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ABSTRACT

This paper is about leaning Belief Networks (BNs) for spoken
language understanding. The BNs are used to infer the
communicaive goa of a user's information-seeking query in a
restricted damain. We asaume that a restricted damain generally
has a finite number of communicdive goas. The problem is
formulated as N binary clasdfications (one per goa), and ead is
performed by aBN. Thisformulation all ows for the identificaion
of queries with multiple goals, as well as queries with ou-of-
domain goals. The BN topdogies are aitomaticdly leant
acording to the Minimum Description Length (MDL) principle.
We @m to lean the least complex topdogies that can best model
the available data set. These enhanced topdogies are mmpared
with a pre-defined, basic topdogy. Experiments with the ATIS-3
corpus sows that the enhanced topdogy improves goa
identification acarades from 83.7% to 915% when a single
output goal is evaluated, and from 66.0% to 831% when multiple
output goals are evaluated.

1. INTRODUCTION

This paper explores the use of Belief Networks (BN) for
understanding spoken language. | nformation-seeking queries from
a restricted damain often serves to convey a finite set of
communicaive goals. However, for a given communicdive goal,
the posgble ways of expresson are legion. BNs can be used to
infer the cmmmunicaive goa of the user from the query’s
semantics. ldentification o the cmmunicaive goa helps to
formulate asystem’s response most relevant to the user’s query.
This capability shodd be mndicive towards the development of
conversational systems that can respondto a user's query.

We believe that BNs offer several advantages to the problem of
communicaive goa identificaion. First, the dependencies
between a query’s communicaive goal(s) and the relevant
semantic concepts may be dfedively cgptured by the topdogy of
the BN. Seoond BNs identify the communicaive goal by means
of probabili stic inferencing. This enables the use of data-driven
approaches to dleviate the tedium in handcrafting heuristics.
Third, BNs can hand e situations where the input observations are
incomplete, and thus may model spoken queries well. Fourth, the
BN framework is siited for the optiona incorporation o prior
knowledge to aid inferencing.

Previously we have used BNs with a simple pre-defined structure
(as sown in Figure 1) for the task of communicaive goa
identification. The user's query is first transformed into a
sequence of semantic concepts. These ae subsequently used by
BNs to infer the query’s communicaive goal. The pre-defined

BN structure models only the caisal relationships between the
goa and the mncepts, while the mncepts are asumed to be
independent of one another. In this work, we dtempt to use a
more sophisticaed topdogy for our BNs, which can model the
inter-dependencies among the mncepts.  The new topdogy is
automaticdly leant from a training corpus. The leaning
algorithm tries to creae the least complex network topdogies
which can most acarrately model the training data. We exped the
enhanced topdogy shoud leal to improved goa identificaion
performance  withou excessve demands on inference
computation, or training corpus sze
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Figure 1. The pre-defined structure of our Belief
Network. The arows of the agyclic graph are drawn from
causeto effed.

2. PREVIOUS APPROACHES

The use of BN for natural language processng has been attempted
in [1]. Aside from using BNs, our problem has previously been
tadkled with dternative gproaches. A well-known example is
cdl-rowting in AT&T's “How May | Help You?” task [2] and
other similar cdl center tasks [3]. Here the cdler’'s
communicdive goa determines the destination for cdl-routing.
The problem is formulated as a topic identification a document
classficaion poblem, and for every inpu query the system
outputs a single identified topic using a vedor-based information
retrieval technique. Other previous approaches include:
grammar-based parsing [4] [5]; stochastic concept decding with
HMMs [6]; and probabili sitic reaursive transition retworks [7].
We have dso applied a Naive Bayesian approach previously [8].

3. TASK DOMAIN

Our experiments are based onthe ATIS (Air Travel Information
Systems) corpus [9]. We use the Class A sentences of ATIS-3,
which have digoint training and test sets of 1,564, 448 (1993
test) 444 (1994 test) transcribed utterances respedively. Each
utterance (or query) is acompanied by its correspondng SQL
query for retrieving the relevant information from the database.
The main attribute label is treged as the ommunicative goal of



the query. There ae 32 goals in the training set, but 11 o them
covers over 95% of the training queries. We dso found 43
training utterances with more than ore goal. Examples include:

QUERY: “chicago to san francisco on continental”
GOAL: FLIGHT_ID

QUERY: “give me the least expensive first class round trip
ticket on u s air from cleveland to miami”
GOALS: FLIGHT_ID, FARE_ID

The remaining attribute |abels from the SQL are referenced as we
enumerate the set of key semantic concepts for the ATIS domain.

