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Abstract

This paper describes a bi-directional letter /sound generation system based on a strategy combining data-driven
techniques with a rule-based formalism. Our approach provides a hierarchical analysis of a word, including stress
pattern, morphology and syllabification. Generation is achieved by a probabilistic parsing technique, where
probabilities are trained from a parsed lexicon. Our training and testing corpora consisted of spellings and
pronunciations for the high frequency portion of the Brown Corpus (10,000 words). The phonetic labels are
augmented with markers indicating morphology and stress. We will report on two distinct grammars representing a
historical perspective. Our early work with the first grammar inspired us to modify the grammar formalism, leading
to greater constraint with fewer rules. We evaluated our performance on letter-to-sound generation in terms of
whole word accuracy as well as phoneme accuracy. For the unseen test set, we achieved a word accuracy of 69.3%
and a phoneme accuracy of 91.7% using a set of 52 distinct phonemes. While this paper focuses on letter-to-sound
generation, our system is also capable of generation in the reverse direction, as reported elsewhere (Meng et al,,
1994a). We believe that our formalism will be especially applicable for entering unknown words orally into a
recognition system.

Zusammenfassung

Dieser Artikel beschreibt ein orthographisch—phonetisches Umsetzungssystem, das in zwei Richtungen arbeitet.
Es beruht auf einer Strategie, die die auf Daten basierende Technik mit dem Formalismus eines Regelwerks
kombiniert. Unser Ansatz liefert die hierarchische Analyse der Wérter, die die Akzentuierung, die Morphologie und
die Silbenstruktur bestimmt. Die Umsetzung wird mit ciner auf Wahrscheinlichkeitstechnik beruhenden syntaktis-
chen Analyse durchgefihrt, bei der die Wahrscheinlichkeiten anhand eines Lexikons trainiert werden. Der
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Trainings- und Testkorpus besteht aus der Buchstabierung und der Aussprache von den 10000 meistgebrauchlichen
Wortern des Brown Corpus. Die phonetische Markierung wurde durch morphologische und akzentuelle Marker
erweitert. Die Resultate werden von zwei verschiedenen Grammatiken geliefert, die zwei verschieden Entwick-
lungsstadien der Arbeit entsprechen. Unsere fritheren Arbeiten mit der ersten Grammatik haben zu einer
Modifizierung des Formalismus gefuihrt, mit groBeren Einschrankungen und weniger Regeln. Die Leistungsfahigkeit
des Systems wurde sowohl auf Wort- als auch auf Phonemebene getestet. Bei dem Testkorpus wurde auf Wortebene
eine Prazision von 69,3% erreicht und auf Phonemebene 91,7% unter Verwendung von 52 Phonemen. Auch wenn
dieser Artikel sich hauptsiachlich mit der orthographisch—phonetischen Umsetzung befaBt, so ist unser System doch
auch zu der gegensitzliche Umsetzung fihig, wie bei Meng et al. (1994a) berichtet. Unserer Uberzeugung nach ist
dieses System besonders fur die mindliche Eingabe unbekannter Worter in ein Spracherkennungssystem geeignet.

Résumé

Cet article décrit un syst¢me de transcription orthographique-phonétique bidirectionnel basé sur une stratégie
combinant des techniques basées sur les données et un formalisme de régles. Notre approche fournit une analyse
hiérarchique des mots, incluant la position de I'accent. sa morphologie et sa structure syllabique. La génération est
réalisée par une technique d’analysc syntaxique probabiliste ol les probablilitiés sont apprises 4 partir d’un lexique.
Nos corpus d’apprentissage et de test sont constitués d’épellations et de prononciations des 10000 mots les plus
fréquents du Brown Corpus. L'étiquetage phonétique a été enrichi par des marqueurs indiquant la morphologie et
I’accentuation. Les résultats sont fournis sur deux grammaires distinctes, correspondant a deux stades d’évolution du
travail. Notre travail antérieur avec la premiére grammaire nous a incité a modifier le formalisme de la grammaire,
ce qui a abouti a des contraintes plus fortes avec moins de régles, Nous avons évalué les performances de notre
systeme tant au niveau du mot entier que du phonéme. Pour le corpus de test, la précision atteinte au niveau du mot
est de 69.3%; elle est de 91.7% au niveau du phonéme, en utilisant un répertoire de 52 phonemes. Bien que cet
article traite essentiellement de la transcription orthographique-phonétique, notre systéme est également un
systéme de génération dans I'autre sens, comme décrit dans un article antérieur (Meng et al., 1994a). Nous pensons
que notre formalisme sera applicable en particulier pour entrer vocalement des mots inconnus dans un systéme de
reconnaissance.

Keywords: Reversible letter /sound generation: Phonological parsing; Morphology

1. Introduction

English is a language that is characterized by a
rich mixture of words inherited from multiple
languages. As a consequence of these borrowings.
letter /sound mappings in English can be highly
irregular. However, it is apparent that many regu-
larities exist: those who are knowledgeable in
English are usually able to pronounce with high
accuracy words not known to them.

Much research has been done with the goal of
achieving reliable automatic letter-to-sound gen-
eration. Speech output is especially applicable in
reading machines and for generating proper name
pronunciations for telephone directories. In addi-

