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Abstract 

This paper describes an approach for identi-
fying the information goal(s) of information-
seeking queries, such as those in the ATIS 
domain (Price, 1990).  The approach is based 
the Multi-Parser Architecture (MPA) ex-
tended with a headword percolation proce-
dure.  MPA can generate full and robust 
parses for input natural language queries.  
Headword percolation identifies the prime 
constituent(s) in the parse trees. These con-
stituents are incorporated in goal identifica-
tion rules derived from training parse trees 
using an automatic, data-driven technique.  
The rules are then evaluated with a test set in 
terms of in single goal identification, multi-
ple goal identification and out-of-domain re-
jection.  We compare the current approach 
with a previous one based on Belief Net-
works (BN) (Meng et al. 1999).  Results 
show that the former gave statistically sig-
nificant improvements.  This is indicative of 
the merits of rich semantic/syntactic analysis 
in the parse structures for goal identification. 
 

1 Introduction 

Natural language understanding (NLU) systems 
(Potaminaos and Kuo, 2000; Seneff, 1992) often 
incorporate parsing to generate a rich seman-
tic/syntactic analysis of the input sentence.  The 
analysis may be a full parse with a single tree, or 
robust parse with multiple sub-trees.  Robust pars-
ing is particularly useful for handling disfluencies 

in understanding spontaneous utterances tran-
scribed by speech recognizers.  The semantic in-
terpretation of the input sentence may be derived 
from its parse.  Semantic interpretation of informa-
tion-seeking queries need to extract the informa-
tional goal and related semantic attributes for 
database access, e.g. by transformation into an 
SQL query.  An example can be found in the ATIS 
domain (Price, 1990).  This work focuses on the 
automatic identification of the informational goal 
of information-seeking queries.  We extend a pars-
ing framework known as the Multi-Parser Archi-
tecture (MPA) (Xu et al., 2001) with a headword 
percolation procedure.  MPA is designed for effi-
cient, modularized parsing with compact, reusable 
subgrammars.  Headword percolation aims to lo-
cate the prime constituent(s) among the syntac-
tic/semantic structures identified in the parse tree 
for an input sentence.  These constituents are in-
corporated in informational goal identification 
rules derived from training parse trees using an 
automatic, data-driven technique. 

Previous work in goal identification include the 
use of neural networks in (Wutiwiwatchai et al. 
2003); support vector machines in (Zhang and Lee, 
2003); belief networks (Meng et al. 1999); com-
bined statistical pattern recognition and rule-based 
approach in (Wang et al. 2002); and the use of 
chunk parsing with statistical classifiers in (Li and 
Roth, 2003).  The current approach focuses on the 
use of parsed head constituents in a small set (~100) 
of automatically derived rules.   

2 The ATIS Corpus 

This experimental study is based on the natural 
language queries in the Air Travel Information 



Service (ATIS) corpus (Price, 1990).  We use 
Class A queries that are self-contained.  The train-
ing set has 1564 queries, the 1993 test set has 448 
queries, and the 1994 test set has 444 queries.  
Each query has a corresponding SQL query for 
database access (see Table 1).  The main attribute 
of the SQL is treated as the informational goal of 
the query and the remaining attributes as semantic 
categories. 
Query: show me the flights from baltimore to oakland 
Simplified SQL: select distinct flight.flight_id from 
flight where from_airport.city_name = “baltimore” and 
to_airport.city_name=“oakland” 
Table 1: An ATIS utterance with its corresponding 
SQL query. 

3 The Multi-Parser Architecture (MPA) 

The use of GLR(k) parsers for natural language 
understanding is hampered by the problem of ex-
ponential increase in parsing table size as the num-
ber of grammar rules grows.  Large parsing tables 
are difficult to manage and lead to inefficiencies in 
parsing.  Xu et al. (2001) proposed the MPA that 
supports efficient parsing through partitioning a 
(large) context-free grammar into multiple, small, 
reusable sub-grammars.  Each sub-grammar has its 
own specialized sub-parser.  Sub-parsers can be 
used to output sub-trees that are later composed 
into an overall parse for the input sentence.  Hence, 
MPA is highly modularized and is conducive to-
wards distributed computing as well as portability 
to new application domains (Meng et al. 2002). 