4. PROCESS OF GOAL IDENTIFICATION

We have devised the foll owing processfor goal identificaion[10]:

1. Semantic Taggng: Eacd inpu query is tagged acording to
a set of semantic concepts. The tag sequence (sequence of
semantic concepts) formsthe input to our BNs, e.g.

QUERY: “may | have a listing of flight numbers from
columbus ohio to minneapolis minnesota on Monday”

TAGS:<dummy><have><dummy><listing><prep>
<flight_num><from><city_name><state_name><to>
<city_name><state_name> <prep> <day_name>

GOAL: FLIGHT_NUMBER

2. BN devdopment: We develop ore BN per communicaive
goa inthetraining corpus. We have 11 BNsin tota to avoid
using sparsely trained networks. The remaining goas are
treaed as out-of-domain (OOD). Eadh BN is trained to
process an input query, and make abinary dedsion onthe
presence or absence of its goal. The pre-defined (basic)
topdogy is as sown in Figure 1. For a network
correspondng to goa G;, we seled the M concepts{C, C,,...
Cum} which have the highest Information Gain (IG) with G;.
These form the input of the BN. (Equation 1is the formula
for the 1G between a wncept C, and the goal G;.).
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The seleded concepts are regarded as most indicative of the
goa. Ead BN then applies Bayesian inferencing (Equation
2) to derive P(G||C). This value is compared against the

PG =10)=p(6 =D[] M2 D0

threshald 6=0.5 to make the binary dedsion.

Performance on bnary classficaion is indicaed by the F-
measure (Equation 3, which combines both predsion (P)
andrecdl (R) for retrievia of god G; (B=1).

3. Goa ldentification: The dedsions aaoss al the BNs are
combined to identify the output goal of an inpu query. We
may label the query with the (single) goa giving the highest
value of P(Gj|C) acossall BNs. Alternatively, we may label
the query with all the goals for which the BNs voted pasitive
— this achieves multi ple-goal identificaion. Inthe cae when

all BNs vote negative, the input query is rejeded as out-of-
domain.
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5. LEARNING NETWORK TOPOLOGIES

A Beélief Network is a direded agyclic graph with nodes and arcs.
The diredion d the ac represents the probabili stic dependency
between two nodks (or variables). The node where the ac arives
depends on the node where the ac originates. Hencethe topdogy
we have in Figure 1 asuumes that the input concepts to the
network are independent of one acther.  We wish to enhance
this topdogy for inferring the goal, by capturing possble inter-
dependencies amongst concepts. We beli eve this may improve the
goal identification performance

A macdhine leaning technique is applied to lean the BN topdogy
with reference to training data.  Since it is computationaly
expensive to lean an arbitrary network, we cnstrain ouselves to
topdogies which belong to the dassficaion-based network
structures. A clasdficaion-based network has aroat node (with
no parents) which represents our goal G;. The rationale is that
the states of the dassvariables may depend onthe membership of
the goal, but nat vice versa. Figure 2 shows an example of our
enhanced topdogy. The root node for goal G; only has arcs
pointing outwards to the concept nodes, which is the same & the
pre-defined topdogy. However, we now all ow linkages between
pairs of concepts, and the most desirable linkages will be leant
from training data.
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Figure 2. An example of a dasdficaion-based Belief
Network, with an arc from concept node 2 to nock 3.

The new topdogy will i ncrease the complexity of our BNs. This
shoud have two effeds. On ore hand, we can model the
underlying distribution o the red data more acarately. On the
other hand, the incressed complexity will require more
computation. We am to lean network structures with minimal
conredivity, but are sufficiently acarate for modeling the
underlying distribution o the data. To adhieve this we alopt
Rissanen's minimum description length (MDL) principle [11].