tion, the text input for the letter-to-sound system
may potentially be the output of an optical char-
acter recognition system or a handwriting recog-
nition system. In this case, the text may be one of
the many hypotheses corresponding to a docu-
ment image, and therefore may be associated
with a confidence level and may contain errors.
Thus it will be desirable if the letter-to-sound
generation system can handle uncertainty in the
text input, since it will be capable of interfacing
pen-based systems with speech-based systems.
There is also an increasing need for the reverse
process of sound-to-letter generation in spoken
language systems, as in the automatic addition of
new words to the vocabulary of an existing sys-
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tem. A spoken language system cannot be ex-
pected to fully specify its active vocabulary based
on a static initial set. Users should be able to
enter new words orally, by providing a (spoken,
typed or handwritten) spelling and /or pronuncia-
tion. The system might also be able to look up
proper nouns in an on-line “yellow-pages”. It
should then be able to automatically produce
pronunciations from input spellings, or spellings
from input pronunciations, and dynamically up-
date the recognizer’s vocabulary accordingly.
With these needs in mind, we established a
goal of creating a bi-directional letter-to-sound
and sound-to-letter framework that could handle
uncertainties in the input, and provide a set of
candidate outputs with associated probabilities.
Our approach represents a cross between explicit
rule-driven strategies and strictly data-driven ap-
proaches. Extensive experience with morphologi-
cal analysis for text-to-speech conversion led us
to the hypothesis that the spelling and pronuncia-
tion of most English words could be specified
simply and explicitly using only a few morphologi-
cal and phonological units. The pronunciation of
a number of words can only be specified with the
help of morphological analysis. For example, a
morphological boundary causes the letter se-
quence “sch” in “discharge” to be realized differ-
ently from that in “school” or “scheme.” Stress
shift brought about by suffixation changes the
identity of vowels in a word, e.g., “define” versus
“definition”. Word class can also affect pronunci-
ation. The noun and verb forms of “record”, for
example, are pronounced differently. Syllabic,
phonotactic and graphemic constraints also play a
part in letter-to-sound mappings. Therefore, it
seems that an English word can be represented
by a hierarchical structure with several linguistic
levels, each being characterized as a sequence of
pairwise transitions. In order to produce such
hierarchical structures in a parse tree format, the
natural language framework, TINA (Seneff, 1992)
seems to provide a particularly suitable formal-
ism. TINA parses with a set of probabilistic con-
text-free rules which are automatically trainable.
The basic probability unit in TINA predicts the
right sibling based on the left context and the
parent, with probabilities throughout the parse

tree acquired automatically from a parsed train-
ing corpus. In our case, the terminal entries are
dual in nature, representing phones in one path
and letters in the other. Thus there is a direct
symmetry between the letter-to-sound and the
sound-to-letter tasks, with just the input/output
specification being swapped. This paper concen-
trates on letter-to-sound generation; details for
sound-to-letter can be found in (Meng et al.,
1994a).

We have organized the paper to reflect a his-
torical progression in our work spanning the last
three years. We began with the original version of
TINA, which attaches probabilities to sibling-si-
bling transitions in context-free rules, and uses
the generic [START] category as the left context
for the probability model to predict the beginning
of a rule. While this appeared to be adequate in
parsing sentences with a semantic grammar, it
turned out to present a problem to our word-level
parser in that it led to a great deal of overgenera-
tion. We could compensate somewhat by writing
a large number of explicit rules, but this made
rule specification more tedious and less well-de-
fined. Also it led to a heavy computational load
in exploring partial theories that would fail later.
In fact, it was these problems that arose in our
letter-to-sound task that led us to reformulate
TINA in a paradigm of ““layered bigrams” (Seneff
et al., 1992). With this new framework, the left
context of a right sibling was specified as the left
sibling at its layer, regardless of whether that left
sibling shared the same parent. The effect can be
broadly characterized as producing context de-
pendent rule production probabilities.

Once we had established that this external left
sibling was useful for increasing constraint at the
sentence level, we then turned our attention back
to the problem of parsing words to obtain their
morphological decomposition, stress contours and
phonological structure. It became apparent that it
would be better to keep the category labels very
generic in the higher levels of the parse tree, and
to organize the hierarchical layers in a very regu-
lar fashion, with each layer reflecting a particular
aspect of word structure. We also noted that if we
include as left context the entire column above
the left sibling rather than simply the left sibling
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itself, we could gain a great deal more constraint,
which would then make it feasible to operate with
a simpler rule set.

The rest of the paper is organized as follows.
Section 2 begins with a brief survey of some
previous efforts conducted in the area. Section 3
discusses the data used in our experiments, in-
cluding how the words are labelled based on
etymology and phonology. Section 4 describes our
initial approach, and is followed by Section 5
where a more refined approach is described. Our
system’s performance is reported in Section 6
and, finally, Section 7 presents some discussion of
the results and of possible future directions aimed
at improving overall system performance and cov-
erage of unseen test data.

2. Previous work

A myriad of approaches have been applied to
the problem of letter-to-sound generation. Excel-
lent reviews can be found in (Damper, Forthcom-
ing; Golding, 1991; Klatt, 1987). The various ap-
proaches have given rise to a wide range of letter-
to-sound generation accuracies. Many of these
accuracies are based on different corpora, and
some corpora may be more difficult than others.
Furthermore, certain systems are evaluated by
human subjects, while others have their pronunci-
ation accuracies reported on a per phoneme or
per letter basis. Insertion errors or stress errors
may be included in some cases, and ignored in
others. There are also systems which look up an
exceptions dictionary prior to generation, and the
performance accuracies of these sytems tend to
increase with the use of larger dictionaries. Due
to the above reasons, we should be careful when
comparing different systems based on quoted
performance values.

The approaches adopted for letter-to-sound
generation include the rule-based approach,
which uses a set of hand-engineered, ordered
rules for transliteration. Transformation rules may
also be applied in multiple passes in order to
process linguistic units larger than the phoneme /
grapheme, e.g., morphs. The rule-based ap-
proaches have by far given the best generation

performance. A classic example of the rule-based
approach is the system MITalk (Allen et al,
1987) which uses a 12,000-word morph lexicon
together with a morphological analysis algorithm
as the major source of word pronunciation. If no
analysis resulted, the word spelling was trans-
formed to a string of phonemes with stress marks
by a set of about three hundred to six hundred
ordered cyclical rules (Hunnicutt, 1976). Using
the MITalk rules alone gave word accuracies
ranging from 66% to 76.5% (all phonemes and
stress pattern correct). However, the combination
of the morph lexicon, the analysis algorithm, and
the set of ordered rules achieved a word accuracy
of about 97%. Although the process of develop-
ing this combination is tedious and time consum-
ing, the high performance level of 97% has not
yet been matched by other more automated tech-
niques.