MPA involves a virtual terminal technique to 
interface among sub-grammars and sub-parsers.  A 
virtual terminal is essentially a non-terminal, but 
acts as if it were a terminal.  The input set to a sub-
grammar is a set of virtual terminals that were pre-
viously parsed by other sub-grammars.  The output 
set of a sub-grammar is a non-terminal that is 
parsed with the current sub-grammar and may be 
used by other sub-grammars as their input sets.  
Hence a grammar partition (or sub-grammar) is a 
subset of production rules that can be viewed as a 
function – it takes the virtual terminals in the input 
set as input, and returns a non-terminal in the out-
put set as output.  Table 2 shows an example from 
the ATIS domain where the non-terminal LOC is 

the output of sub-grammar GLOC and belongs to the 
input set of sub-grammar GDEPART. 

GDEPART: 
OUTPUT: DEPARTURE 
INPUT: LOC, TIME_NP 
DEPARTURE FROM 
LOC [TIME_NP] | … 
FROM  from 
… 

GLOC: 
OUTPUT: LOC 
INPUT: CITY_NAME, 
STATE_NAME… 
LOC CITY_NAME 
[STATE_NAME] | … 
… 

Table 2.  Example sub-grammars (i.e. grammar 
partitions) GDEPART and GLOC in the ATIS domain. 
 
 MPA also involves a directed acyclic graph 
known as the lattice with multiple granularity 
(LMG) to record the input and output of all sub-
parsers.  The LMG has edges that may either be 
terminals or virtual terminals; and the nodes of the 
LMG indicate word positions in the parsed sen-
tence.  (see Figure 1).  LMG forms a book-keeping 
representation in the parser composition procedure   
(Meng et al. 2002) that combines the output of sub-
parsers.  One method for parser composition is 
cascading.  This is a bottom-up parsing procedure 
that first converts the input sentence into an LMG, 
invokes sub-parsers at each (virtual) terminal edge 
and migrates to the sentence level.  Each sub-
parser can start or end a parse tree at any edge and 
if it can parse for its output, a virtual terminal is 
added to dynamically to the LMG.  Full/robust 
parses are generated in this way. 

 
 
 
 
 
 

Figure 1: An example LMG in the ATIS domain. 
 

3.1 Grammar Development 
We wrote a set of context-free grammar rules for 
the ATIS domain that involves both semantic and 
syntactic categories.  Low-level grammar rules are 
mainly semantic concepts, e.g. CITY-NAME, CLASS-
TYPE, DAY-NUMBER, etc.  High-level grammar 
rules mainly describe phrases, such as a time 
phrase, flight prepositional phrase (FLIGHT_PP), 
etc.  SENTENCE-level grammar rules are generated 
using a data-driven approach – each training sen-
tence is parsed into an LMG which is then trav-



ersed by the shortest path algorithm to generate a 
SENTENCE -level rule. (see Table 3). 

S → ASK FLIGHT_NP | QUEST TIME_NP |… 
ASK → show me | list | tell me| give me |… 
FLIGHT_NP → FLIGHT FLIGHT_PP |… 
FLIGHT_PP → DEPARTURE | ARRIVAL |… 
ARRIVAL → TO LOC [TIME_NP] |… 
CITY_NAME → atlanta | chicago | seattle |… 

Table 3.  Example grammar rules in ATIS. 
 
We discarded SENTENCE-level rules that are 

lengthy or overly specific.  Parse coverage for the 
training set, test set (93 and 94) are 97.1%, 62.5% 
and 66.0% respectively.  We also partitioned the 
grammar into 67 sub-grammars and created virtual 
terminals such as S, FLIGHT_NP, AIRPORT_NAME, 
STATE_NAME, etc.  Most of these correspond to 
semantic concepts or syntactic structures.  
 
