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ABSTRACT
This paper is about learning Belief Networks (BNs) for spoken
language understanding. The BNs are used to infer the
communicative goal of a user's information-seeking query in a
restricted domain. We assume that a restricted domain generally
has a finite number of communicative goals.  The problem is
formulated as N binary classifications (one per goal), and each is
performed by a BN.  This formulation allows for the identification
of queries with multiple goals, as well as queries with out-of-
domain goals.   The BN topologies are automatically learnt
according to the Minimum Description Length (MDL) principle.
We aim to learn the least complex topologies that can best model
the available data set.  These enhanced topologies are compared
with a pre-defined, basic topology. Experiments with the ATIS-3
corpus shows that the enhanced topology improves goal
identification accuracies from 83.7% to 91.5% when a single
output goal is evaluated, and from 66.0% to 83.1% when multiple
output goals are evaluated.

1. INTRODUCTION
This paper explores the use of Belief Networks (BN) for
understanding spoken language. Information-seeking queries from
a restricted domain often serves to convey a finite set of
communicative goals.  However, for a given communicative goal,
the possible ways of expression are legion. BNs can be used to
infer the communicative goal of the user from the query’s
semantics.  Identification of the communicative goal helps to
formulate a system’s response most relevant to the user’s query.
This capabilit y should be conducive towards the development of
conversational systems that can respond to a user's query.

We believe that BNs offer several advantages to the problem of
communicative goal identification.  First, the dependencies
between a query’s communicative goal(s) and the relevant
semantic concepts may be effectively captured by the topology of
the BN.  Second, BNs identify the communicative goal by means
of probabili stic inferencing.  This enables the use of data-driven
approaches to alleviate the tedium in handcrafting heuristics.
Third, BNs can handle situations where the input observations are
incomplete, and thus may model spoken queries well .  Fourth, the
BN framework is suited for the optional incorporation of prior
knowledge to aid inferencing.

Previously we have used BNs with a simple pre-defined structure
(as shown in Figure 1) for the task of communicative goal
identification.  The user’s query is first transformed into a
sequence of semantic concepts.  These are subsequently used by
BNs to infer the query’s communicative goal.  The pre-defined

BN structure models only the causal relationships between the
goal and the concepts, while the concepts are assumed to be
independent of one another.  In this work, we attempt to use a
more sophisticated topology for our BNs, which can model the
inter-dependencies among the concepts.   The new topology is
automatically learnt from a training corpus.  The learning
algorithm tries to create the least complex network topologies
which can most accurately model the training data.  We expect the
enhanced topology should lead to improved goal identification
performance, without excessive demands on inference
computation, or training corpus size.

Figure 1.  The pre-defined structure of our Belief
Network.  The arrows of the acyclic graph are drawn from
cause to effect.

2. PREVIOUS APPROACHES
The use of BN for natural language processing has been attempted
in [1].  Aside from using BNs, our problem has previously been
tackled with alternative approaches.  A well -known example is
call -routing in AT&T’s “How May I Help You?” task [2] and
other similar call center tasks [3].  Here the caller’s
communicative goal determines the destination for call -routing.
The problem is formulated as a topic identification or document
classification problem, and for every input query the system
outputs a single identified topic using a vector-based information
retrieval technique.  Other previous approaches include:
grammar-based parsing [4] [5]; stochastic concept decoding with
HMMs [6]; and probabili siti c recursive transition networks [7].
We have also applied a Naïve Bayesian approach previously [8].

3. TASK DOMAIN
Our experiments are based on the ATIS (Air Travel Information
Systems) corpus [9].  We use the Class A sentences of ATIS-3,
which have disjoint training and test sets of 1,564, 448 (1993
test) 444 (1994 test) transcribed utterances respectively. Each
utterance (or query) is accompanied by its corresponding SQL
query for retrieving the relevant information from the database.
The main attribute label is treated as the communicative goal of
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the query.  There are 32 goals in the training set, but 11 of them
covers over 95% of the training queries.  We also found 43
training utterances with more than one goal. Examples include:

QUERY: “chicago to san francisco on continental”
GOAL:  FLIGHT_ID

QUERY: “give me the least expensive first class round trip
ticket on  u s air from cleveland to miami”
GOALS: FLIGHT_ID, FARE_ID

The remaining attribute labels from the SQL are referenced as we
enumerate the set of key semantic concepts for the ATIS domain.

4.  PROCESS OF GOAL IDENTIFICATION
We have devised the following process for goal identification[10]:

1. Semantic Tagging:  Each input query is tagged according to
a set of semantic concepts. The tag sequence (sequence of
semantic concepts) forms the input to our BNs, e.g.

QUERY:  “may I have a listing of flight numbers from
columbus ohio to minneapolis minnesota on Monday”

TAGS:<dummy><have><dummy><listing><prep>
<flight_num><from><city_name><state_name><to>
<city_name><state_name> <prep> <day_name>

GOAL:  FLIGHT_NUMBER

2. BN development: We develop one BN per communicative
goal in the training corpus.  We have 11 BNs in total to avoid
using sparsely trained networks.  The remaining goals are
treated as out-of-domain (OOD).  Each BN is trained to
process an input query, and make a binary decision on the
presence or absence of its goal.  The pre-defined (basic)
topology is as shown in Figure 1.  For a network
corresponding to goal Gi, we select the M concepts {C1, C2,…
CM} which have the highest Information Gain (IG) with Gi.
These form the input of the BN.  (Equation 1 is the formula
for the IG between a concept Ck and the goal Gi.).

