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Abstract 

This work extends a semi-automatic grammar induction 
approach previously proposed in [1].  We investigate the 
use of Information Gain (IG) in place of Mutual 
Information (MI) for grammar induction based on an 
unannotated training corpus. Experiments using the 
ATIS-3 training corpus indicate that the use of IG led to 
better precision and recall of desired semantic categories 
and at earlier stages in the grammar induction process 
when compared MI. We also investigate methods to 
automatically terminate the iterative grammar induction 
algorithm for grammar output.  We define the stopping 
criterion to be where relative increment in grammar 
coverage scants 1%.  Grammar coverage is measured in 
terms of coverage of the training corpus vocabulary. We 
obtain an output grammar based on this extended 
semi -automatic grammar induction algorithm with 
automatic termination.  This grammar compares favorably 
with the handcrafted and semi-automatic grammars from 
[1] based on NLU performance using the ATIS-3 test sets. 

1. Introduction 

Grammar development is an indispensable phase in the 
implementation of spoken and natural language 
understanding systems.  Conventional approaches involve a 
grammarian writing grammar rules to cover natural 
language queries falling within the scope of the application 
domain.  This implies that the grammarian needs to be a 
domain expert as well.  This task of handcrafting grammars 
is very expensive, and there is no direct control that the 
written grammar will model the target language well, 
especially for conversational spoken queries. 
 An alternative approach is to automatically capture 
semantic or phrasal structures by corpus-based techniques . 
Various data-driven approaches have previously been used 
to automatically capture word classes and multiword units. 
For instance, [2] performed automatic classification in 
word clustering by using Simulated Annealing (SA) and the 
algorithm can terminate automatically when the language 
model perplexity falls below a threshold. Probabilistic 
approaches for selecting multiword sequences based on   
mutual information (MI), perplexity and correlation were 
studied in [3] [4] and [5]. [6] presented the automatic 
acquisition framework of salient grammar fragments for the 
“How may I help you?” (HMIHY)  task. Salient grammar 

fragments are automatically extracted from corpora based 
on the Kullback-Leibler distance and a significant test, and 
then used for call-type classification. 
 We attempt to develop a methodology for 
semi -automatic grammar induction from un-annotated 
corpora.  Language structures can be learned automatically 
from domain-specific corpora.  These language structures 
should be interpretable by a human and may be refined and 
edited by hand, but the demand for manual effort should be 
much reduced when compared to handwriting grammars.  
Hence the proposed approach is semi-automatic in nature. 
Furthermore, since human knowledge may be injected 
during the grammar induction process, there is lower 
demand on the amount of training data required.  Our 
approach towards language structure acquisition is inspired 
by previous work on statistical language modeling [7], and 
the motivation is similar to efforts in semi -automatic 
language model acquisition for speech recognition [8]. 

2. Semi-Automatic Grammar Induction 
Approach 

We reference the semi -automatic grammar induction 
approach in [1], but include some modifications.  This 
section presents a brief overview of the approach.  
 The semi -automatic grammar induction approach 
begins with agglomerative clustering of words in a corpus 
of un-annotated sentences from a restricted domain, e.g. the 
Air Travel Information Service (ATIS) domain.  Clustering 
is implemented both spatially and temporally.  In spatial 
clustering, words or mu lti-word entities with similar left 
and right linguistic contexts are clustered together.  
Consider the clustering of entities e1 and e2.  If p1 denotes 
the unigram distribution of words occurring to the left of e1, 
and p2 denotes that for e2, then we can measure the 
similarity of the two distributions by the divergence metric 
Div (or symmetrized Kullback-Leibler distance) as shown 
in Equations (1) and (2): 
 

V in Equation (2) denotes the corpus vocabulary.   
Equations (3) shows the distance metric Dist when both the 
left and right contexts are considered. 
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The probabilities are obtained from the frequency 
counts in the training corpus.  Only the words that have at 
least M occurrences are considered, in order to avoid sparse 
data problems.  All word pairs are considered as described 
in Equation 3, and the algorithm selects the N most similar 
pairs (i.e. lowest values for Dist) to form spatial clusters 
that are labeled as SCi, where i is a counter of the number of 
spatial clusters formed.  Thereafter, the appropriate word 
pairs in the training corpus are substituted by their SC labels, 
and the algorithm proceeds to an iteration of temporal 
clustering. 

In temporal clustering, words or multi-word entities 
that co-occur sequentially are clustered together.  Mutual 
Information (MI) is used as the metric for clustering, as 
shown in Equation (4).  