3.2  Semantic Interpretation 
Upon completion of parser composition, the LMG 
may generate a full parse with a single tree (see 
Figure 2) or a robust parse with multiple sub-trees. 
In the latter case, we apply a heuristic scoring algo-
rithm (see Equation 1) to find the “best” path link-
ing sub-trees in the LMG.  Higher level sub-trees 
are preferred over lower level ones.  

s=(s1+s2+…+sk)λn
 (1) 

where 
 s 

s1,s2,…,sk 

  
 

λ 
 n 

 
denotes the score of a sub-tree 
denote the score of the sub-tree’s children 
if it contains k children (score of terminal 
is 1) 
denotes a constant factor (set at 1.1) 
denotes the number of terminals covered 
by the subtree 

The semantic interpreter walks through the full 
parse or best robust parse in top-down and left-to-
right order.  The interpreter extracts key-value 
pairs where keys are designed with reference to the 
schema of the SQL queries and values are the ter-
minals corresponding to the keys (see Table 4). 

  
Semantic Frame: 
DEPARTURE_CITY_NAME=baltimore 
ARRIVAL_CITY_NAME=oakland 

Table 4: Semantic frame corresponding to parse 
tree in Figure 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Parse tree of the sentence in Table 1.  
Italicized words are headwords (see Section 4). 

4 Goal Identification with Head Constituents 

4.1. Headword Percolation 
A headword is defined to be the prime constituent 
of a phrase or sentence (Bloomfield, 1983).  For 
example, the headword of a noun phrase is the 
noun; that of a verb phrase is the verb; a preposi-
tional phrase is a preposition, etc.  Remaining 
words in the phrase/sentence are regarded as the 
left or right modifiers of the headword.  Head-
words are percolated in parse trees through head 
constituents in context free rules.  The rule p → 
ln…l1 h r1 … rm, has the non-terminal p with head 
child is h and li and ri are the left and right modifi-
ers of h respectively.  We adapted the guidelines in 
(Collins 1999) in determining the head constituents 
for the ATIS grammar.  Figure 2 shows headwords 
(in italics) that are percolated up the parse tree.  An 
example in here is the non-terminal ARRIVAL (with 
rule ARRIVAL  TO LOC) that acts like a preposi-
tional phrase.  Its head is the first preposition resid-
ing in the non-terminal TO. The headword that 
reached the top is "flights".  The head label is the 
non-terminal parent label of the headword, i.e. 
FLIGHT.  We believe that the headword and head 
label are good indicators of the informational goal 
of the sentence.  In this example, the informational 
goal is flight.flight_id (see Table 1), i.e. flight 
identification. 
 
 
 
 

show me fromflightsthe baltimore to oakland

CITY_NAME 
-baltimore 

CITY_NAME
-oakland 

TO
-to

ASK
-show

FLIGHTS
-flights 

QUANT
-the 

FLIGHT_NP 
-flights 

DEPARTURE 
-from 

ARRIVAL
-to 

LOC
-oakland 

LOC 
-baltimore 

S
-flights 

FLIGHT
-flights 

FROM
-from

FLIGHT_PP
-from 



4.2. Goal Identification Rules 
We have developed a set of goal identification 

rules that incorporate head constituents in the for-
mat of:  

(head_label, headword, question_type)  goal 
We define five question types by rule in ATIS – 
HOW_MUCH, HOW_MANY, HOW_LONG, WHERE and 
WHEN.  Sentences that do not belong to any of 
these five are classified with type NULL.  Hence 
goal identification rules can be derived from train-
ing sentences and their parses (see Table 5). 
Query:  how many flights arrive at general Mitchell 
international 
Goal Identification Rule:   
(FLIGHT, flights, HOW_MANY) count_flight 5 
Query:  what does fare code y mean 
Goal Identification Rule:  (with multiple goals) 
(BOOKING_CLASS, y, NULL)  
class_of_service.class_description, 
fare_basis.fare_basis_code 3 
Table 5:  Examples of ATIS queries and their goal 
identification rules, each with a frequency of oc-
currence.  
 
