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Abstract

Natural language processing technologies offer ease-of-use of computers for average users, and ease-

of-access to on-line information. Natural language, however, is complex, and the traditional methods of

parsing with a single grammar and parser may result in an inefficient and large system that is difficult

to maintain and is fragile in dealing with language irregularities.  This paper begins by reviewing an

alternative effort in grammar decomposition (also known as grammar partitioning) for natural language

parsing, which aims to alleviate these problems. We then propose a novel automatic approach for

grammar partitioning, in comparison with a random method of partitioning.  Our experiments show

that syntactic GLR parsing is formidable for the Wall Street Journal corpus in the Penn Treebank when

a single grammar is used.  This is due to too many grammar rules for parsing table generation.

However, grammar partitioning solves the problem and offers a viable alternative.   Our results also

show that our automatic grammar partitioning method based on the mutual information criterion fares

better than a random partitioning method and exhibits efficiency in parsing as well as high parse

coverage.

1 Introduction

Natural language provides a natural means for common people to interact with computers and access

on-line information.  Due to the complexity of natural language itself, the grammar that describes the

query language can be very complex.  As a central task in language processing, the traditional way of

using a single parser and single grammar leads to an inefficient, fragile, and often very large processing

system.  Using the co-occurrence feature in the natural language, grammar rules can be automatically

clustered into sub-grammars to achieve modular parsing.  Modular parsing has several advantages: (1)
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improved trade-off between space and efficiency; (2) improved robustness; (3) improved re-usabili ty of

sub-grammars for distributed computing and for easier portabili ty to new application domains.

In the past decade, many studies are related to modular parsing have been reported.  Abney [1]

proposed a two-level chunking parser, which converts an input sentence into the chunks and then uses

an attacher to convert these chunks into a parse tree.  Amtrup [3] introduced an approach that

distributes grammar rule applications in multiple processors within a chart parser framework.  Ruland

et al [8] developed a multi-parser multi-strategy architecture for noisy spoken languages.

Our previous work has presented a methodology to partition the Air Travel Information Systems

(ATIS) semantic grammar [10] manually into multiple sub-grammars, each having its own LR parsing

table [2] and Generalized LR (GLR) parser [11].  Our results showed that grammar partitioning helps

reduce the overall parsing table size when compared to using a single grammar [7].  In this paper, we

propose a automatic grammar partitioning method for syntactic parsing based on the Wall Street

Journal (WSJ) sentences in the Penn Treebank.  Hence we have scaled up from the ATIS corpus to the

WSJ corpus using an automatic partitioning method.  We use the sub-parsers with partitioned

grammars to parse the test data in the WSJ.

This paper is organized into the following sections.  Section 2 briefly reviews the definition of

grammar partitioning and presents the method of automatic grammar partitioning that uses a mutual

information criterion.  Section 3 describes how to compose the sub-parsers with partitioned grammars

to obtain an output parse.  Section 4 presents our experimental results based on the WSJ sentences in

the Penn Treebank.  The final section concludes and gives our future direction.

2 Grammar Partitioning

2.1 Definitions and Concepts

We first review some definitions and concepts [13] used in the paper for easier readabilit y.  We focus

on context-free grammars (CFG), since they are the backbones for most natural language processing

systems, such as in [5] and [9].

We partition the entire grammar into sub-grammars based on the grammar’s production rules.

The interaction among different sub-grammars is through non-terminal sets, i.e. INPUT and OUTPUT, and

a virtual terminal technique.  The virtual terminal is essentially a non-terminal, but acts as if it were a

terminal.  In the remaining paper, a virtual terminal is prefixed with vt.  The INPUT of a sub-grammar is
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a set of non-terminals that were previously parsed by other sub-grammars.  To be more precise, these

non-terminals are on the right hand side (RHS) of some rules in this sub-grammar and on the left hand

side (LHS) of certain rules in some other sub-grammar(s).  The OUTPUT of a sub-grammar are those

non-terminals that were parsed based on this sub-grammar and used by other sub-grammars as their

INPUT symbols.  To be more precise, those non-terminals are on the LHS of some rules in this sub-

grammar and are INPUT set members of some other subset(s).  In other words, we may view a

partitioned subset of production rules of a grammar as a multiple-valued function, it takes non-

terminals in the INPUT set as its input, and returns non-terminals in the OUTPUT set as its output.  A

directed calling graph for the sub-grammar set of G is then defined as (V, E), where V is the sub-

grammar set, A and B are sub-grammars in V and E={(A, B)}, with the overlap of the OUTPUT of B

and the INPUT of A being nonempty.  This grammar partition definition is more flexible than the non-

terminal-based grammar partition defined in [6].  In the following sub-section, we will show a real

example to describe the INPUT and OUTPUT concepts.