Since the generation of rules is a difficult and
complicated task, several research groups have
attempted to acquire letter-to-sound generation
systems through automatic or semi-automatic
data-driven techniques. In the following we will
provide a brief sketch. The goal is to provide as
little a priori information as possible - ideally,
only a set of pairings of letter sequences with
corresponding (aligned or unaligned) phone se-
quences. Training algorithms are then used to
produce a mechanism that is applied to predict
the most “promising” pronunciation. For exam-
ple, the induction approach, which attempts to
infer letter-to-sound rules from a body of training
data, was adopted in (Hochberg et al., 1991; Klatt
and Shipman, 1982; Lucassen and Mercer, 1984,
QOakey and Cawthorne, 1981; Segre et al., 1983;
Van Coile et al., 1992). Hidden Markov modeling
was used in (Parfitt and Sharman, 1991; Luk and
Damper, 1993). Neural networks were used in the
well-known NETtalk system (Sejnowski and
Rosenberg, 1987; Lucas and Damper, 1992). Psy-
chological approaches, based on models proposed
in the psychology literature, were used in (Dedina
and Nusbaum, 1991; Sullivan and Damper, 1992).
The case-based reasoning approaches, which gen-
erate a pronunciation of an input word based on
similar exemplars in the training corpus, was
adopted in (Coker et al.,, 1990; Stanfill, 1987;
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Lehnert, 1987, Golding, 1991; Van den Bosch
and Daelemans, 1993). Generally speaking,
phoneme accuracies of the data-driven systems
hover around the low 90 percentages. This roughly
translates to (0.9)° = 53% word accuracy, if we
assume that an average word is 6 letters long, and
the probability of pronouncing each letter cor-
rectly in a word is independent of the other
letters.

3. Labelling the lexicon

Our experimental data consist of the 10,000
most frequent words appearing in the Brown
Corpus (Kucera and Francis, 1967). A single
phonemic transcription is provided for each word,
and the transcription may contain up to three
levels of stress: primary ('), secondary (") and
reduced (unmarked). The words were also marked
morphologically by using special symbols to iden-
tify prefix boundaries (=), root-root boundaries
(#), derivational suffix boundaries (+), and in-
flectional suffix boundaries (+ + ). Affixes as well
as roots were identified on an etymological basis,
by reference to a dictionary (Websters, 1984) in
cases of uncertainty. A (non-contiguous) excerpt
from the resulting lexicon is shown in Fig. 1. The
first part of each entry is the word spelling; the
second part is the phonemic transcription; and

BANKERS B'aenxKerZ * BANK++ER++S ##
BANKRUPTCY B'acnxKRahPTSiy * BANK#RUPT+CY ##
BANKS B'acaxKS * BANK++S ##

BANNER B'aeNer * BANNER ##

BAPTIST B'acPTixST * BAPT+IST ##

BAPTIZE B'acPT"ayZ * BAPT+IZE ##

BAPTIZED B'acPT"ayZD * BAPT+I1Ze++ED ##

BEAUTIFULLY B'yuTihFaxeliy * BEAUT+y+FUL+LY ##
BEGGED B'¢hGD * BEGg++ED ##
BINOMIAL B"ayN'owMiyaxel * BI=NOM+IAL ##

CHROMATOGRAPHY KR"owMaeT'aaGRacFiy *
CHROMATO=GRAPH+Y ##

ébSPEL G'aaSPehel * GOJ#SPEL ##
GOSSIP G'aaSihP * GOd#sSIP ##

HANDFUL hh'acNDFubel * HAND#FULI ##
HANDICAP hh'seNDiyK"acP * HAND#In¥CAP ##

Fig. 1. Excerpts from the lexicon.

the third part is the morphological composition.

An example of conformity to etymological
principles in data preparation can be noted by
comparing the words “banker” and “banner”.
While the inflectional suffix “er” in the word
“banker” denotes someone (in a position of au-
thority) working at a bank and also appears in
similar words such as “baker” and “builder”, the
most common usage of the word “banner” does
not have a meaning similar to “someone who
bans”. Rather, the word is derived from the Mid-
dle English “banere” and Old French ‘“banere,
baniere”, and is therefore identified as an inte-
gral root.

Information about changes in spelling due to
morph composition is also retained in the lexical
entry by the use of lower case letters. The final
“e” of the derivational suffix “ize” in the word
“baptized” is given in lower case since it is re-
dundant with the “e” of the inflectional suffix
“ed”. Somewhat rarer instances of deletion are
seen in the word ‘“handful”, which comes from
“hand” and “full”, and in the word ‘“handicap”,
which comes from the three words ‘“hand”, “in”
and “cap”. On the contrary, in the word
“begged”, the “g” in lower case appears in the
spelling of the word but not in the spelling of the
root.

Prefixes are later distinguished as frequent
(usually one-syllable) prefixes, such as “bi” indi-
cating “two” in the word “binomial” or as root-
derived prefixes such as ‘“chromato” in “chro-
matography”. Root-derived prefixes can be auto-
matically relabelled as a root morph followed by
a “connecting vowel”. Connecting vowels serve
the purpose of encoding stress difference. As an
example, contrast the stress patterns of the words
“speed”, “meter” and “speedometer”.

The markings in the lexicon, however, are not
fully stable. Often it is difficult to determine
exactly how a word should be marked, because
word segmentation according to morphological
decomposition disagrees with that according to
syllabification. This is particularly true when de-
termining the left or right syllable affiliation of
ambisyllabic consonants. Since markings accord-
ing to syllabification can be quite clearly specified
by rules such as the Maximal Onset Principle and
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Stress Resyliabification !, we try to incorporate

special markings to preserve the underlying mor-
phological decomposition. For example, the letter
“c” in “dedicated” belongs to the root of the
word, but is assigned to the following syllable
through a Stress Resyllabification rule.

4. Initial approach

As was mentioned previously, our initial ap-
proach involves specifying some structural regu-
larities of English word morphology and syllabifi-
cation in terms of a simple rule set. These gram-
mar rules are then used by a parser to analyze
the structure of a given English word.

Word and sub-word structures were defined
from an analysis of the root and affix morphs for
all the entries in the lexicon. Roots were defined
as having one or two syllables. Roots with more
than two syllables are treated as compound words.
First syllables were found to have the form
onset-nucleus-coda where only the nucleus was a
compulsory element. This nucleus was usually a
single vowel phonemically (a vowel or vowel di-
graph orthographically) optionally followed by a
liquid. The optional second syllable of a root was
sonorant: an enumeration of such sonorant se-
quences was collected. Prefixes, as mentioned
previously, could be of two types: there is an
enumerable set of single-syllable prefixes, as well
as a set of multi-syllable prefixes each of which is
formed by adjoining a “connecting vowel” to a
root or whole word structure. Suffixes were enu-
merated, and could begin with a connecting vowel.
Units were specified as members of the sets of
onsets, nuclei, coda, sonorant syllables, enumer-
able (non-root-derived) prefixes, enumerable af-
fixes and connecting vowels. Some examples are
given in Table 1.

" The Maximal Onset Principle states that the number of
consonants in the onset position should be maximized when
phonotactic constraints permit, and Stress Resyllabification
refers to maximizing the number of consonants in stressed
syllables.