 Deriving goal identification rules from fully 
parsed training sentences is straightforward.  These 
full parses also enable us to automatically deter-
mine a set of 22 prominent virtual terminals (out of 
67 in total) that contain the sentence head, e.g. S, 
FLIGHT_NP, FLIGHT, etc.  In the case of robust 
parses in the training set, we refer to the “best” 
path, identified with Equation (1) above.  This path 
links multiple parse trees which gives multiple 
headwords and head labels.  To select a single sub-
tree for goal identification rule derivation, we de-
vised a virtual terminal selection procedure – sub-
trees are examined in order from left to right in the 
robust parse and the sub-tree whose root node con-
tains a prominent virtual terminal will be selected.  
Its headword and head label will be incorporated 
into a goal identification rule.  Next the algorithm 
searches for a question type by traversing the LMG 
from right to left.  Within each node (or sub-tree) 
in the LMG, traversal proceeds in a top-down, left-
to-right manner.   A late-binding approach is used 
for selection, i.e. the last question_type discovered 
during the traversal is incorporated in the goal 
identification rule.   Figure 3 illustrates a robust 
parse with three sub-trees.  Virtual terminal selec-

tion chooses the second sub-tree since its root node 
contains virtual terminal S.  The question type of 
this sentence is HOW MUCH.    
 
 

 
 
 
 
 
 
 
 
 

Figure 3: A robust parse with three sub-trees.   
 
During testing, each sentence in the test set is 

parsed with MPA.  If a full parse is obtained, the 3-
tuple (head label, headword, question type) is ex-
tracted directly.  If a robust parse is obtained, we 
invoke the virtual terminal selection procedure as 
well as search for the question type to extract the 
3-tuple. The appropriate goal identification rule is 
then applied to map the 3-tupe to an informational 
goal.  If no rule is applicable, the test sentence is 
classified as out-of-domain (OOD). 

5 Experiments 

The ATIS training set is parsed with MPA and 
from the parse trees we derive a set of 104 goal 
identification rules.  In case of ambiguous rules 
whose 3-tuples are the same but map to different 
goal(s), we preserve the most frequently occurring 
rule.  Only the 11 goals (out of 32 in all) that have 
been instantiated ten times or more in the training 
set are considered, e.g. flight.flight_id, fare.fare_id, 
etc.  All remaining goals are rejected as out-of-
domain. 
 We compared the goal identification perform-
ance of the headword percolation approach with an 
alternative approach based on belief networks 
(BN) (Meng et al., 1999).  N(=11) BNs were de-
veloped, one for each informational goal.  The in-
put to the network is a set of semantic concepts 
parsed from the input query.  Each belief network 
makes a binary decision regarding the presence or 
absence of its corresponding goal.  Hence the 



framework can also handle single goal queries, 
multiple goal queries (i.e. when multiple belief 
networks vote positive for their corresponding 
goals) and OOD queries (i.e. when all networks 
vote negative for their corresponding goals).  
However, the BN approach does not consider the 
rich semantic and syntactic analysis in the parse 
structures for goal identification.  Results are 
shown in Table 6.  The headword percolation ap-
proach outperforms the belief network approach on 
single goal identification and OOD rejection. 
 

 1993 Test 1994 Test 
Approach BN Head-

word 
BN Head-

word 
Single goal 
correct 

381/405 388/405 373/401 388/401 

# rejection 39 45 35 44 
Rejection 
correct 

23/35 27/35 13/37 31/37 

Multiple 
goals correct 

5/8 6/8 4/6 1/6 

Correctly 
handled 

409/448 
(91.3%) 

421/448 
(94.0%) 

390/444 
(87.8%) 

420/444 
(94.6%) 

Table 6: Comparing the goal identification per-
formances between the BN approach and the 
headword percolation approach based on test sets 
1993 and 1994. 
 