2.2 Automatic Grammar Partitioning Method

Our grammar rules are extracted from the parsed WSJ sentences in the Penn Treebank.  A parse tree

example is shown in Figure 1.  The tree terminals are part-of-speech (POS) tags which are prefixed

with #.  Grammar rules extracted from the parse tree in Figure 1 are shown in Figure 2.  We record the

frequency of invocation between rules, for example Rule 3 (PP-DIR → #IN NP) in Figure 2 has called

Rule 4 (NP → NP NP-ADV) once.

Based on the discussion of [14], grammar partitioning can be seen as the reverse process of

grammar clustering.  Our partitioning procedure begins with the set of the finest grammar partition, i.e.,

each partition contains exactly one grammar rule.  For instance, if a grammar partition only contains

Rule 3, the INPUT set of Rule 3 is the non-terminal NP and the OUTPUT set is PP-DIR.  For training on the

parsed sentence in Figure 1, we use a calling matrix in Figure 2 to record the calling frequencies

between sub-grammars.  We can find the OUTPUT and INPUT of the sub-grammars in the rows and

columns of the matrix respectively.  For the calling matrix in Figure 2, the entry at row i and column j

is the frequency of sub-grammar i calling sub-grammar j.  We attempt to cluster the sub-grammars to

form larger ones based on the co-occurrences of their interaction. The measurement for co-occurrences

of the rules is explained in the next sub-section. Our grammar partitions are formed such that rules

within the same partition have frequent caller/callee interactions, but such interactions are infrequent
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for rules belonging to different grammar partitions. As a initial step, we find sub-grammars with an

empty INPUT set (zero row in the calling matrix), duplicate and merge the sub-grammar for each its

caller sub-grammars.  As mentioned, grammar rules from the parse tree in Figure 1 are listed in Figure

2.  We begin by forming a partition for every grammar rule.  Grammar partition 9 in Figure 2 is (NP-SBJ

→ #NNP #NNP #NNP).  Its input set is empty, since all grammar symbols in the RHS of the rule are POS

terminals.  Grammar partition 1 is a caller of partition 9, so we can merge them to form a new grammar

partition.

2.3 Calculating Mutual Information

To measure the caller/callee co-occurrences between two sub-grammars, we use the Mutual

Information [4].

Suppose Gi and Gj are two sub-grammars in a grammar partition that contains n sub-grammars,

the mutual information of these two sub-grammars is defined as follows:
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Then, MI(Gi , Gj) becomes:
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The second term of the above equation is constant for each iteration (calling matrix remains

unchanged), so maximizing MI(Gi, Gj) is equivalent to maximizing the first term. For each merge

iteration, we find the maximum value of MI(Gi, Gj) in the calling matrix, and merge the corresponding
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sub-grammars pair together to form a larger sub-grammar. The merge operation is iterated until the

process reaches the maximum number of iterations allowed1.

Figure 1. An example parse tree drawn from the WSJ sentences in the Penn Treebank.

1: S → NP-SBJ VP
2: VP → #VBD NP PP-DIR PP-DIR
3: PP-DIR → #IN NP
4: NP → NP NP-ADV
5: NP-ADV → #DT #NN
6: PP-DIR → #TO NP
7: NP → #CD #NNS
8: NP → #PRP$ #NN
9: NP-SBJ → #NNP #NNP #NNP

Figure 2. Grammar rules extracted from the parse tree in Figure 1 and the calling matrix of the
grammar.

MI(G1, G2) =log[1/(2×1)]+log(9)
MI(G1, G9) =log[1/(2×1)]+log(9)
MI(G2, G3) =log[1/(3×1)]+log(9)
MI(G2, G6) =log[1/(3×1)]+log(9)
MI(G2, G8) =log[1/(3×1)]+log(9)
MI(G3, G4) =log[1/(1××1)] +log(9)
MI(G4, G5) =log[1/(2×1)]+log(9)
MI(G4, G7) =log[1/(2×2)]+log(9)
MI(G6, G7) =log[1/(1×2)]+log(9)

Figure 3. Computed mutual information according to the calling graph in Figure 2 and MI(G3,G4)
obtained the highest value.