Again, only words that have at least M occurrences 
are considered, and the N pairs of entities with highest MI 
are selected to form temporal clusters labeled as TCi, where 
i is a counter of the number of temporal clusters formed.  
Thereafter, the appropriate word pairs in the training corpus 
are substituted by their TC labels, and the algorithm 
proceeds to another iteration of spatial clustering. 
 As such, the agglomerative clustering approach 
produces a context -free grammar.  The SC and TC are 
non-terminals in the grammar.  SC clusters tend to be 
semantic structures, and TC clusters tend to be phrasal 
structures.  The grammar is then post-processed by 
hand-editing, hence the grammar induction approach is 
deemed semi-automatic. 

3. Experimental Corpus  

We used the training and test sets of the ATIS (Air Travel 
Information System) domain as our experimental corpus. 
ATIS is a common task in the ARPA (Advanced Research 
Projects Agency) Speech and Language Program in USA. 
We used the Class A sentences of the ATIS-3 corpus. The 
disjoint training and test sets consist of 1564, 448 (1993 test) 
and 444 (1994 test) transcribed utterances respectively.  
Each utterance is accompanied by its corresponding SQL 
query for database retrieval.  For example: 

Table 1.  An ATIS utterance with its SQL query.1 

                                                 
1  “around three p m” is mapped to 14:30 – 15:30. 

4. Evaluating Induced Grammars  

Given the SQL query, we can evaluate the grammar 
produced at various stages in the induction process by 
means of precision and recall of semantic concepts, based 
on the PARSEVAL measures used in [9] and [10]. We 
transform the SQL query of an input utterance into a set of 
reference brackets.  We can also parse the input utterance 
with the induced grammar G and generate a set of 
hypothesized brackets from the candidate parse.  The 
reference and hypothesized brackets are compared to find 
the number of matching brackets. Precision is the 
proportion of matching brackets found in the set of 
hypothesized brackets. Recall is the proportion of matching 
brackets found in the set of reference brackets.  Table 2 
references the input utterance in Table 1 to illustrate the 
computation of precision and recall. 

Table 2.  Example illustrating the computation precision 
and recall values.  Matching brackets are marked in ‘*’. 
 

Referring to Table 2, the delimiters for the brackets 
follow the order of words in the input utterance. The 
reference brackets are derived from the SQL corresponding 
to the input utterance.  The grammar G is the set of 
grammar rules obtained during the induction process.  
Notice that grammar induction has not yet acquired the city 
name minneapolis, so it is ignored in the parse. Parsing with 
grammar G generates the hypothesized brackets.  Matches 
between the reference and hypothesized brackets are 
marked in *.  Hence recall is 2/3 (two matching brackets out 
of three reference brackets) and precision is 1/2 (two 
matching brackets out of four hypothesized brackets). 
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Utterance:  is there a flight around three p m from 
charlotte to minneapolis 
 
Simplified SQL  
Select FLIGHT_ID from ORIGIN, DESTINATION 
where ORIGIN.CITY_NAME = “charlotte” 
and DESTINATION.CITY_NAME = “minneapolis” 
and DEPARTURE_TIME = “around three pm”1 

Bracket delimiters based on input utterance:  
is0 there1 a2 flight3 around4 three5 p6 m7 from8
charlotte9  to10  minneapolis11 
 
Reference brackets  (based on SQL in Table 1): 
around three p m  (4, 7)* 
charlotte (9, 9)* 
minneapolis  (11, 11) 
 
Excerpt of grammar G from the induction 
process: 
SC13 à  one | two | three | …  
SC24 à … charlotte | chicago | …  
TC22 à SC24 to 
TC23 à SC13 p m 
SC25 à … may | june | …  
 
Hypothesized brackets from candidate parse 
with G: 
three (5, 5) 
around three pm (4, 7)* 
charlotte (9, 9)* 
charlotte to (9, 10) 



 Since a training corpus may not always include the 
SQL corresponding to the input utterances, we also use 
another metric to evaluate the grammar G produced by the 
induction process. The induced grammar rules should 
ideally provide maximum coverage of the words (potential 
grammar terminals) in the training corpus.  Therefore, we 
also measure the percentage of words in the training corpus 
that are covered in the grammar. Since the grammar 
induction approach focuses only on words with at least M 
occurrences, we have incorporated the corresponding 
adjustments in comp uting the percentage of word terminals 
covered in G. 