Table 1
Examples of units in root and prefix structures
Structure Unit Word
examples
one syllable onset-nuc-coda br-ea-k,
root b-ar-k
onset-nuc p-ie
nuc-coda e-gg
nuc i,a
two syllable (first syl.) — bott-le,
root (sonorant syl.) bann-er,
pill-ow
single syllable bi bi-nomial
prefix
root-derived bio bi-0-graphy
prefix

Possible correspondences of English spelling
and pronunciation for these units were then col-
lected from the data and expressed as definitions.
A formalism was defined that allowed alternative
spellings /pronunciations including optional let-
ters/phonemes to be given by a single sequence.

Possible transitions in the grammar were then
defined as pair-wise unit-to-unit sequences. Se-
quential constraints were facilitated by the defini-
tion of special categories of phonemes (e.g., back
vowel, lax vowel, digraph, consonant cluster) and
affixes (e.g., adjectival suffix, non-final suffix,
derivational suffix).

The original version of the TINA natural lan-
guage framework was used to parse either the
letter string or the phoneme string corresponding
to a word. TINA augments the context-free rules
with other probabilistic constraints which are au-
tomatically trainable from training data. In a typi-
cal context-free rule, Parent — Left-sibling Right-
sibling, the probabilities are attached to the sib-
ling—sibling transition, so that the right sibling in
a rule can be predicted based on the left context
(left sibling) and the parent. The generic [START]
category is used as the left context for the proba-
bility model to predict the beginning of a rule.

Parsing the orthographic representation of the
10,000 words from which the morphs and subsyl-
labic units were drawn resulted in 96.2% cover-
age. The remaining non-parsable words were
mainly compounds (2.3%) and names (1.0%).
Words which failed to parse due to sparse train-
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ing data constituted only 0.4% of the lexicon.
Although many pronunciations were unique and
correct, these figures do not reflect the success of
a single unique pronunciation in many other cases.

A major problem with this approach is that
while TINA is adequate for parsing sentences
using a semantic grammar, using it as a word-level
parser led to a great deal of overgeneration.
Consequently, the task of applying phonological
rules at a higher level in the form of filters was
initiated to remove inappropriate correspon-
dences. One class of filters, for example, was
designed to choose the correct vowel quality (and
thus correct stress) in words containing stress-af-
fecting suffixes. Such a filter would, for example,
eliminate all but the lax form of the phoneme
corresponding to the vowel in the syllable preced-
ing the derivational suffixes +ic and +ity as in
the words “atomic” and “authenticity” (where
the voiced version of the consonant in +ic could
be filtered out before a front vowel as well). This
task, however, proved to be quite formidable,
since it made rule specification more tedious and
less well-defined. Also, this configuration led to a
heavy computational load in exploring partial
theories that would later fail. Therefore, a better
solution was sought.

5. Refined approach

Through our attempts to develop the initial
grammar for letter-to-sound productions, it be-
came evident that in order to simplify our rule set
and avoid the use of complex filters, a more
constraining probability model was needed to
control overgeneration problems during parsing.
We found that, if we could arrange the parse
trees in a regular layered structure, then it would
be straightforward to incorporate across-rule con-
straints by conditioning probabilities on the left
sibling (instead of the [START] category) even
when that sibling did not share the same parent.
We reported on a successful application of this
new ‘“layered bigrams” formalism to sentence
level parsing in (Seneff et al., 1992). In the re-
mainder of this paper we will report on an alter-
native approach to the letter-to-sound problem

which makes use of a greatly simplified rule set in
conjunction with a very powerful probability
model derived from this “layered bigrams” strat-
egy. This new approach enforces an extremely
regular parse tree structure, with each layer in
the hierarchy being assigned to a particular lin-
guistic role. Furthermore, the left-context used in
the probability model includes not only the left-
sibling, but also its complete history 2, to provide
additional constraints for avoiding overgenera-
tion.

5.1. The new representation

A variety of linguistic knowledge sources are
collectively used to describe English ortho-
graphic-phonological regularities. Each knowl-
edge source only involves a small inventory of
labels. These linguistic levels and their associated
labels are defined from top to bottom in the
hierarchy as follows:

1. top-level (WORD] category, but may encode
part-of-speech information);

2. morphs (prefix, root, suffix);

3. syllable stress (primary [SSYL1], secondary

[SSYL2], reduced [SYL]);

4. subsyllabic units (onset, nucleus, coda);
S. manner classes (stops, fricatives, vowels, etc.);
6. place and voicing classes encoded as pho-
nemes;
7. letters.
As an illustration, Fig. 2 shows the representation
of the word “dedicated”. The higher levels in the
hierarchy encode longer distance constraints,
while the lower levels carry more local con-
straints. The layer of terminal nodes, which cur-
rently represent letters in a word spelling, can
conceivably represent phones in the word pro-
nunciation as well. As such, the task of letter-to-
sound generation should involve deriving the
higher levels in the hierarchy based on an input
spelling, and subsequently generating a phone
sequence (pronunciation) while making use of all
available hierarchical constraints. This process

% The set of parse tree categories contained in the path up
to the top-level root node.
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word 1. op-level
D\re root /Wf\ 2. marphs
ssyl syl 133 lz\ /isuf\ 3. stress
onset nuc  onset nuc m-onset nuc coda nuc coda + "L'f;}‘”ﬂb’c
stop vow stop vow stop vow stop vow stop 5. broad
I’ dasses
1 fe/ & n K e/ W n Id/ 6. phonemes
#[d] #(e] #{d] #(i] #[c] #[a) #[te] #'] #led] 7. graphemes

Fig. 2. Parse tree for “dedicated” with different linguistic layers indicated numerically.

can also be used for sound-to-letter generation,
with the exception of swapping the input /output
specifications. Our current system does not in-
volve phones, because our experimental corpus
provides phonemic transcriptions only. However,
if the terminal nodes were actually dual in na-
ture, the hierarchical representation should be
able to capture phonological rules between layers
6 (phonemes) and 7 (phones).

Although most of our labels are easily under-
stood, a couple of special annotations that appear
in Fig. 2 should be explained. The graphemic
“place-holder”, () in layer 7, is introduced here
to maintain consistency between the representa-
tions of the words “dedicate” and “‘dedicated”,
where the letter “e” in the inflectional suffix
[ISUF] “ed” is dropped when it is attached after
the final silent “e” in “dedicate.” Also notewor-
thy is the special [M-ONSET] category, which
signifies that the letter “c” should belong to the
root “-dic-", * but has become a moved onset of
the next syllable due to syllabification principles
such as the Maximal Onset Principle and the
Stress Resyllabification Principle.