If our training data set contains only a single sentence as shown in Figure 1, grammar partition 3 (Rule

3: PP-DIR → #IN NP) will merge with grammar partition 4 (Rule 4: NP → NP NP-ADV), because they

                                                
1 The maximum number of iterations is chosen to be 2,000, as described in section 4.

1 2 3 4 5 6 7 8 9 ΣΣ
1
2
3
4
5
6
7
8
9

0 1 0 0 0 0 0 0 1
0 0 1 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2
3
1
2
0
1
0
0
0

ΣΣ 0 1 1 1 1 1 2 1 1 9
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have the highest Mutual Information, MI(G3, G4) in the matrix, as shown in Figure 3.  The newly

merged sub-grammar will contain Rules 3 and 4, its INPUT set has the non-terminals NP-ADV and NP,

and the OUTPUT set contains PP-DIR.

After automatic grammar partition using the mutual information criterion, we are left with some

small partitions. These are then merged if they share the same OUTPUT set.

For each merge operation, we also limit the grammar size within a bound so to prevent the case

when many grammar rules cluster into one large grammar.  Grammar size of grammar G is measured

according to the equation below:

∑
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where P is the set of production rules, {A → α} is one of the rule in P and length(x) is the length of

string.

3 Composing Sub-parsers for Multiple Grammars

Each sub-grammar has its own LR(1) parsing table and GLR parser.  We compose all sub-parsers in

order to obtain an overall parse of the input sentences.  A lattice with multiple granularities (LMG)

serves as an interface to record the INPUTs and OUTPUTs of all sub-parsers. An LMG is a directed

acyclic graph whose nodes indicate spatial positions and whose edges are either terminals or virtual

terminals, the non-terminals outputted by any sub-grammar. We modify our GLR parsing algorithm in

a way similar to that proposed by Tomita [12] in order to handle an input lattice and LMG. The

algorithm is allowed to start and end within LMG so that multiple sub-parsers can operate on it [14].

The parser composition method used here is a bottom-up parsing algorithm.  The input sentence

is first converted to an LMG.  The invocation of sub-parsers is from right to left.  During parsing,

newly created virtual terminals are added dynamically to the LMG.  Figure 4 shows how a sub-parser

parses a prepositional phrase. The parse trees are directly derived from the edges of the LMG.

Syntactic parsing becomes demanding in terms of computational time and memory if we invoke

all sub-parsers in all edges in the LMG. To improve on efficiency, we count the frequencies of

terminals and virtual terminals that appear in the leftmost of the RHS of the rules according to the

training data for each grammar cluster, i.e., the frequencies of the left corners.  Given an incoming

input edge of an LMG, we use this information to rank the priority of invocation of sub-parsers in an



7

N-best2 list.  The sub-parsers that are in the N-best list are invoked, and all the rest sub-parsers are

discarded.  However, each sub-parser could end at any edge in the LMG.  To avoid creating too many

new edges on the LMG for each parser invocation, we only select one resultant parse tree as an output

parse if the parser returns successfully.

Figure 4. The LMG before and after invocation of a sub-parser at TO and its parse tree with vtPP-DIR as
the output virtual terminal.

4 Experimental Setup

To measure the effectiveness of our automatic partitioning approach, we compare its GLR parser sizes

with a random grammar partition of similar number of sub-grammars and similar sub-grammar sizes.

The single non-partitioned grammar is too large for compilation into a monolithic GLR parser, and

therefore is not included in the comparison.

4.1 Automatic Grammar Partitioning by the Mutual Information Criterion

Automatic grammar clustering was trained on sections 02 to 21 of the Wall Street Journal of Penn

Treebank, which contains 41,603 sentences.  There are altogether 20,696 rules extracted from the

training sentences.  We set the maximum sub-grammar size be 1,000.  There are two parameters for

iterative merge operation. We set minimum calling frequency of two proposed merge sub-grammars be

4 in order to avoid sparse data.  We also set the maximum number of iterations be 2,000.3  As a result,

we obtained 357 sub-grammars.