5. Information Gain vs. Mutual Information for 
Temporal Clustering 

In this section, we report on our investigation in using 
Information Gain (IG) in place of Mutual Information (MI) 
for temporal clustering in grammar induction.  It has been 
pointed out that the use of MI to find co-occurring entities 
is subjected to estimation errors especially when the 
occurrences of both entities are rare [11].  We investigate 
the use of IG, as defined in Equation (5), because it 
measures the number of bits of information obtained about 
one entity by knowing the presence or absence of the other 
entity. 
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 IG is the sum of mutual information which consider all the 
combinations of presence or absence of entities 1e , 2e .  

),eP(e 21  is probability of (e1,e2):
)(
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)e,P(e 21  is probability of entity 1e  that is not followed by 
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A coarse comparison between the first N(=30) 

temporal clusters formed using IG with those formed using 
MI suggests that IG enables us to capture meaningful 
phrases earlier in the agglomerative clustering process. 
More specifically, out of the first 30 temporal clusters 
formed using IG, 15 of them are phrases corresponding to 
attributes in the SQL, e.g. kansas city, round trip, san 
francisco, etc.  The number of such phrases drops to 12 
when MI is used.  
 For a more detailed comparison, we ran the grammar 
induction procedure first with both MI and IG for up to 90 
iterations each.  We compute the recall and precision values 
at every 10th iteration.  Results are shown in Figures 1 and 
2 respectively. As agglomerative clustering proceeds, recall 
values grow and converge while precision values decrease.  
Throughout the process, however, IG maintains a higher 
recall and higher precision than MI at the marked iterations.  
We conducted a paired t-test for comparing the use of IG 

with MI based on recall values at every tenth iteration.  The 
increment in recall when IG is used instead of MI is 
statistically significant at α=0.01.  A similar paired t-test 
applied to precision values also shows  that the increment in 
precision due to IG is also statistically significant at 
α=0.01. 
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Figure 1.  Comparison between Information Gain and 
Mutual Information in terms of grammar recall values at 
various stages during the grammar induction process. 
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Figure 2. Comparison between Information Gain and 
Mutual Information in terms of grammar precision values 
at various stages during the grammar induction process. 

6. Defining a Stopping Criterion 

The automatic grammar induction is iterative and needs a 
stopping criterion.  A stopping criterion should be defined 
such that the induced grammar has the highest possible 
recall or precision or coverage of the training corpus.  The 
computation of recall and precision requires semantic 
annotations, e.g. those from the SQL, and such a resource 
tends to be expensive and may not always be available.  
Hence we attempt to define a stopping criterion based on 
the number of words (terminals) in the training corpus that 



are captured in the induced grammar G.  For example, the 
ATIS-3 Class A training set has 531 unique words.  Of these, 
only 300 have occurrences above M(=5) counts, and this is 
the subset of the vocabulary that is processed by our 
grammar induction algorithm.  Running grammar induction 
for 20 iterations produced a grammar that includes 167 
words/terminals. Hence at this point the percentage of 
terminals covered is 167/300=55.7%.  If we monitor the 
growth of this percentage with respect to the number of 
iterations, we obtain the graph depicted in Figure 3. 
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Figure 3.  Graph plotting the growth of grammar coverage 
(measured in terms of the percentage of words/terminals in 
the training corpus that are captured in the grammar) with 
respect to the number of iterations.  Measurements are 
taken at every tenth iteration. 
 

We can measure grammar coverage in terms of the 
percentage of words/terminals in the training corpus that 
are captured in the grammar.  If we define the stopping 
criterion to be the point where the relative growth in 
grammar coverage falls below 1%, then we should 
terminate grammar induction at iteration 100, based on the 
statistics of Figure 3.  Grammar coverage at iteration 100 is 
88.0%  and grew to 88.3%  at iteration 110, hence the 
relative increment is  0.38% (<1%). 
 Cross-checking with the recall values (see black 
curve in Figure 4) shows that at iteration 100, the induced 
grammar G attained a recall of 69.5%, which lies within the 
convergence region of Figure 4.  

Recall that the semi-automatic grammar induction 
approach allows hand-editing of the grammar rules to 
improve the grammar.  We have devoted a small manual 
effort for this purpose – we first allow the grammar 
induction algorithm to run for 20 iterations to obtain the 
grammar G20, which contains 160 nonterminals (SCs or 
TCs) and 167 terminals. Among these we selected 17 
nonterminals and 121 terminals to be preserved.  The 17 
nonterminals were labeled as SC0 to SC16, and contain 
categories such as AIRLINE_NAME, AIRPORT _NAME, DIGIT, 
ONE_WAY,  etc.  Of these we selected 7 nonterminals for 
each of which we inserted a complete set of terminals.  The 
7 nonterminals are CLASS_NAME, DAY_NAME, PERIOD, 
MEAL_DESCRIPTION, MONTH, DAY AND NUMBER.  A total of 
117 word terminals have been added by hand.  Examples of 
the grammar rules include: 
 