 We also compared goal identification perform-
ance between queries with full parses and queries 
with robust parses.  Results are shown in Table 7.  
Goal identification from full parses is significantly 
better than from robust parses.  This suggests that 
we should strive to improve parse coverage as well 
as seek better strategies in handling robust parses. 
 

 Correct Goal Identification   
1993 Test 1994 Test 

Queries with full 
parses 

275/280 
(98.2%) 

291/293 
(99.3%) 

Queries with robust 
parses 

146/168 
(86.9%) 

129/151 
(85.4%) 

Table 7: Goal identification accuracies based on 
the headword percolation approach – comparison 
between full parses and robust parses. 

6 Conclusions and Future Directions 

This paper presents an approach for deducing the 
informational goal of a natural language query 
from its parse tree.   A parsing framework known 
as the multi-parser architecture (MPA) has been 
designed to generate a full parse or robust parse 
from an input natural language query.  The parse 
tree(s) present a detailed syntactic/semantic analy-
sis of the input query.  The MPA supports modular 
parsing, where a large grammar can be decom-
posed into multiple sub-grammars by a process 
known as grammar partitioning.  Each sub-
grammar has its own specialized sub-parser (GLR 
parser) that outputs a virtual terminal if it can 
parse an input sentence (fragment) successfully.  
Grammar partitioning offers the advantage of pars-
ing efficiency through the use of multiple sub-
grammars and sub-parsers with (small) parsing 
tables.  This circumvents the problem of generating 
parsing tables that may become unmanageably 
large as the grammar grows in size.  The second 
process in the MPA is parser composition, which 
combines the outputs of the sub-parsers to generate 
an overall parse for the input sentence. 
    This work enriches the MPA with a headword 
percolation procedure.  The headword is deemed 
the prime constituent of a phrase or sentence.  
Various headwords are selected and percolated up 
the parse tree according to the guidelines outlined 
in (Collins 1999) and adapted for our domain-
specific experimental corpus, i.e. the ATIS corpus.  
Headword percolation aims to locate the most im-
portant constituent among the syntactic/semantic 
structures identified in the full parse of the input 
sentence.  In the case of a robust parse where a 
sentence is analyzed in terms of multiple sub-trees, 
a virtual terminal selection procedure is designed 
to select the key sub-tree for deriving the headword.   
We believe that such head constituents are most 
indicative of the informational goal of the query.  
Hence, we parse all training sentences and extract 
the headwords, head labels (i.e. non-terminals of 
the head words) and question types (also a non-
terminal) from the parse trees.  These are used to 
generate a set of goal identification rules of the 
format: 

(head label, headword, question type)  goal 



Each goal identification rule is associated with a 
frequency of occurrence in the training set. 

We performed goal identification experiments 
on the ATIS test sets.  Each testing sentence is 
parsed and the 3-tuple (head label, headword, 
question type) is extracted from the parse tree.  
Goal identification rules derived from the training 
data are applied to map the 3-tuple into one or 
more goals.  Should none of the rules be applicable, 
the testing sentence is rejected as out-of-domain 
(OOD).  The headword percolation approach cor-
rectly handles over 94% of the ATIS test sets in 
terms of single/multiple goal identification as well 
as OOD rejection.  This is a statistically significant 
improvement over an alternative, belief network-
based approach that lacks a rich semantic/syntactic 
analysis such as that presented in a parse tree.  Fur-
thermore, while the generation of goal identifica-
tion rules is a data-driven process, the resulting 
performance does not seem to be affected severely 
by sparseness in training data.  Additionally, 
analysis of results shows that goal identification 
performance of queries with full parses is signifi-
cantly better than queries with robust parses.  This 
suggests the possible future directions of improv-
ing the ATIS grammar to achieve better parse cov-
erage, or devising better methods for handling 
robust parses in goal identification.  We will also 
explore the simultaneous identification of informa-
tional goals (i.e. task goals) and dialog acts using 
the head percolation approach. 
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