4.2 Random Grammar Partitioning without any Heuristics

As a control experiment, we randomly cluster the extracted grammar rules into clusters without any

heuristics.  In order to obtain comparable number of grammar clusters as the one using mutual

information criterion, we partition the 20,696 rules into 59 production rules per cluster.  All rules in all

                                                
2 N is chosen to be 3, as described in section 4.
3 If we set the maximum sub-grammar size be 500 and minimum calling frequency be 4, the iterative
merge operation will end at around 2,000 iterations (we could not merge any two sub-grammars
further).  To control the processing time for merge operations, the maximum number of iterations
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the clusters are unique.  We cluster the first 59 rules as one cluster, and the next 59 rules as another

cluster, so far and so forth.  As a result, we can obtain 351 partitioned sub-grammars.

4.3 Parsing Table Size

We compare our automatic grammar partitioning method with the random clustering.  We used the

same LR(1) parsing table generator to construct LR(1) tables for these two set of sub-grammars.  The

total number of states (rows) in the parsing table for the partitioned grammars is the sum of the number

of states in all sub-parsers.  Table 1 shows the total number of states in the parsing tables for these two

sets of sub-grammars.  Figure 5 and Figure 6 show the distribution of the grammar cluster in number of

states and the number of states/rule respectively.  From these two figures, we find that some automatic

partitioned grammars are much smaller in terms of parsing table states.  The result shows we can save

the overall parsing table sizes if using MI for grammar partitioning.  This reduces the memory to store

the parsing tables and time to access the table during parsing. The smaller numbers of states and the

ratios also imply good determinism of the sub-parsers.

MI Random

Number of grammar clusters 357 351

Total states in parsing table 231,907 469,484

Table 1. Partitioned grammar statistics for two different clustering methods.  One is based on mutual

information (MI) and the other one is randomly clustered without any heuristics (random).

Figure 5.  The histogram of number of states in the partitioned grammar set.

                                                                                                                                           
allowed is capped at 2,000 and the maximum size for a grammar partition is capped at 1,000.
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Figure 6. The histogram of number of states per rule in the partitioned grammar set.

4.4 Parsing Results

We use our parsing framework with multiple sub-grammars to parse the WSJ sentences in Penn

Treebank’s section 23. For the N-best list, we choose N being 3 so to select the top 3 ranked sub-

parsers for invocation.  The input sentences are POS tags provided in the corpus.  The parsing output of

each input sentence is an LMG.  Since there may be multiple paths in the LMG, a Viterbi algorithm is

used to find the shortest path in the LMG to represent the sentence.  Table 2 shows the parsing results

of the WSJ sentences in the test set.  Parse coverage is the percentage of sentence that can be fully

parsed (there is a parse tree covering the whole input query).  The experiment was performed on the

machine with configuration of Intel Pentium III 1GHz CPU, 512 Mbytes memory.  The high parse

coverage implies that the partitioned grammar can lead to the recognizable language similar to that

from the entire un-partitioned grammar.

WSJ in section 23

No. of sentences 2403

Maximum sentence length 50

Average sentence length 20.4 POS

Parse coverage 92.1%

Parsing speed 4.3seconds/sentence

Table 2. The parsing results of the WSJ test data in the Penn Treebank.
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5.  Conclusions and Future Work

In this paper, we have presented our automatic grammar partitioning algorithm and experimented with

the Wall Street Journal sentences in the Penn Treebank.  This effort scales up our previous work based

on the Air Travel Information Service (ATIS) corpus.  Grammar rules are derived from the parse trees

provided in sections 02 to 21 of the Penn Treebank.  Our novel automatic grammar partitioning

algorithm is one way of grammar clustering.  Grammar rules or sub-grammars are clustered together to

form a larger partition if they have frequent caller/callee interactions.  Clustering is based on the mutual

information criterion which measures the caller/callee co-occurrences.   Our experimental results show

that this automatic grammar partitioning approach can reduce parsing table size, when compared with a

random decomposition into a comparable number of grammar clusters.  Our partitioned grammars can

also be used for Generalized LR parsers to parse section 23 of the Penn Treebank that serves as an open

test set. In order to save the computational cost during parsing, we constrained the invocation of sub-

parsers and also output edges creation on the LMG. Our results are encouraging on two counts: (1) the

parsing procedure was formidable had we used a single unpartitioned grammar, because there were too

many grammar rules for the GLR parser; and (2) we achieved a parse coverage of 92% for the test set,

which indicates that the automatically partitioned grammar captures the similar recognizable language

as the entire original unpartitioned grammar.  In addition, it also suggests that our parsing framework is

generalizable to unseen test data.   In the near future, we plan to further incorporate lexical information

into our parsing framework, and to use statistical parsing to select the best path through the LMG to

give the output parse tree.
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