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Background and Motivation

m Audio and Visual Speech
Most important in human-human communication
Most natural in human-computer interaction

m Human speech is bimodal in nature

Audio speech is produced by movement of the
aiticulators with airflow through the vocal tract

Visual speech is due to the observable movement of
articulators

m Two modalities are complementary

Macleod (1987): the contribution of visual information
to the speech perception in noise will be 8-10dB*

Macleod A, 1987, et al. Quantifying the contribution of vision to speech perception in noise.
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Audio-Visual Integration

m Feature-level fusion
Concatenating multiple features into a large vector
Training a single model
Assuming: audio-visual in strict synchrony

m Decision-level fusion

Processing audio and visual features separately
Building two independent models

Assuming: complete independence, ignores the audio
visual correlations.

m Model-level fusion
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Model-level Fusion
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AVCM 2. Partial temporal synchrony
at word level
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AVCM

m Models the temporal relationship at word
boundaries

For advanced stream

m In first state of the new word: holds state-transition until the
lagging stream catches up to the new word

m Limits the temporal asynchrony within only one
state

m Ignores the explicit temporal relationship
between two streams
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Durational-AVCM
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Word Advance Duration (WD)

P(WD, =d'|WD_, =d,WA =i,W* = jW,’ =k)

1 if d'=-1 and i=0

If d’=MaxAdvanceA(j,k) and i=1 and d=-1
If d’=MaxAdvanceV (j,k) and i=-1 and d=-1
if d'=d-1 and 120 and d>0
if d'=0 and 120 and d=0
0 otherwise

m MaxAdvanceA (Word_ A, Word_V)

The maximum advanced time when the audio stream is in advance,
the current word of audio stream and video stream is Word_A and

Word_V respectively.

m MaxAdvanceA,MaxAdvanceV
Learnt from the training data

m Explicitly model the asynchrony for different word
combinations




P(T°=b|Cf =i,C;° = jWA =k,WD, =d
1 if b=0 and s=A and k=1 and d=0 m |f WD exceeds
1 if b=0 and s=V and k=-1 and d=0 the maximum
AL if b=0 and s=A and k=1 and d>0 advanced
1-Aj; if b=1 and s=A and k=1 and d>0 -
A if b=0 and s=V and k=-1 and d>0 time, the
=11-A;, if b=1 and s=V and k=-1 and d>0 advanced
A if b=0 and s=A and k=1 stream §h0u|d
1-Aj; if b=1 and s=A and k=1 wait until the
A if b=0 and s=V and k=-1 other stream
1-A; if b=1 and s=V and k=-1 catches up.
0 ofherwise | m Otherwise, the
PWT: =blLs? = £.17 = g WA =i) stream just
1 if b=0 and f=0 :
1 if b=0 and f=1 and ¢g=0 pI’OCGEdS atits
1 if b=1 and f=1 and g=1 and i=-1 and s=A own pace.
_<1 if b=1 and f=1 and g=1 and i=1 and s=V
1 if b=1 and f=1 and g=1 and i=0
1 if b=0 and f=1 and g=1 and i=-1 and s=V
1 if b=0 and f=1 and g=1 and i=1 and s=A
0
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Experiments

m Comparison between the three models using
text-prompt speaker identification experiments
Coupled HMM (CHMM)
AVCM
Durational-AVCM

m All the models are implemented as dynamic
Bayesian networks (DBNs) with GMTK* toolkit

Bilmes, J., Zweig, G. 2002: The graphical models toolkit: An open
source software system for speech and time-series processing.
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Experimental Corpora (1)

m CMU audio-visual bimodal database
110 subjects (7 male, 3 female)
1 Speaking 78 isolated English words
1 Repeated 10 times

IEZUEF‘“

Chen, T. 2001: Audiovisual speech processing
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Experimental Corpora (2)

m Homegrown audio-visual bimodal database
60 subjects (38 male, 22 female, aged from 20 to 65)

Speaking 30 connect-digit words (digit length differs
from 2 to 6) in Chinese

Repeated 3 times at intervals of 1 month
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Front-ends and Models

m Audio Front-end
13 MFCCs + 1 energy + delta
Frame size: 25ms, and frame rate: 11ms

m Visual Front-end

1 mouth width + 1 upper lip height + 1 lower lip height
+ delta *

Frame rate: 30fps, up-sampled to 90fps (11ms)

m Model parameters
Audio sub-model: 5 states, GMM with 3 mixtures
Video sub-model: 3 states, GMM with 3 mixtures

Chen, T. 2001: Audiovisual speech processing



" J
Experimental Setup

m Cross validation
90% of all the data used for training
10% of all the data used for testing
Repeated until all the data have been covered in the
testing set

m Training: clean speech
SNR at 30dB

m Testing: noisy speech
Additive Gaussian white noise
SNR at 0, 10, 20, 30dB



Experimental Results (1)

m Speaker identification on CMU database

audio signal-to-noise ratio (SNR) 30dB 20dB 10dB 0dB
coupled HMM (CHMM) 100 88 79 60
AVCM 100 92 79 65
Durational-AVCM 100 93.5 82 69
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Experimental Results (2)

m Speaker identification on homegrown

database
audio signal-to-noise ratio (SNR) 30dB 20dB 10dB 0dB
coupled HMM (CHMM) 100 85 77 57
AVCM 100 89 78 61
Durational-AVCM 100 91 80 66
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Experimental Results (1)

m Speaker identification on CMU database

audio signal-to-noise ratio (SNR) 30dB 20dB 10dB 0dB
video only 77 77 77 77

audio only 100 64 22 17

feature level fusion 99 85 30 20
decision level fusion 100 86 78 78
coupled HMM (CHMM) 100 88 79 60
AVCM 100 92 79 65
Durational-AVCM 100 93.5 82 69
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Experimental Results (2)

m Speaker identification on homegrown

database
audio signal-to-noise ratio (SNR) 30dB 20dB 10dB 0dB
video only 74 74 74 74
audio only 99 59 20 15
feature level fusion 99 81 26 18
decision level fusion 100 83 76 75
coupled HMM (CHMM) 100 85 77 57
AVCM 100 89 78 61
Durational-AVCM 100 91 80 66
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Experiments

m Comparison with other models
Audio-only
Video-only
Feature level fusion
Decision level fusion
Coupled HMM (CHMM)
AVCM
Durational-AVCM

m All the models are implemented as dynamic
Bayesian networks (DBNs) with GMTK* toolkit

Bilmes, J., Zweig, G. 2002: The graphical models toolkit: An open
source software system for speech and time-series processing.