A According to Webster's New World Dictionary, the root
of “dedicated” is *-dic-", which is derived from the Latin
Word “dicare”.

5.2. The layered bigrams paradigm

In order to generate hierarchical representa-
tions for words, we adopt a probabilistic parsing
algorithm based on the layered bigrams (Seneff et
al., 1992). The layered bigrams have previously
been used to parse sentences in the Air Travel
Information Service, or ATIS (Hirschman et al.,
1993) domain, where parsing takes place in a
top-down and left-to-right fashion. The new ver-
sion of the layered bigrams is adapted to parse
bottom-up left-to-right for the current subword
application. The two main changes in the new
algorithm were (1) to allow the left context to
take into account the entire column above the
left sibling in question, and (2) to predict the
right siblings along a given column from bottom
to top rather than from top to bottom. * The
algorithm is able to capture long distance con-
straints through enforcing local constraints hier-
archically-sonority sequencing in syllable layers
(3, 4 and 5), phonotactics in the phoneme layer
(layer 6), and graphemic constraints in the letter
layer (layer 7). If the terminals (layer 7) were to

‘A bottom-up procedure is difficult when parsing sen-
tences into linguistic structures due to movement phenomena
(e.g., gaps and unification features) which do not occur below
the word level.
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Table 2
A few examples of generalized context-free rules for different
levels in the hierarchy

word — [prefix] root {suffix]
root — ssyl [syl]

stressed-syl. — [onset] nucleus [coda)
nucleus — vowel

nasal -{(/m/, /n/, /n/)
/m/ - (“m” “me” “mn”

“mb” “mm” umpn)

represent phones also, phonological rules should
be captured as well. A significant portion of the
higher level layers of the parse tree is shared by
large groups of words, leading to efficient pars-
ing.

In order to train the probabilities in the lay-
ered bigrams, the algorithm calls for a set of
training parse trees. About a hundred context
free rules were written to parse the entire train-
ing corpus of 8,000 words into the format shown
in Fig. 2. As can be seen from the examples in
Table 2, the rules are very general and straight-
forward. It should be noted that the terminal
rules simply enumerate all possible spellings that
can associate with a given letter or letter se-
quence, without regard to context. Context condi-
tions are learned automatically through the prob-
abilistic training step.

The linguistic knowledge encoded in these
context-free rules, together with other regulari-
ties present in the training parse trees but not
explicitly specified, are automatically deduced by
the training procedure and transformed into a set
of trained probabilities. Details of the training
and testing procedures are provided in the follow-
ing.

5.2.1. Training procedure

The layered bigrams system trains on a set of
parse trees, each of which corresponds to a word
in the training corpus. The generation of these
parse trees is accomplished by boot-strapping with
the TINA parser (Seneff, 1992) operating with
the set of generalized context-free rules. These
context-free rules serve to incorporate linguistic
knowledge into the parser. Fig. 3 shows the parse
tree representation of the word “predicted”, while

Fig. 4 shows the representation in “layered bi-
grams” format.
The basic 4-tuple used in the analysis of the
training data is
1. Left-History (LH),
2. Left-Sibling (LS),
3. Right-Parent (RP),
4. Right-Sibling (RS).
Using Fig. 4 as an example, if we regard the
current node (or RS) as the terminal node r in
column 2, then the entire column 1 constitutes its
left-history, i.e., [WORD, PREFIX, UN-
STRESSED SYLLABLE, ONSET, STOP,
/p/ ,pl. The left-parent and left-sibling are, re-
spectively, the phoneme /p/ and the letter “p”
in column 1, while the right-parent is the phoneme
/r/ in column 2. Generally, the left and right
parents may or may not be identical. Notice that
in this example the left-parent is different from
the right-parent. This 4-tuple derives from two
context-free rules: /p/—“p”, and /r/—"“r”.
As another example, consider columns 4 and 5
in Fig. 4. If we regard RS =NUCLEUS in column 5,
then LH=[WORD, ROOT, STRESSED SYLLA-
BLE, ONSET] in column 4, LS=0ONSET, LP=
STRESSED SYLLABLE and RP=SAME (as LP).
Notice that in this case, the left-parent “holds”
(i.e., LP = RP), because this 4-tuple is derived
from a single context-free rule, namely,
STRESSED SYLLABLE — (ONSET) NUCLEUS

word

pre root isluf
2 /ssi”\ A
ﬂ nuc onlse( nuc /OO‘ﬂ\ nuc  coda

vr sTp volw stop sTp vr stop
/r frl W 15 n W I ;") I/

fo) M wle]  s] ¥) ¥l M Ml #(d)

Fig. 3. A parse tree generated by TINA for the word ““predic-
ted”.
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1 2. K] . 4 ] . 6 L 8 9
’7 ; i ! i word : : :
: : ‘. i ! :
! pre ! ¢ root | H isut
| : : : ' :
. ’ ‘ .
syl ! 1 ossylt . syl
; . :
onket t nuc | onset | nuc cobla nuc | coda
| 1
stop semi vow stop vow stop E stop vow stop
I i | oew | v w Y # n &
L{)] #r) #[e] #[d] #fi) #c] ) #le) #[d]

Fig. 4. A parse tree for the word “predicted” in layered
bigrams format.

(CODA)Y. In other words, a 4-tuple encodes
“within-rule” constraints in a derivation if LP =
RP. Otherwise, if LP # RP, the 4-tuple corre-
sponds to ‘“‘across-rule” constraints.

The set of probabilities that we compute is
intended to capture the constraints provided by
the context-free rules as well as other regularities
inherent in the training parse trees but not explic-
itly specified. These training probabilities are
computed by tallying counts and then normalizing
them by the total counts. Each word in the lexi-
con is counted as a single occurrence. ° The set
of training probabilities includes:

1. start terminal unigram P, Gnigram — this is the
unigram probability over all the terminals that
can start a word. In the letter-to-sound gener-
ation case, the start terminal is a grapheme,
¢.g., the letter “p” starts the word “predicts™.
and the grapheme “ph” starts the word “phil-
osophy”’.