The selected concepts are regarded as most indicative of the
goal.  Each BN then applies Bayesian inferencing (Equation
2) to derive P(Gi|C).  This value is compared against the

threshold θ =0.5 to make the binary decision.

Performance on binary classification is indicated by the F-
measure (Equation 3), which combines both precision (P)
and recall (R) for retrievial of goal Gi (β=1).

3. Goal Identifi cation:  The decisions across all the BNs are
combined to identify the output goal of an input query.  We
may label the query with the (single) goal giving the highest
value of P(Gi|C) across all BNs.  Alternatively, we may label
the query with all the goals for which the BNs voted positive
– this achieves multiple-goal identification.  In the case when

all BNs vote negative, the input query is rejected as out-of-
domain.

5.  LEARNING NETWORK TOPOLOGIES
A Belief Network is a directed acyclic graph with nodes and arcs.
The direction of the arc represents the probabili stic dependency
between two nodes (or variables).  The node where the arc arrives
depends on the node where the arc originates.  Hence the topology
we have in Figure 1 assumes that the input concepts to the
network are independent of one another.    We wish to enhance
this topology for inferring the goal, by capturing possible inter-
dependencies amongst concepts. We believe this may improve the
goal identification performance.

A machine learning technique is applied to learn the BN topology
with reference to training data.  Since it is computationally
expensive to learn an arbitrary network, we constrain ourselves to
topologies which belong to the classification-based network
structures.   A classification-based network has a root node (with
no parents) which represents our goal Gi.  The rationale is that
the states of the class variables may depend on the membership of
the goal, but not vice versa.  Figure 2 shows an example of our
enhanced topology.  The root node for goal Gi only has arcs
pointing outwards to the concept nodes, which is the same as the
pre-defined topology.  However, we now allow linkages between
pairs of concepts, and the most desirable linkages will be learnt
from training data.

Figure 2.  An example of a classification-based Belief
Network, with an arc from concept node 2 to node 3.

The new topology will i ncrease the complexity of our BNs.  This
should have two effects.  On one hand, we can model the
underlying distribution of the real data more accurately. On the
other hand, the increased complexity will require more
computation.  We aim to learn network structures with minimal
connectivity, but are suff iciently accurate for modeling the
underlying distribution of the data.  To achieve this we adopt
Rissanen's minimum description length (MDL) principle [11].

5.1 The Minimum Description Length (MDL) Principle

The MDL principle offers a rigorous methodology for deriving a
simple BN structure which is suff iciently accurate for modeling
an available data set.  Every node in the BN contributes towards
the complexity of the network by a magnitude Lnetwork (the
network description length).  Lower values for Lnetwork reflect
lower complexities. Each node also contributes towards the
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accuracy in modeling data by a magnitude of Ldata (the data
description length). Lower values of Ldata reflect higher
accuracies.  Consider the BN for goal Gj, with the root node Gj,
and concept nodes {Cj1, Cj2,… CjM}.  Also consider especially the
concept node Cji  and its set of parent nodes P(Cji).   Lnetwork is
defined as:

where N is the total number of training utterances, si is the
number of possible instantiations for Cji  (2 in our case), |P(Cji)| is
the number of parents for node Cji, x is the number of nodes in
the network, and sm is the number of possible instantiations for a
parent in the parent set.  k is a constant for controlli ng the
complexity of the network learnt.1 Ldata is defined as:

where the summation is taken over all possible instantiations of
the node Cji and its parents.  M(.) is the number of cases that
match a particular instantiation in the training data.

The total description length (Ltotal) contributed by a given node, is
defined in Equation 6.

5.2  Searching for the Topology with MDL
A best-first search algorithm is used to find the network topology
of MDL.  Our search procedure first computes the average Ltotal

(between the 2 directions) for each arc that can be added to our
predefined network structure.2  The arcs are sorted in increasing
order of Ltotal to form the sorted arc list, e.g. arc1, arc2… arcn.
Each arc in this li st is paired with our pre-defined network
structure (T0) to form a search list of network-arc pairs, i.e. { (T0

arc1), (T0 arc2)… (T0 arcn)} .  At this point iterative searching
begins.  Each network-arc pair receives an evaluation score, by
summing the description length of the network and the average
Ltotal of the arc.  The search list is then sorted in increasing order
of the evaluation score.  The top network-arc pair is popped off
the list, and the arc is inserted into the network to produce a new
topology (T1). The arc direction is selected to minimize the
increase in description length.  T1 hence forms an enhanced
topology of minimum description length, i.e. TMDL= T1. TMDL is
then paired with the arc2 (which has the next lowest average Ltotal),
and appended to the search list.  The search list is sorted again and
the process iterates to produce T2. If T2 has a lower description
length than TMDL, we set TMDL= T2.  We ran our search procedure
for a fixed number of iterations, and adopt the final TMDL as our
enhanced topology for the corresponding goal.  Thus upon
completion of learning, each goal has its own BN with an
enhanced topology.