CLASS_NAME à business class | economy class| …  
DAY_NAME à monday | tuesday | wednesday | …  
PERIOD à afternoon | breakfast time | lunch time | …  
MONTH à january | february | march | april | …  
NUMBER  à oh | zero | one | two | …  
 

With this simple manual procedure, we were able to 
transform G20  into an enhanced seed grammar GH20 (where 
the subscript H denotes hand-editing  of the grammar from 
iteration 20).  We then seed the grammar induction 
algorithm with GH20 and continue to run until iteration 100 
at which point the relative increment for recall is 0.27% (i.e. 
our automatic stopping criterion of <1% is met). At this 
point, the recall achieved is 86.5% (see gray curve in Figure 
4).  
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Figure 4.  Graph plotting recall rates against the number of 
iterations. The proposed stopping criterion identifies 
iteration 100 as the termination point, giving 69.5% recall   
(see black curve which corresponds to the white bars in 
Figure 1), which increases to 86.5% if the grammar rules 
are hand-edited for improvement (see gray curve). 

7. Evaluation based on Testing Corpora 

The ultimate goal of semi -automatic grammar induction is 
to produce a grammar for natural language understanding 
(NLU). Hence this section reports on the NLU results based 
on the ATIS3 test sets 1993 and 1994. 

The SQL corresponding to each utterance provides us 
with a reference semantic frame for evaluation.  Referring 
to the example in Table 1, the attribute labels and values in 
the reference semantic frame will be: 
 

ORIGIN:  charlotte 
DESTINATION: minneapolis 
DEPARTURE_TIME: 14:30 – 15:30 

 
We parse each test utterance with an induced 

grammar G to produce a generated semantic frame.  We 
follow the evaluation scheme described in [1] where “Full 
Understanding” refers to utterances with exact matches 
between the reference and generated frames.  “Partial 



Understanding” refers to partial matches. “No 
Understanding” occurs when no semantic categories were 
extracted, due to out-of-domain words or word sequences.  
As described previously, the grammar induction algorithm 
generates temporal clusters using Information Gain, and the 
iterative process is allowed to run for 20 iterations, at which 
point we hand-edited the grammar to produce GH20.   
Seeding with GH20 and allowing the grammar to run until 
the stopping criterion is met produces out final output 
grammar GF. 

GF is used to generate frames for the test set 
utterances.  NLU results are shown in Table 3.  This table 
also shows that GF compares favorably with the 
semi -automatically induced grammar GSA and handcrafted 
grammar GH   as reported in [1]. GSA was obtained with 
seeding and used MI for temporal clustering. 

1993 Test Set 
 GF (%) GSA(%) GH(%) 

Full 
Understanding 

84.4 80.4 85.5 

Partial 
Understanding 

15.0 16.5 14.5 

No 
Understanding 

0.7 3.1 0 

1994 Test Set 
Full 
Understanding 

77.0 76.8 78.6 

Partial 
Understanding 

21.4 21.8 20.2 

No 
Understanding 

1.6 1.4 1.1 

Table 3.  Comparison of the final output grammar (GF) 
with seeding from GH20, semi-automatically induced 
grammar (GSA) and handcrafted grammar (GH), based on 
fraction of queries that achieved Full Understanding, 
Partial Understanding and No Understanding. 

8. Summary and Conclusions  

This work extends the semi-automatic gra mmar induction 
approach previously proposed [1] in two ways: (1) 
investigating the use of IG in place of MI for grammar 
induction based on an unannotated training corpus; and (2) 
defining a stopping criterion to automatically terminate 
iterative grammar induction for grammar output.   

Experiments based on the ATIS-3 training corpus 
indicate that the use of IG led to better precision and recall 
of desired semantic categories and at earlier stages in the 
grammar induction process when compared MI. We 
measure improvements in precision / recall values at every 
tenth iteration, and investigation shows that improvements 
for IG over MI is statistically significant. 

To find a termination point for the iterative grammar 
induction algorithm, we define the stopping criterion to be 
where relative increment in grammar coverage scants 1%.  
We measure grammar coverage in terms of the vocabulary 
coverage in the training corpus. We obtain an output 

grammar based on this extended semi-automatic grammar 
induction algorithm with automatic termination. This 
grammar compares favorably with the handcrafted and 
semi -automatic grammars from [1] based on NLU 
performance in the ATIS test sets . Future work will mainly 
focus on applying this methodology to various domains to 
achieve portability. 
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