2. start column prediction probability Pg, .o -
this is the bottom-up prediction probability
given that we are at the start column of the
word. It is the product of the start terminal

% Another possibility is to take the word frequencies into
account.

unigram and all the bottom-up prediction
probabilities in the start column, i.e.,

Pstarcol
= PsiartUnigram
X Pr(RP[RS = the start terminal,
LH=START) X *--
XPr(RP=WORD [RS, LH=START).

3. column advance probability Pyadvance — thiS is
the bigram probability over all the terminals
than can follow the current column, i.e.,
Pr(RS = next terminal | LH). The next terminal
may be an END node.

4. column probability P - this this is the prod-
uct of the column advance probability and all
the bottom-up prediction probabilities in the
current column. Prediction in the layered bi-
grams is modified to drive entirely bottom-up
so that the *“within-rule” statistics and
“across-rule” statistics are shared. The bot-
tom-up prediction probability Pr (RP [RS ,LH)
makes a prediction using the entire left-his-
tory, and the current (right-sibling) category as
its context.

P(‘ul = PCuIAdvancc
X Pr(RP |RS = current terminal, LH)
X ++-Pr(RP=SAME [RS, LH).

Notice that we stop accumulating column pre-
diction probabilities once we reach RP = SAME.
This is because from then on the right-history
merges with structures which are already in
place in the left-history due to previous
derivations from the context-free rules.

5.2.2. Testing procedure

Given a test spelling or pronunciation, we at-
tempt to construct a layered parse structure in a
bottom-to-top, left-to-right fashion. A theory is
first proposed by constructing the start column
and computing the corresponding start column
probability, and then it is pushed on the stack to
become a partial theory with a stack score. At
each iteration of the algorithm, the stack is sorted,
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and the partial theory with the highest stack score
is popped off the stack and advanced by one
column. At the advancement, we check to see if
the last column of the partial theory is valid
top-down, and if it can reach the next terminal to
follow. If either one of these conditions is not
satisfied, the partial theory is eliminated. Other-
wise, this newly expanded partial theory is pushed
onto the stack with an updated stack score. The
iteration continues until one or more complete
theories (theories whose last column contains an
END node) is popped off the stack.

It can be seen that the layered bigrams algo-
rithm attempts to construct the entire parse tree
structure based on some very local probabilistic
constraints within adjacent layers. With the vari-
ous different layers in the hierarchy, long-dis-
tance constraints are implicitly enforced. The lay-
out of the hierarchical structure also enables us
to explicitly enforce additional long-distance con-
straints through the use of filters. To illustrate
this, consider the example of bisyllabic words
with a [PREFI1X]-[ROOT] morphology, where the
nouns often have a STRESS—UNSTRESS pattern,
while the verbs have an UNSTRESS—-STRESS pat-
tern (consider “permit”, “record”, etc.). There
are also several known “stress-affecting suffixes”
which tend to alter the stress contour of a word
in a predictable way (consider “combine’” versus
“combination”). For these examples, we can po-
tentially utilize stress filters to eliminate any par-
tial (or complete) theories which do not have the
correct stress pattern. Similarly, it is possible to
use morph filters to eliminate theories which
contain illegal morph combinations.

Apart from allowing additional constraints to
be enforced, the flexibility of the layered bigrams
algorithm also enables us to relax some con-
straints. This can be done by sharing probabilities
among different left histories, to legitimize rea-
sonable sibling—sibling transitions which were not
foreseen in the training data. More specifically,
probability sharing is accomplished by condition-
ing the column advancement probabilities on a
partial left-history (e.g. disregarding the grapheme
terminal) instead of the entire left-history. In this
way, we are able to increase the coverage of the
parser.

5.2.3. An efficient search algorithm

During the parsing process, all partial theories
are sorted in a stack, and the search for the
best-scoring theory is guided by the stack score.
Consequently, the evaluation function for com-
puting the stack score is important. In order to
avoid expensive computation to obtain a tight
upper bound for the look-ahead score of a partial
theory, we are currently using an evaluation func-
tion which invokes a score normalization mecha-
nism. This mechanism aims at generating stack
scores within a certain numeric range, and thus
strives to achieve a fair comparison on the good-
ness of a partial path between the shorter partial
paths and the longer ones. Scoring normalization
may be accomplished by an additive correction
factor in some cases, and a multiplicative correc-
tion factor in others. In our implementation, we
use a “fading” scheme as shown in

f(n) =af(n') +(1=a)p(n', n), (1

where f(c) is the stack score from the [START]
column to the current column ¢, ¢’ is the column
preceding ¢ in the parse tree, p(c’, c¢) is the
log-likelihood associated with extending the parse
tree from ¢’ to ¢, and « is some fading factor
(0 <a <1). The idea is to have the stack score
carry short term memory, where the current node
always contributes towards a certain portion of
the stack score (according to some pre-set weight
of a =0.95), while the remaining portion associ-
ated with the past gradually fades away exponen-
tially, so that the distant past contributes less to
the stack score than the recent history, and the
score tends to remain quite stable over time. The
outcome of this search is that the ordering tends
to place together parse theories with similar dis-
tant columns and different recent columns.

If multiple hypotheses are desired, the algo-
rithm can terminate after a desired number of
complete hypotheses have been popped off the
stack. In addition, a limit is set on the maximum
number of theories (partial and complete) popped
off the stack. The complete theories are subse-
quently reranked according to their actual parse
score (no fading). Though our search is inadmissi-
ble, we are able to obtain multiple hypotheses
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inexpensively. Our performance will be reported
in the next section.

6. Experimental results

Our experimental corpus consisting of the
10,000 most frequent words appearing in the
Brown Corpus (Kucera and Francis, 1967), have
been divided into 3 subsets. The words were
arranged alphabetically, and every tenth word
was set aside as a future test set. Subsequently,
every tenth word of the remaining set was set
aside for a development test set. The rest of the
words (about 8,000 in total) are used for training.
The preliminary results given in this paper are
based on the development test set only. Subse-
quent improvements to the systems and the fu-
ture development of a robust parsing mechanism
for handling nonparsable words will ensue. The
best configuration of our system, based on the
attainment of the highest performance and
broadest coverage on the development test set,
will ultimately be tested on the future test set.