5.1 TheMinimum Description Length (MDL) Principle

The MDL principle offers a rigorous methoddogy for deriving a
simple BN structure which is afficiently acairate for modeling
an available data set. Every node in the BN contributes towards
the complexity of the network by a magnitude Lpgwork (the
network description length). Lower values for Lngwork refled
lower complexities. Each node dso contributes towards the



acarracy in modeling data by a magnitude of Ly, (the data
description length). Lower values of Lgga reflea higher
acarades. Consider the BN for goa Gj, with the root node G;,
and concept nodes {Cjy, Cjz,... Cjm}. Also consider espedally the
concept node C; and its st of parent nodes P(C;).
defined as:

Lnetw:)rk is

Lnetwork(Cji ' P(Cji )) =klog, N(s -1* rl S+

nCP(Cy)
(IP(C;)+D)log, x.....(4)

where N is the total number of training utterances, 5 is the
number of possble instantiations for C;; (2 in ou case), |P(Cj)| is
the number of parents for node C;;, X is the number of nodes in
the network, and s, is the number of posshle instantiations for a
parent in the parent set. k is a cnstant for controlling the
complexity of the network leant.! Ly, is defined as:

— M(P(C;))
Ldala(Cji ’ P(Cji )) - Z M(Cji ’ P(Cji )) Iogz W ----- (5)
C;i P(C;)
where the summation is taken over al possble instantiations of
the node C; and its parents. M(.) is the number of cases that
match a particular instantiation in the training data.

Thetotal description length (Liy) contributed by a given nodk, is
defined in Equation &

Ltotal (Cji ’ F>(C:ji )) = I-network(C:ji 1 P(Cﬂ )) + Ldata(CJi ’ P(Cji )) """ (6)

5.2 Searching for the Topology with MDL

A best-first search algorithm is used to find the network topdogy
of MDL. Our seach procedure first computes the average Liga
(between the 2 dredions) for ead arc that can be alded to our
predefined network structure.? The acs are sorted in increasing
order of Ly to form the sorted arc list, eg. arc,, arc,... arc,.
Each arc in this list is paired with ou pre-defined network
structure (To) to form a seach list of network-arc pairs, i.e. {(To
arcy), (To arcy)... (To arc,)}. At this point iterative seaching
begins. Eadh network-arc pair receves an evaluation score, by
summing the description length of the network and the average
Liota Of the ac. The seach list is then sorted in increasing order
of the evaluation score. The top retwork-arc pair is popped off
the list, and the ac is inserted into the network to produce anew
topdogy (T,). The ac diredion is sleded to minimize the
incresse in description length. T; hence forms an enhanced
topdogy of minimum description length, i.e. Typi= T1 TwvpL IS
then paired with the arc, (which has the next lowest average Ligta),
and appended to the search list. The seach list is srted again and
the process iterates to produce To. If T, has a lower description
length than Typ., we set Typ= T.. We ran ou seach procedure
for a fixed number of iterations, and adopt the final Typ, as our
enhanced topdogy for the mrrespondng goal. Thus upon
completion d leaning, eah goad has its own BN with an
enhanced topdogy.

! The parameter setting is optimized with the 1994test set, and we
experimented with the 1993test set.

2 Asmentioned previously, we only allow arc insertions between a
pair of concept nodesin the BN.

6. EXPERIMENTS

As mentioned in sedion 3 our experiments are condwcted using
the ATIS-3 Class A sentences — training set and 1993test set.
Figure 3 compares the use of the pre-defined BN topdogy
(Figure 1) with the automaticdly leant topdogies. Comparison
is based on the F-measure obtained from training data. The
figure shows that the enhanced topdogy led to significant
performanceimprovement aaossthe majority of our BNs
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Figure 3. Comparison ketween the pre-defined topdogy
and the atomaticaly leant topdogy, based on the F-
measures of the 11 BNs applied to training data.

Next, we investigate to seeif the enhanced topdogy contributes
towards improvement in the overall goal identification acaragy.
If al BNs vote negative for an input query, we rejed it as OOD.
We car adopt the single-god evaluation scheme where we seled
Gy for theinput query such that:

In cases where the test query has multiple goals, identificaion is
regarded as corred if G, matches any one of the multiple goals.
Results are tabulated in Table 1.