                                                          
1 The parameter setting is optimized with the 1994 test set, and we
experimented with the 1993 test set.
2 As mentioned previously, we only allow arc insertions between a
pair of concept nodes in the BN.

6. EXPERIMENTS
As mentioned in section 3, our experiments are conducted using
the ATIS-3 Class A sentences – training set and 1993 test set.
Figure 3 compares the use of the pre-defined BN  topology
(Figure 1) with the automatically learnt topologies.  Comparison
is based on the F-measure obtained from training data.  The
figure shows that the enhanced topology led to significant
performance improvement across the majority of our BNs

Figure 3.  Comparison between the pre-defined topology
and the automatically learnt topology, based on the F-
measures of the 11 BNs applied to training data.

Next, we investigate to see if the enhanced topology contributes
towards improvement in the overall goal identification accuracy.
If all BNs vote negative for an input query, we reject it as OOD.
We can adopt the single-goal evaluation scheme where we select
Gk for the input query such that:

In cases where the test query has multiple goals, identification is
regarded as correct if Gk matches any one of the multiple goals.
Results are tabulated in Table 1.

Predefined
Topology

Enhanced
Topology

Total # test queries 448 448
Correctly Identified
(multiple goals)

100%
(8/8)

100%
(8/8)

Correctly Identified
(single goals)

88.9%
(360/405)

94.6%
(383/405)

Incorrect rejections 22 12
Correct rejection 20.0%

(7/35)
54.3%
(19/35)

Correctly handled 83.7%
(375/448)

91.5%
(410/448)

Table 1. Experimental results comparing the pre-defined
and enhanced BN topologies based on overall goal
identification performance (using a single output goal
only).

We can also compared the two topologies based on a multiple-
goal evaluation scheme.  If one or more binary classifiers vote
positive for the input query, all corresponding goals are
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considered as identified goal(s) and are evaluated.  Missing goals
are treated as deletion errors and false positives are treated as
insertion errors.    Using the multiple-goal decision scheme, we
found many insertion errors.  Overall  the pre-defined and
enhanced topologies achieve goal identification performances of
66.0% (301/456) and 83.1% (379/456) respectively.

6.1 Analysis of Results

Figure 4 shows the topology learnt for goal 29
(ground_service.city_code). We see that linkages are added
between the nodes FROM and TO, TRANSPORT_TYPE (e.g.
“limousine”) and TRANSPORT (e.g. “ground
transportation”).

Figure 4.  Enhanced topology automatically learnt for the
BN for goal 29 (ground_service.city_code).

Capturing the dependencies between these concept pairs
influences the probabili stic inferencing of the BN.  It sharpens the
output probabiliti es P(Gi|C) to become more polarized around the
threshold θ.  As an ill ustration, if we sort the test queries for goal
4 in descending order of P(G4|C), then the ordered list for the
pre-defined and enhanced toplogies are shown in Table 2. The
letter in parentheses represents the truth, i.e. whether the test
query belongs to goal 4 or not (Y for Yes and N for No).

Referring to Table 2, we see that when the pre-defined topology
is used, our binary classifier (which thresholds at θ=0.5) is bound
to make mistakes with the second query, where P(Gi|C)=0.980,
and the 16  instances where P(G4|C)=0.845.  However, for the
enhanced topology, these probabilit y values are polarized.  There
is a large gap between the values of 0.969 to 0.227.  Investigation
across our set of BNs shows that this polarization effect is
instrumental in improving goal identification performance.

7. CONCLUSIONS AND FUTURE WORK
This paper reports our initial attempt in learning Belief networks
for understanding natural language queries.    The network
topology is automatically learnt according to the Minimum
Description Length principle, and serves to enhance our pre-
defined topology by modeling the dependencies among semantic
concepts in the query.  Both topologies are compared for the task
of communicative goal identification using the ATIS-3 corpus.
Our results show that the enhanced topology brought about
improvements in the F-measures for the majority of BNs in
binary classification.  Goal identification accuracies improved
from 83.7% to 91.5% when we evaluate on a single output
goal only.  When multiple output goals are evaluated (and
false positives penalized), accuracies improved from 66.0%
to 83.1%.  Future work include reducing false positives for

performance improvement and investigating the robustness
of the MDL methodology on speech recognition errors.

Goal 4 (airline.airline_code)

P(G4|C) for test queries, using the pre-defined topology:

0.991(Y), 0.980(N), 0.948(Y), 0.912(Y), 0.845(N), 0.845(N),
0.845(N)…0.741(Y), 0.664(Y), 0.529(Y), 0.046(N), 0.046(N)…

P(G4|C) for test queries, using the enhanced topology:

0.998(Y), 0.998(Y), 0.995(Y), 0.988(N), 0.985(Y), 0.985(Y),
0.969(Y), 0.227(N), 0.227(N)…

Table 2. Experimental results comparing the pre-defined and
enhanced BN topologies, based on output probabiliti es P(G4|C).
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