The two criteria which we use for evaluating
spelling-to-pronunciation accuracies are similar
to those used in the other systems reported previ-
ously:

1. Word accuracy. In the case of spelling-to-pro-
nunciation generation, one can perform a
match between a generated phoneme string
and the reference phoneme string from the
lexical entry of the word. Our experimental
corpus provides only a single reference pro-
nunciation per word. Generation is correct
only if there are no discrepancies between the
two phoneme sequences. In the case of pro-
nunciation-to-spelling generation, a similar
match is performed between the two letter
sequences. This is a strict evaluation criterion
which permits only a single pronunciation per
word and does not allow the generated output
to contain any deviation from the reference
output,

2. Phoneme accuracy. In addition to whole-word
accuracy, it is also possible to measure
phoneme /letter accuracies. Phoneme accu-
racy should be a good evaluation criterion to

use for spelling-to-pronunciation generation.
Such measures can be computed using a dy-
namic programming algorithm to align the
generated string with the “correct” string (pro-
vided by the lexicon). The alignment selected
minimizes the number of insertion, deletion
and substitution operations necessary to trans-
form the generated string to the reference
string. The accuracy is computed by subtract-
ing the sum of the insertion ([), deletion (D)
and substitution (S) error rates from 100%,
iLe.,

accuracy = 100% — (I + D + §5)%. (2)

This evaluation criterion is the one adopted by

NIST (The United States National Institute of

Standards and Technology) for measuring the

performance of speech recognition systems.
As was mentioned earlier, one should be careful
when comparing the performance of different
systems based on the given reported accuracy
values. This is because the training and test sets,
as well as the inventory of phonemes/phones,
vary from one system to another. Discrepancies
also occur in the evaluation methods. Multiple
pronunciations may be provided for a single word
in some cases, and insertion errors or stress er-
rors may or may not be taken into account. In
addition, phoneme/phone accuracies may be
computed per phoneme /phone or per letter (in
measuring the accuracy per letter, silent letters
are regarded as mapping to a [NULL] phoneme/
phone). We expect the accuracy per letter to be
generally higher than accuracy per phoneme/
phone, because there are generally more letters
than phonemes/phones per word, and the letters
mapping to the generic category [NULL] would
usually be correct. Although our results reported
in the following are based on the per phoneme
criterion, empirical results comparing accuracy
per letter and accuracy per phoneme /phone will
also be provided.

Our system uses an inventory of 52 unique
phonemes, which includes several unstressed

® Similarly, for pronunciation-to-spelling generation, letter
accuracy should be used.
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Table 3
Experimental results — word and phoneme accuracies for
training and testing data

Accuracy top choice top S top 10
correct correct correct
train word 77.3% 93.7% 95.7%
phoneme 94.2% - -
test word 69.3% 86.2% 87.9%

phoneme 91.7% - -

vowels and pseudo diphthongs such as /or/.’
Stress errors are accounted for to a certain ex-
tent, since we distinguish between the stressed
and unstressed realizations of some of our vow-
els. The parser was set to terminate after obtain-
ing 30 complete hypotheses, and the maximum
number of theories (partial and complete) popped
off the stack is constrained to 330. Following this,
we re-ranked the theories according to their ac-
tual parse score. 8 Experimental results are shown
in Table 3. “Top-choice” word accuracy is the
percentage of words for which the top-ranking
complete theory contains the correct phoneme
sequence. “Top N’ word accuracy refers to the
percentage of words for which the correct
phoneme sequence is contained in one of the first
N complete theories. Fig. 5 is a plot of cumula-
tive percent correct of whole word theories as a
function of the ranks of the theories after re-scor-
ing. Although 30 complete theories were gener-
ated for each word, no correct theories occur
beyond N = 15 after resorting. There were 46
non-parsable words in the development test set -
these are words for which the parser cannot
generate any complete theories. By incorporating
a simple “backoff” mechanism, * we managed to
reduce the number of non-parsable words to 18,
containing approximately equal proportions of

"The complete set of phonemes is included in Appendix A.

8 Since our search is inadmissable, the best scoring theory is
not always first.

°In this case, the column advances probability is condi-
tioned only on the partial left-history, where the letter termi-
nal is excluded.

100

Cumulative Percentage (%)

0 10 20 30
Rank of Correct Pronunciation

Fig. 5. Percent correct whole-word theories as a function of
N-best depth for the test set.

compound words, proper names and words that
failed due to sparse data problems. '°

Notice that the asymptote of the cumulative
plot in Fig. 5 lies around 88%. Computation of
the cumulative percentage includes words for
which the generated output is “correct”, as well
as other words for which the “correct” theory
does not surface with top rank, but is among the
N-best. In some cases, different parse trees in the
N-best pool may give the same output pronuncia-
tion, but with different higher level linguistic
analyses. Therefore another possible method of
N-best rescoring is to sum the independent prob-
abilities of the different parse theories with iden-
tical phonemes and re-rank the generated pro-
nunciations. In order to retrieve the “correct”
hypothesis from the N-best pool, we can perhaps
use a better stack criterion to target admissibility
and curb search errors. We can also eliminate
systematic errors and refine generation outputs
by post-processing with additional contextual in-
formation. The fraction of the test set lying above
the asymptote (about 12%) in Fig. 5 consists of
words for which a correct pronunciation did not
emerge as one of the output complete theories.

' A more recent backoff algorithm achieves 100% coverage
(Meng et al., 1994).
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We grossly classified the errors into 4 categories.
Some generated pronunciations have subtle dit-
ferences from the given pronunciations, and are
essentially correct. Another category has unusual
pronunciations due to influences from foreign
languages, e.g., “aborigines”, ‘‘champagne” and
“debris”. Still another category has generated
pronunciations which agree with the regularity of
English letter-to-phoneme mappings, but were
nevertheless incorrect, e.g., “cushion” /kaSin/,
“elite” /11a¥t/ and “viscosity” /visko¥siti¥/.
The final category are errors attributable to sparse
data problems, such as “que’ in “braque”.

We have also run an experiment comparing
the per letter and per phoneme accuracies by
dividing the training set into two portions, train-
ing on one and testing on the other. Phoneme
accuracy per letter is computed using the align-
ment provided by the training parse trees. We
found that the per letter measurement led to
approximately a 10% reduction in error rate.

7. Discussion and future work

Our current work demonstrates the use of a
hierarchical framework, which is relatively rich in
linguistic knowledge, for bi-directional letter/
sound generation. This paper focuses on letter-
to-sound generation. The results obtained on a
disjoint test set, 69.3% word accuracy and 91.7%
phoneme accuracy, seems competitive when com-
pared to the other automatic approaches de-
scribed previously in Section 2.