Predefined Enhanced

Topdogy Topdogy
Total # test queries 448 448
Corredly Identified 100 100%
(multi ple goals) (8/8) (8/8)
Corredly Identified 88.9% 94.6%
(single goals) (360405 (383405
Incorred rejedions 22 12
Corred rejedion 20.0% 54.3%

(7/35) (19/35)

Correcdly handled 83.7% 91.5%

(375448 (410448

Table 1. Experimental results comparing the pre-defined
and enhanced BN topdogies based on weral god
identification performance (using a single output goal
only).

We can also compared the two topdogies based on a multiple-
god ewaluation scheme. If one or more binary clasdfiers vote
positive for the inpu query, al correspondng gods are



considered as identified goal(s) and are evaluated. Missng goals
are treded as deletion errors and false positives are treded as
insertion errors.  Using the multiple-goal dedsion scheme, we
found many insertion errors. Overall the pre-defined and
enhanced topdogies achieve goal identificaion performances of
66.0% (301/456) and 831% (379456) respedively.

6.1 Analysisof Results

Figure 4 shows the topdogy leant for goa 29
(ground_servicecity_code). We see that linkages are alded
between the nodes FROM and TO, TRANSPORT_TYPE (e.g.

“limousine”) and TRANSPORT (e.g. “ground
transportation”).
Goal 29
AIRLINE O
O TO

AIRPORT ()

O FROM
TRANSPORT

Q\O O KIND

TRANSPORT_TYPE

Figure 4. Enhanced topdogy automaticdly leant for the
BN for goal 29 (ground _servicecity_code).

Capturing the dependencies between these ncept pairs
influences the probabili stic inferencing of the BN. It sharpens the
output probabiliti es P(G;|C) to beacome more polarized aroundthe
threshold 6. Asanill ustration, if we sort the test queries for goal
4 in descending order of P(G4|C), then the ordered list for the
pre-defined and enhanced toplogies are shown in Table 2. The
letter in parentheses represents the truth, i.e. whether the test
query belongsto goal 4 or not (Y for Yesand N for No).

Referring to Table 2, we seethat when the pre-defined topdogy
isused, our binary classfier (which thresholds at 6=0.5) is bound
to make mistakes with the second query, where P(G;|C)=0.980,
and the 16 instances where P(G4C)=0.845 However, for the
enhanced topdogy, these probability values are polarized. There
isalarge gap between the values of 0.969to 0.227. Investigation
aqoss our set of BNs dows that this polarization effed is
instrumental in improving goal identification performance

7. CONCLUSIONSAND FUTURE WORK

This paper reports our initial attempt in leaning Belief networks
for understanding natural language queries. The network
topdogy is automaticdly leant acording to the Minimum
Description Length principle, and serves to enhance our pre-
defined topdogy by modeling the dependencies among semantic
concepts in the query. Both topdogies are mmpared for the task
of communicaive goa identification wsing the ATIS-3 corpus.
Our results sow that the enhanced topdogy brought about
improvements in the F-measures for the majority of BNs in
binary clasdficaion. Goa identificaion acarades improved
from 83.7% to 915% when we evaluate on a singe output
goa only. When multiple output goals are evaluated (and
false positi ves penali zed), acairades improved from 66.0%
to 831%. Future work include reducing false positives for

performance improvement and investigating the robustness
of the MDL methoddogy on speed recogniti on errors.

Goal 4 (airline.airline_code)

P(G,4|C) for test queries, using the pre-defined topdogy:

0.991(Y), 0.98Q(N), 0.948Y), 0.912Y), 0.845N), 0.845N),
0.845N)...0.741(Y), 0.664(Y), 0.529(Y), 0.04&N), 0.04&N)...

P(G,4|C) for test queries, using the enharced topdogy:

0.998(Y), 0.998(Y), 0.995Y), 0.98%N), 0.985Y), 0.985Y),
0.964(Y), 0.227(N), 0.227(N)...

Table 2. Experimenta results comparing the pre-defined and
enhanced BN topdogies, based on odput probabiliti es P(G4|C).
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