times speed up when 
compared to the previous cascading composition. 

4. Comparison and Conclusion 

This paper systematically examines the parsing speed based 
on three different grammar sets (from a simple keyword list to 
a complicated syntactic grammar), and two different parsers 
(Earley and GLR). The experimental results show the GLR 
parser is generally faster than the Earley parser. Earley parsers 
run faster with partitioned grammars than unpartitioned 
grammars.  The results are consistent for simple grammars 
and complicated grammars, and for manually partitioned 
grammars as well as automatically partitioned grammar. 

Abney [1] proposed two-level chunking parser, which 
first converts an input sentence into chunking sequence for 
lower level processing, then uses an attacher to connect these 
chunks together for higher level processing. But, no 
systematic speed result has been reported for the parser.  
Ruland [7] developed Multi-Parser Multi-Strategy 
Architecture for noisy input. It uses a full parser first, and 

then a partial parser when the full parser does not return a 
result. CMU’s Janus parser [14] uses a similar strategy. 
However, these multiple parsers are used in an ordered 
fashion, i.e. robust parsing is invoked only after regular 
parsing fails.  Therefore, there is no partitioning in the 
architecture. Dowding [3] and Moore [6] systematically 
examined the effect of different left corner constraints on 
speed. Our results have shown a more significant 
improvement when using grammar partitioning. We attribute 
the difference to the block effect, i.e., when a sub-grammar 
does not meet a left corner constraint, the whole sub-grammar 
is pruned. 
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