In order to demonstrate the bi-directional gen-
eration capability, we have also conducted a for-
mal evaluation on sound-to-letter generation. A
detailed report can be found in (Meng et al,
1994a). Using the same training and test sets as
described here, the word accuracy and letter ac-
curacy obtained are approximately 52% and 89%,
respectively. There is much overlap between the
problematic words in letter-to-sound generation
and the corresponding set in sound-to-letter gen-
eration, possibly due to the symmetry imposed by
our approach. The overlap implies that improve-
ments made in one generative direction should
carry over to the opposite direction as well.

The hierarchical lexical representation used in
our approach advocates the use of higher level
linguistic knowledge for letter /sound generation.
Therefore, it is important for us to assess the
relative contribution of each linguistic layer in the
hierarchy towards generation, and the relative
merits of the overall hierarchical design. We have
run a series of letter-to-sound generation experi-
ments which are reported in (Meng et al., 1994b).
Our results show that while the broad class layer
promotes more sharing of the training data and
consequently relaxes some constraints for in-
creased coverage, all the other layers seem to
provide additional constraints which are impor-
tant for generation. Furthermore, comparison
with an alternative flat structure shows that the
hierarchical representation provides a parsimo-
nious description of English letter-to-sound map-
pings. Once again, due to the symmetry between
letter-to-sound generation and sound-to-letter
generation, we expect these findings to be appli-
cable to the sound-to-letter generation task as
well. The task of bi-directional letter /sound gen-
eration is particularly useful for handling out-of-
vocabulary words encountered by speech recogni-
tion systems, by generating reasonable pronuncia-
tions /spellings for new words and incorporating
them into the vocabulary. Our hierarchical lexical
representation, being rich in linguistic knowledge,
is also potentially useful for other applications in
speech synthesis, recognition and understanding.
It could serve as a lexical representation for large
vocabulary recognition tasks, providing extensive
structural sharing among all words. The morphol-
ogy layer allows us to automatically derive regular
inflectional and derivational forms of words, and
can potentially provide basic semantic and syntac-
tic information. The layer of manner features can
be used for rapid lexical access (fast match) by
narrowing down word candidates to a short list
which belong to the same cohort (Shipman and
Zue, 1982). The framework would also be suit-
able as a constraining language model in a char-
acter recognition task. Viewing the layered bi-
grams as a predictor of the next character, we can
measure the perplexity ! per character (letter) of
the test set to determine its effectiveness. We
obtained a perplexity of 8.3 as contrasted with



H. Meng et al. / Speech Communication 18 (1996) 47-63 61

11.3 for a standard bigram language model, hav-
ing trained and tested on the same data sets. A
lower perplexity implies the provision of more
constraints, which is often conducive towards bet-
ter performance.

Furthermore, the multi-level framework should
also be applicable to languages other than En-
glish. For example, it should be possible to apply
our system methodologies to multilingual systems
(Zue et al., 1993) whenever letter-sound corre-
spondences and context interact in the same way
as in our current monolingual system (Goddeau,
1994), e.g., generating English name pronuncia-
tions in terms of the Japanese Katakana pronun-
ciation alphabet.

Some resemblances can be found between our
formalism and another used for Dutch, known as
the Speech Maker Formalism (Van Leeuwen,
1993). Speech Maker is used for text-to-speech
synthesis, and supports a multi-level synchronized
data structure called a grid. The grid contains
streams, or levels which contain information about
word accent, word class, and the morphemes,
syllables, phonemes and graphemes constituting
the word. Each stream is also synchronized with
other streams in the grid by sync marks, i.e. the
vertical bars as illustrated in Fig. 6, which shows a
portion of a grid. Generation in the Speech Maker
is achieved by complex, two-dimensional rules
which can operate on more than one stream at a
time, modelled after the DELTA language (Hertz
et al., 1973). An example is shown in Fig. 7, which
is a rule stating that an ‘“a”, followed by any
sequence of characters pronounced as a single
consonant, followed by an “e”” which is root final,
should be pronounced as /e/.

Our approach differs from the Speech Maker
in that each rule in our rule set specifies the
derivation that can take place in one layer only.
This is achieved by virtue of the regularity of the

" Perplexity is the average branching factor, or the geomet-
ric mean of the number of possible choices for the next
character.

Word: +

class: adjective
morpheme: | prefix root suffix
grapheme: |ofu (tls|tlain{d|l|n|g

Fig. 6. A portion of the Speech Maker grid representing the
word “outstanding”.

hierarchical structure and the use of probabili-
ties. The hierarchical structure, in layered bi-
grams format, is regular in that each column
advances uniformly from left to right, and thus
synchronization marks are not required. The set
of probabilities used in the parser is conditioned
upon a very elaborate left context, which includes
the entire left history, and thus they provide tight
linguistic constraints for generation. Conse-
quently, complex rules may not be necessary

It is also important to note that the hierarchi-
cal framework offers the possibility of a uniform
approach to all levels of analysis in spoken lan-
guage systems. The dimensions of the hierarchy,
along with the layered bigram formalism, could
be further extended upwards to encompass natu-
ral language constraints (Seneff, 1992), prosody,
discourse and even perhaps dialogue constraints,
and augmented downwards to include layers cap-
turing phonetics and acoustics. As such the hier-
archy should be a promising means of representa-
tion for speech synthesis, recognition and under-
standing.

morpheme: root ‘

grapheme: I al | ] !
phoneme: J\ <+cons> | '_"l e‘

Fig. 7. An example of a two-dimensional rule in Speech
Maker.



62 H. Meng et al. / Speech Communication 18 (1996) 47-63

Appendix A

The complete set of phonemes used in the
system include: /w/, /t/, /1/, /h/, /v/, /y/,
VAVAWA VWS VAW VAWIVAWE VAWV AWE VAVE TS
VAVAWA VWS VaVA VANVA YW YW A VA4 YRWAYE
/k/, 74/, v/, /87, /i/s /8 /m/ /m/.
/n/, /n/, /0%, Ju/, Jav/, fe/, /At fi/
/oY /y/, Jer/, Ju/, Jor/, Jal/, Jol/,
/ar/, unstressed /i/, unstressed /u/, un-
stressed /o/ and /3/. (The pseudo diphthongs
are /yu/, /er/, /ju/, Jor/, /al/. /ol/ and
J/ar/.)
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